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Math 332 Winter 2023, Lecture 12: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont’d)

1.10. Direct products of rings

1.10.1. Direct products of two rings

Here is a way to generate a new ring out of two existing rings:

Proposition 1.10.1. Let R and S be two rings. Then, the Cartesian product

R × S = {(r, s) | r ∈ R and s ∈ S}

becomes a ring if we endow it with the entrywise addition

(r, s) +
(
r′, s′

)
=

(
r + r′, s + s′

)
and the entrywise multiplication

(r, s) ·
(
r′, s′

)
=

(
rr′, ss′

)
and the zero (0R, 0S) and the unity (1R, 1S).

Definition 1.10.2. This ring is denoted by R× S and is called the direct prod-
uct of R and S.

Proof of Proposition 1.10.1. We need to check the ring axioms. For instance, let
us check associativity of multiplication: This means proving that a (bc) = (ab) c
for all a, b, c ∈ R × S. In other words (since the elements of R × S are pairs), this
means proving that

(r, s)
((

r′, s′
) (

r′′, s′′
))

=
(
(r, s)

(
r′, s′

)) (
r′′, s′′

)
for all (r, s) , (r′, s′) , (r′′, s′′) ∈ R × S. To prove this, just multiply out:

(r, s)
((

r′, s′
) (

r′′, s′′
))

= (r, s)
(
r′r′′, s′s′′

)
=

(
r
(
r′r′′

)
, s

(
s′s′′

))
and (

(r, s)
(
r′, s′

)) (
r′′, s′′

)
=

(
rr′, ss′

) (
r′′, s′′

)
=

((
rr′

)
r′′,

(
ss′

)
s′′
)

.

The right hand sides of these two equalities are equal, since r (r′r′′) = (rr′) r′′

and s (s′s′′) = (ss′) s′′. Thus, the left hand sides are equal as well. So associa-
tivity of multiplication in R × S follows from the analogous properties of R and
of S. The same holds for all the other ring axioms. Thus, Proposition 1.10.1
follows.

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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1.10.2. Direct products of any number of rings

More generally, we can define a direct product R1 × R2 × · · · × Rn of any num-
ber of rings in the same way (but using n-tuples instead of pairs). Even more
generally, we can define the direct product ∏

i∈I
Ri of any family of rings (the

family can be infinite):

Proposition 1.10.3. Let I be any set. Let (Ri)i∈I be a family of rings (i.e., let
Ri be a ring for each i ∈ I). Then, the Cartesian product

∏
i∈I

Ri =
{

all families (ri)i∈I with ri ∈ Ri for each i ∈ I
}

becomes a ring if we endow it with the entrywise addition

(ri)i∈I + (si)i∈I = (ri + si)i∈I

and the entrywise multiplication

(ri)i∈I · (si)i∈I = (risi)i∈I

and the zero
(
0Ri

)
i∈I and the unity

(
1Ri

)
i∈I .

We recall that a family is a generalization of a list or a sequence; it is a collec-
tion of objects (the “entries” of the family) indexed by elements of a given set
I (the “indexing set”). Such a family can be written as (si)i∈I , where si denotes
the i-th entry of the family (i.e., the entry indexed by i). Programmers know
families under the name “dictionaries” or “associative arrays”. The simplest
examples of families are:

• n-tuples: If I = {1, 2, . . . , n}, then a family (ri)i∈I is the n-tuple (r1, r2, . . . , rn).

• infinite sequences: If I = N = {0, 1, 2, . . .}, then a family (ri)i∈I is the
sequence (r0, r1, r2, . . .).

• sequences infinite on both sides: If I = Z, then a family (ri)i∈I is the
“infinite-on-both-sides sequence” (. . . , r−2, r−1, r0, r1, r2, . . .).

In particular, any map f from a set I to a set S can be viewed as a family
( f (i))i∈I ∈ ∏

i∈I
S (whose entries are the values of f ). However, families can be

more general than maps, in that the values of a map have to all belong to the
same set (the target of the map), whereas each entry of a family can come from
a different set.

https://en.wikipedia.org/wiki/Associative_array
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Definition 1.10.4. The ring defined in Proposition 1.10.3 is denoted by ∏
i∈I

Ri

and is called the direct product of the rings Ri.
Some particular cases of this:

• If I = {1, 2, . . . , n} for some n ∈ N, then this ring is also denoted
by R1 × R2 × · · · × Rn, and its elements (ri)i∈I can be written as
(r1, r2, . . . , rn). Thus, the elements of this ring in this case are the n-
tuples (r1, r2, . . . , rn) whose entries belong to R1, R2, . . . , Rn respectively.
In particular, for n = 2, this recovers the definition of R × S in Defini-
tion 1.10.2.

