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Math 332 Winter 2023, Lecture 12: Rings

website: https://www.cip.ifi.lmu.de/ grinberg/t/23wa

1. Rings and ideals (cont’d)

1.10. Direct products of rings
1.10.1. Direct products of two rings
Here is a way to generate a new ring out of two existing rings:

Proposition 1.10.1. Let R and S be two rings. Then, the Cartesian product
RxS={(r,s) | re Rands € S}
becomes a ring if we endow it with the entrywise addition
(r,8)+ (',s") = (r+7, s+5)
and the entrywise multiplication
(r,8)- (r',s") = (rr', ss')
and the zero (Og,0s) and the unity (1g, 1s).

Definition 1.10.2. This ring is denoted by R x S and is called the direct prod-
uct of R and S.

Proof of Proposition We need to check the ring axioms. For instance, let
us check associativity of multiplication: This means proving that a (bc) = (ab) c
foralla,b,c € R x S. In other words (since the elements of R x S are pairs), this
means proving that

(V,S) ((1"/,5/) (7"/,, S//)) — ((Y,S) (},IIS/)) (r//, S//)

for all (r,s),(r',s"),(r",s") € R x S. To prove this, just multiply out:

(r,s) ((7”,8’) (T’/I,S”)) _ (I’,S) (1’/1’”, S/S”) _ (1’ (1”7’”) s (S/SH))

and

((r,s) (r',s") (r",s") = (rr', ss") (r",s") = ((rr") 7", (ss')s").
The right hand sides of these two equalities are equal, since 7 (r'r") = (rr') 1"
and s (s's”) = (ss’)s"”. Thus, the left hand sides are equal as well. So associa-
tivity of multiplication in R x S follows from the analogous properties of R and

of S. The same holds for all the other ring axioms. Thus, Proposition |1.10.1
follows. 0
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1.10.2. Direct products of any number of rings

More generally, we can define a direct product R; x Ry X - - - X R;; of any num-
ber of rings in the same way (but using n-tuples instead of pairs). Even more

generally, we can define the direct product [] R; of any family of rings (the
i€l
family can be infinite):

Proposition 1.10.3. Let I be any set. Let (R;);.; be a family of rings (i.e., let
R; be a ring for each i € I). Then, the Cartesian product

[ [ R = {all families (r;);.; with r; € R; for eachi € I}
i€l

becomes a ring if we endow it with the entrywise addition
(ri)ier + (Si)ier = (ri +5)je;
and the entrywise multiplication
(ridier - (8iier = (risi)ic

and the unity (1g,)

and the zero (Og,),; er

We recall that a family is a generalization of a list or a sequence; it is a collec-
tion of objects (the “entries” of the family) indexed by elements of a given set
I (the “indexing set”). Such a family can be written as (s;);.;, where s; denotes
the i-th entry of the family (i.e., the entry indexed by i). Programmers know
families under the name “dictionaries” or “associative arrays”. The simplest

examples of families are:
e n-tuples: If I = {1,2,...,n}, then a family (r;);.; is the n-tuple (r1,72,...,74).

e infinite sequences: If I = N = {0,1,2,...}, then a family (r;);.; is the
sequence (7o, 71,72, . .).

* sequences infinite on both sides: If I = Z, then a family (r;),.; is the
“infinite-on-both-sides sequence” (...,r_y,7_1,%9,71,12,...).

In particular, any map f from a set I to a set S can be viewed as a family
(f (i));e; € TI S (whose entries are the values of f). However, families can be
i€l

more general than maps, in that the values of a map have to all belong to the
same set (the target of the map), whereas each entry of a family can come from
a different set.
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Definition 1.10.4. The ring defined in Proposition [1.10.3|is denoted by [] R;
icl

and is called the direct product of the rings R;.
Some particular cases of this:

e If ] = {1,2,...,n} for some n € IN, then this ring is also denoted
by R; X Ry X --- x Ry, and its elements (r;);.; can be written as
(r1,72,...,7n). Thus, the elements of this ring in this case are the n-
tuples (r1,7,...,7,) whose entries belong to Ry, Ry, ..., Ry, respectively.
In particular, for n = 2, this recovers the definition of R x S in Defini-