• If all the rings Ri are equal to some ring R, then their direct product
∏
i∈I

Ri = ∏
i∈I

R is also denoted RI . Note that this is the same notation that

we previously introduced for the ring of all functions from I to R (with
pointwise addition and multiplication); however, these two notations
are identical for a good reason: The two rings are the same. Indeed, a
function f from I to R is the same as a choice of value f (i) for each
i ∈ I, and this is the same thing as a family ( f (i))i∈I of elements of R.
So a function from I to R is precisely an element of ∏

i∈I
R. Pointwise ad-

dition/multiplication of functions corresponds precisely to entrywise
addition/multiplication of families, so the two rings are the same (not
just as sets but as rings).

• If n ∈ N, and if R is a ring, then the ring R{1,2,...,n} = R × R × · · · × R︸ ︷︷ ︸
n times

is also called Rn.

Proof of Proposition 1.10.3. Analogous to the proof of Proposition 1.10.1: Replace
(r, r′) by (ri)i∈I , and so on.

1.10.3. Examples

Here are some examples of direct products:

• The ring Z3 = Z × Z × Z consists of all triples (r, s, t) of integers. They
are added entrywise:

(r, s, t) +
(
r′, s′, t′

)
=

(
r + r′, s + s′, t + t′

)
and multiplied entrywise:

(r, s, t) ·
(
r′, s′, t′

)
=

(
rr′, ss′, tt′

)
.

Note that this ring is not an integral domain, since (for example) (0, 1, 2) ·
(1, 0, 0) = (0, 0, 0).
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• If R, S and T are three rings, then the direct products R × S × T and
(R × S)× T are not quite the same (e.g., the former consists of the triples
(r, s, t), whereas the latter consists of the pairs ((r, s) , t)). However, they
are isomorphic through the rather obvious ring isomorphism

R × S × T → (R × S)× T,
(r, s, t) 7→ ((r, s) , t) .

(Proving this is completely straightforward if you understand the defini-
tions.)

Similarly, the rings R × S × T and R × (S × T) are isomorphic. You can
easily generalize this to direct products of more than three rings. We say
that the direct product operation (on rings) is “associative up to isomor-
phism”.

• The ring C consists of complex numbers, which are defined as pairs of
real numbers (the real part and the imaginary part). Thus, C = R × R

as sets. Since complex numbers are added entrywise, we even have C =
R × R as additive groups. However, C is not R × R as rings, because
multiplication of complex numbers is not entrywise1. Actually, the rings
C and R×R are not even isomorphic, since C is an integral domain (even
a field) whereas R × R is not (since it has (1, 0) · (0, 1) = (0, 0)).

• Let R be any ring. Let n ∈ N. Let Rn=n be the set of all diagonal matrices
in the matrix ring Rn×n. That is,

Rn=n =




a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an

 | a1, a2, . . . , an ∈ R

 .

For example,

R2=2 =

{(
a 0
0 d

)
| a, d ∈ R

}
.

It is easy to see that Rn=n is a subring of Rn×n. Moreover, we have Rn=n ∼=

1Let’s be explicit: In C, multiplication is given by

(a, b) · (c, d) = (ac − bd, ad + bc) .

In R × R, multiplication is given by

(a, b) · (c, d) = (ac, bd) .

These are very much not the same.
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Rn as rings (where Rn is as in Definition 1.10.4). Specifically, the map

Rn → Rn=n,

(a1, a2, . . . , an) 7→


a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an


is a ring isomorphism. (For example, this map respects multiplication
because diagonal matrices are multiplied entry by entry.)

It is easy to see that a direct product of commutative rings is commutative.

1.10.4. Direct products and idempotents

Direct products of rings are closely related to idempotents. We will briefly
discuss this in the case of a product R × S of two rings R and S.