tion [.10.21

e If all the rings R; are equal to some ring R, then their direct product

[T R; = [I R is also denoted R!. Note that this is the same notation that
i€l i€l

sze previce)usly introduced for the ring of all functions from I to R (with
pointwise addition and multiplication); however, these two notations
are identical for a good reason: The two rings are the same. Indeed, a
function f from I to R is the same as a choice of value f (i) for each
i € I, and this is the same thing as a family (f (i)),.; of elements of R.
So a function from I to R is precisely an element of [] R. Pointwise ad-

icl

dition/multiplication of functions corresponds precisely to entrywise
addition/multiplication of families, so the two rings are the same (not
just as sets but as rings).

e If n € N, and if R is a ring, then the ring R{}%-} = RxRx---xR

NV
n times

is also called R".

Proof of Proposition (1.10.3] Analogous to the proof of Proposition(1.10.1; Replace
(r,7") by (7i);c;, and so on. O
1.10.3. Examples

Here are some examples of direct products:

 The ring Z3 = Z x Z x Z consists of all triples (r,s,t) of integers. They
are added entrywise:

(r,s,t) + (r',s',t') = (r+7, s+5, t+1)
and multiplied entrywise:
(r,s,t)- (r',s", ') = (rr, ss', tt).

Note that this ring is not an integral domain, since (for example) (0,1,2) -
(1,0,0) = (0,0,0).
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e If R, S and T are three rings, then the direct products R x S x T and
(R x S) x T are not quite the same (e.g., the former consists of the triples
(r,s,t), whereas the latter consists of the pairs ((7,s),t)). However, they
are isomorphic through the rather obvious ring isomorphism

RxSxT—(RxS)xT,
(r,s,t) — ((r,8),1).

(Proving this is completely straightforward if you understand the defini-
tions.)

Similarly, the rings R x S X T and R x (S x T) are isomorphic. You can
easily generalize this to direct products of more than three rings. We say
that the direct product operation (on rings) is “associative up to isomor-
phism”.

* The ring C consists of complex numbers, which are defined as pairs of
real numbers (the real part and the imaginary part). Thus, C = R x R
as sets. Since complex numbers are added entrywise, we even have C =
R x R as additive groups. However, C is not R x R as rings, because
multiplication of complex numbers is not entrywiseﬂ Actually, the rings
C and R x IR are not even isomorphic, since C is an integral domain (even
a field) whereas R x R is not (since it has (1,0) - (0,1) = (0,0)).

* Let R be any ring. Let n € IN. Let R"~" be the set of all diagonal matrices
in the matrix ring R"*". That is,

aq o -.-- 0

B 0 ap --- 0
R"™" = L ) | ay,ap,...,a0 €R

0 0 --- a,

For example,

RZZZ:{(S 2) | a,deR}.

It is easy to see that R"~" is a subring of R"*". Moreover, we have R"~" =

Let’s be explicit: In C, multiplication is given by
(a,b) - (c,d) = (ac — bd, ad + bc) .
In R x R, multiplication is given by
(a,b) - (c,d) = (ac, bd).

These are very much not the same.
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R™ as rings (where R" is as in Definition [1.10.4)). Specifically, the map

R" — R"="
a O --- 0
0 a 0
(a1/a2/"'1a7’1) = : : . .
0 0 --- a,

is a ring isomorphism. (For example, this map respects multiplication
because diagonal matrices are multiplied entry by entry.)

It is easy to see that a direct product of commutative rings is commutative.

1.10.4. Direct products and idempotents

Direct products of rings are closely related to idempotents. We will briefly
discuss this in the case of a product R x S of two rings R and S.

Indeed, if R and S are two rings, then the pairs a := (1g,05) and b := (Og, 1s)
are idempotents in R x S. If R and S are nontrivial rings, then these are “non-
trivial” idempotents (i.e., they equal neither the zero Ogxs = (Og,0s) nor the
unity 1gxs = (1g,1s)). Thus, nontrivial direct products have nontrivial idem-
potents. Incidentally, these idempotents allow you to reconstruct the original
rings R and S: namely, the principal ideals a4 (R x S) and b (R x S) are them-
selves ringﬂ that are isomorphic to R and S (respectively).

For commutative rings, this road from direct products to idempotents can
also be walked backwards: If you know a nontrivial idempotent (i.e., an idem-
potent distinct from 0 and 1) in a commutative ring R, then R can be decom-
posed as a direct product of two nontrivial rings (or, more precisely: R is iso-
morphic to such a direct product). More concretely:

Proposition 1.10.5. Let e be an idempotent in a commutative ring R. Then,
the principal ideals eR and (1 —e¢) R themselves are rings (with addition,
multiplication and zero inherited from R, and with unities e and 1 — e, re-
spectively), and there is a ring isomorphism

(eR) x ((1—e)R) — R,
(a,b) — a+b.

Note that we need commutativity for this to work. For example, the matrix

ring IR>*? has lots of idempotents (any projection matrix, such as ( (1) 8 ), is

an idempotent), but is not a nontrivial direct product.

2with addition, multiplication and zero inherited from R x S, and with respective unities a
and b
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1.11. Ideal arithmetic

It is easy to see that if I and | are two ideals of a ring R, then their intersection
IN]is an ideal of R as well (but their union I U J usually isn’t). But this is not
the only way to build new ideals of a ring from old. Here are two other ways:

Definition 1.11.1. Let I and ] be two ideals of a ring R.
(a) Then, I + | denotes the subset

{i+j |ie€landj€ ]} ofR.

(b) Next, we define a further subset I] of R, also denoted I - J. Unlike I + ],
this will not be defined as {i-j | i € I and j € J}. Instead, I] = I - ] will be
defined as the set

{all finite sums of (I, ])-products},

where an (I, J)-product means a product of the form ij withi € [ and j € J.
In other words,

I]: {i1j1+i2j2—|—"'+ikjk ’ kE]Nandil,iz,...,ikE Iandjl,jz,...,jk E]}

Note that our definition of I] was more complicated than our definition of
I + ], as it involved an additional step (viz., taking finite sums). The purpose
of this step was to ensure that I] is closed under addition. For I + J, we did
not need to do this, because I + | (as we defined it) is already closed under
addition: For any i1,i; € I and jy,j2 € J, we have
(1+j1) +(2+j2) = (L +i2) + (1 +)2).-
——— ~—

-’
el eJ

Meanwhile, the sum of two (I, J)-products is generally not an (I, J)-product
(even though a counterexample isn’t that easy to find).
Here is an assortment of facts about the above-defined operations on ideals:

Proposition 1.11.2. Let R be a ring.

(@) Let [ and | be two ideals of R. Then, [ + | and I N ] and I] are ideals
of R as well.

(b) Let I and | be two ideals of R. Then, I] C INJ] C I C [+ ] and
IfcinjcjcI+].

(c) The set of all ideals of R is a monoid with respect to the binary operation
+, with neutral element {Og}. That is,

(I+])+K=I1+(]+K) for any three ideals I, ], K of R,
I+{0r} ={0r}+I=1 for any ideal I of R.
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(d) The set of all ideals of R is a monoid with respect to the binary opera-
tion N, with neutral element R. That is,

(IN])NK=1IN(JNK) for any three ideals I, ], K of R,
INR=RNI=1 for any ideal I of R.

(e) The set of all ideals of R is a monoid with respect to the binary opera-
tion -, with neutral element R. That is,

(IJ)K =1(JK) for any three ideals I, ], K of R,
IR=RI=1 for any ideal I of R.

(f) Addition and intersection of ideals are commutative:

I+]=]+1 and INJ=]nNI for any ideals I, ] of R.

(g) If R is commutative, then I] = JI for any two ideals I and | of R.

Proof. Exercises. Some will be on the homework! O

Proposition shows that the operations +, N and - on the set of all
ideals of R satisfy a number of laws similar to the basic laws of arithmetic. This
is known as ideal arithmetic. However, ideals cannot be subtracted (i.e., you
cannot reconstruct I from | and I + ]), so the ideals of R do not form a ring.