Indeed, if R and S are two rings, then the pairs a := (1R, 0S) and b := (0R, 1S)
are idempotents in R × S. If R and S are nontrivial rings, then these are “non-
trivial” idempotents (i.e., they equal neither the zero 0R×S = (0R, 0S) nor the
unity 1R×S = (1R, 1S)). Thus, nontrivial direct products have nontrivial idem-
potents. Incidentally, these idempotents allow you to reconstruct the original
rings R and S: namely, the principal ideals a (R × S) and b (R × S) are them-
selves rings2 that are isomorphic to R and S (respectively).

For commutative rings, this road from direct products to idempotents can
also be walked backwards: If you know a nontrivial idempotent (i.e., an idem-
potent distinct from 0 and 1) in a commutative ring R, then R can be decom-
posed as a direct product of two nontrivial rings (or, more precisely: R is iso-
morphic to such a direct product). More concretely:

Proposition 1.10.5. Let e be an idempotent in a commutative ring R. Then,
the principal ideals eR and (1 − e) R themselves are rings (with addition,
multiplication and zero inherited from R, and with unities e and 1 − e, re-
spectively), and there is a ring isomorphism

(eR)× ((1 − e) R) → R,
(a, b) 7→ a + b.

Note that we need commutativity for this to work. For example, the matrix

ring R2×2 has lots of idempotents (any projection matrix, such as
(

1 0
0 0

)
, is

an idempotent), but is not a nontrivial direct product.

2with addition, multiplication and zero inherited from R × S, and with respective unities a
and b
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1.11. Ideal arithmetic

It is easy to see that if I and J are two ideals of a ring R, then their intersection
I ∩ J is an ideal of R as well (but their union I ∪ J usually isn’t). But this is not
the only way to build new ideals of a ring from old. Here are two other ways:

Definition 1.11.1. Let I and J be two ideals of a ring R.
(a) Then, I + J denotes the subset

{i + j | i ∈ I and j ∈ J} of R.

(b) Next, we define a further subset I J of R, also denoted I · J. Unlike I + J,
this will not be defined as {i · j | i ∈ I and j ∈ J}. Instead, I J = I · J will be
defined as the set

{all finite sums of (I, J) -products} ,

where an (I, J)-product means a product of the form ij with i ∈ I and j ∈ J.
In other words,

I J = {i1 j1 + i2 j2 + · · ·+ ik jk | k ∈ N and i1, i2, . . . , ik ∈ I and j1, j2, . . . , jk ∈ J} .

Note that our definition of I J was more complicated than our definition of
I + J, as it involved an additional step (viz., taking finite sums). The purpose
of this step was to ensure that I J is closed under addition. For I + J, we did
not need to do this, because I + J (as we defined it) is already closed under
addition: For any i1, i2 ∈ I and j1, j2 ∈ J, we have

(i1 + j1) + (i2 + j2) = (i1 + i2)︸ ︷︷ ︸
∈I

+ (j1 + j2)︸ ︷︷ ︸
∈J

.

Meanwhile, the sum of two (I, J)-products is generally not an (I, J)-product
(even though a counterexample isn’t that easy to find).

Here is an assortment of facts about the above-defined operations on ideals:

Proposition 1.11.2. Let R be a ring.
(a) Let I and J be two ideals of R. Then, I + J and I ∩ J and I J are ideals

of R as well.
(b) Let I and J be two ideals of R. Then, I J ⊆ I ∩ J ⊆ I ⊆ I + J and

I J ⊆ I ∩ J ⊆ J ⊆ I + J.
(c) The set of all ideals of R is a monoid with respect to the binary operation

+, with neutral element {0R}. That is,

(I + J) + K = I + (J + K) for any three ideals I, J, K of R,
I + {0R} = {0R}+ I = I for any ideal I of R.
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(d) The set of all ideals of R is a monoid with respect to the binary opera-
tion ∩, with neutral element R. That is,

(I ∩ J) ∩ K = I ∩ (J ∩ K) for any three ideals I, J, K of R,
I ∩ R = R ∩ I = I for any ideal I of R.

(e) The set of all ideals of R is a monoid with respect to the binary opera-
tion ·, with neutral element R. That is,

(I J)K = I (JK) for any three ideals I, J, K of R,
IR = RI = I for any ideal I of R.

(f) Addition and intersection of ideals are commutative:

I + J = J + I and I ∩ J = J ∩ I for any ideals I, J of R.

(g) If R is commutative, then I J = J I for any two ideals I and J of R.

Proof. Exercises. Some will be on the homework!