Here is a commutative diagram showing the inclusions between the ideals
IJ, InJ, I+, I, J:

I+]

Inj
Ij
(An arrow of type X — Y means a canonical inclusion from X to Y, which

entails that X C Y")

In order to understand ideal arithmetic better, let us see how its operations
(addition, intersection and multiplication) behave for principal ideals of Z:

Proposition 1.11.3. Let n,m € Z. Let I = nZ and | = mZ. Then:
(a) We have I] = nmZ.
(b) We have IN ] = lem (n, m) Z.
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(c) We have [ 4 ] = ged (n,m) Z.
(d) We have I C ] if and only if m | n.
(e) We have I = ] if and only if |n| = |m]|.

Proof. (a) Let c € nmZ. Then, ¢ = nmd for some integer d. Consider this d.
Then, n = n-1 € I (since | = nZ) and md € | (since ] € mZ). Hence, the
product n (md) is an (I, J)-product. In other words, c is an (I, J)-product (since
¢ = nmd = n (md)). Thus, c is a finite sum of (I, J)-products (of just one, to be
specific). In other words, c € IJ.

Forget that we fixed c. We thus have shown that every ¢ € nmZ satisties
¢ € I]. In other words, nmZ C I].

Conversely: If i € I and j € ], then i = nx for some x € Z (since i € I = nZ)
and j = my for some y € Z (since j € | = mZ) and therefore ij = (nx) (my) =
nm (xy) € nmZ. Thus, every (I, ]J)-product belongs to nmZ (because an (I, ])-
product always has the form ij for some i € I and j € ]J). Hence, any sum of
(I, ])-products also belongs to nmZ (since nmZ is closed under addition). In
other words, I] C nmZ (since any element of I] is a sum of (I, J)-products).

Combining this with nmZ C I]J (which we have shown above), we obtain
I] = nmZ. Thus, Proposition (a) is proven.

(b) We have

IN ] = {all elements of I that also belong to J}
= {all multiples of n that also are multiples of m}

since [ = nZ = {all multiples of n}
and | = mZ = {all multiples of m}

= {all common multiples of n and m}
= {all multiples of lem (n,m)}

says that the common multiples of n and m

since a result in elementary number theory
are precisely the multiples of lem (1, m)

= lem (n,m) Z.

(c) First, we shall show that I + ] C gcd (n,m) Z. Indeed, any element of
I is a multiple of n (since I = nZ), thus a multiple of ged (1, m) (since n is a
multiple of ged (1, m)). Similarly, any element of | is a multiple of ged (1, m).
Thus, an element of I + ] is a sum of two multiples of gcd (1, m), and therefore
itself a multiple of ged (1, m). In other words, any element of I + ] belongs to
ged (n,m) Z. In other words, [ + ] C ged (n,m) Z.

Now, we need to prove that ged (n,m)Z C I+ ]. For this, we let k €
ged (n,m) Z. Thus, k = ged (n,m) - ¢ for some integer c. Consider this c.

Bezout’s theorem from elementary number theory (see, e.g., [19s, Theorem
2.9.12]) shows that ged (n,m) = xn + ym for some integers x and y. Consider
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these x and y. Then,

k=ged(n,m)-c=(xn+ym)-c=xnc+ymcel+]
——

=xn+ym

(since xnc = nxc € nZ = I and ymc = myc € mZ = |).

We thus have shown that k € I + ] for each k € ged (1, m) Z. In other words,
ged (n,m)Z C I+ ]. Combining this with I + ] C ged (n,m) Z, we obtain
I+ ] = ged (n,m) Z. This proves Proposition [1.11.3] (c).

dIIC ], thenn =n-1€nZ =1 C | = mZ, which means that n is a
multiple of m; but this is just saying that m | n. Conversely, if m | n, then every
multiple of n is a multiple of m, which means that nZ C mZ, which we can
rewrite as I C | (since I = nZ and | = mZ). Combining these two implications,
we see that we have I C ] if and only if m | n. This proves Proposition
(d).

(e) We have I = | if and only if we have both I C Jand | C I. But I C Jis
equivalent to m | n (by Proposition [1.11.3| (d)), whereas | C I is equivalent to
n | m (similarly). Thus, we have I = | if and only if we have both m | n and n |

m. But the latter statement (“both m | n and n | m”) is equivalent to |n| = |m|,
by basic properties of integers. Thus, Proposition 1.11.3| (e) follows. O
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