Proposition 1.11.2 shows that the operations +, ∩ and · on the set of all
ideals of R satisfy a number of laws similar to the basic laws of arithmetic. This
is known as ideal arithmetic. However, ideals cannot be subtracted (i.e., you
cannot reconstruct I from J and I + J), so the ideals of R do not form a ring.

Here is a commutative diagram showing the inclusions between the ideals
I J, I ∩ J, I + J, I, J:

I + J

I
�.

==

J
0 P

aa

I ∩ J
0 P

aa

. �

==

I J
?�

OO

(An arrow of type X ↪→ Y means a canonical inclusion from X to Y, which
entails that X ⊆ Y.)

In order to understand ideal arithmetic better, let us see how its operations
(addition, intersection and multiplication) behave for principal ideals of Z:

Proposition 1.11.3. Let n, m ∈ Z. Let I = nZ and J = mZ. Then:
(a) We have I J = nmZ.
(b) We have I ∩ J = lcm (n, m)Z.
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(c) We have I + J = gcd (n, m)Z.
(d) We have I ⊆ J if and only if m | n.
(e) We have I = J if and only if |n| = |m|.

Proof. (a) Let c ∈ nmZ. Then, c = nmd for some integer d. Consider this d.
Then, n = n · 1 ∈ I (since I = nZ) and md ∈ J (since J ∈ mZ). Hence, the
product n (md) is an (I, J)-product. In other words, c is an (I, J)-product (since
c = nmd = n (md)). Thus, c is a finite sum of (I, J)-products (of just one, to be
specific). In other words, c ∈ I J.

Forget that we fixed c. We thus have shown that every c ∈ nmZ satisfies
c ∈ I J. In other words, nmZ ⊆ I J.

Conversely: If i ∈ I and j ∈ J, then i = nx for some x ∈ Z (since i ∈ I = nZ)
and j = my for some y ∈ Z (since j ∈ J = mZ) and therefore ij = (nx) (my) =
nm (xy) ∈ nmZ. Thus, every (I, J)-product belongs to nmZ (because an (I, J)-
product always has the form ij for some i ∈ I and j ∈ J). Hence, any sum of
(I, J)-products also belongs to nmZ (since nmZ is closed under addition). In
other words, I J ⊆ nmZ (since any element of I J is a sum of (I, J)-products).

Combining this with nmZ ⊆ I J (which we have shown above), we obtain
I J = nmZ. Thus, Proposition 1.11.3 (a) is proven.

(b) We have

I ∩ J = {all elements of I that also belong to J}
= {all multiples of n that also are multiples of m}(

since I = nZ = {all multiples of n}
and J = mZ = {all multiples of m}

)
= {all common multiples of n and m}
= {all multiples of lcm (n, m)} since a result in elementary number theory

says that the common multiples of n and m
are precisely the multiples of lcm (n, m)


= lcm (n, m)Z.

(c) First, we shall show that I + J ⊆ gcd (n, m)Z. Indeed, any element of
I is a multiple of n (since I = nZ), thus a multiple of gcd (n, m) (since n is a
multiple of gcd (n, m)). Similarly, any element of J is a multiple of gcd (n, m).
Thus, an element of I + J is a sum of two multiples of gcd (n, m), and therefore
itself a multiple of gcd (n, m). In other words, any element of I + J belongs to
gcd (n, m)Z. In other words, I + J ⊆ gcd (n, m)Z.

Now, we need to prove that gcd (n, m)Z ⊆ I + J. For this, we let k ∈
gcd (n, m)Z. Thus, k = gcd (n, m) · c for some integer c. Consider this c.

Bezout’s theorem from elementary number theory (see, e.g., [19s, Theorem
2.9.12]) shows that gcd (n, m) = xn + ym for some integers x and y. Consider
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these x and y. Then,

k = gcd (n, m)︸ ︷︷ ︸
=xn+ym

· c = (xn + ym) · c = xnc + ymc ∈ I + J

(since xnc = nxc ∈ nZ = I and ymc = myc ∈ mZ = J).
We thus have shown that k ∈ I + J for each k ∈ gcd (n, m)Z. In other words,

gcd (n, m)Z ⊆ I + J. Combining this with I + J ⊆ gcd (n, m)Z, we obtain
I + J = gcd (n, m)Z. This proves Proposition 1.11.3 (c).

(d) If I ⊆ J, then n = n · 1 ∈ nZ = I ⊆ J = mZ, which means that n is a
multiple of m; but this is just saying that m | n. Conversely, if m | n, then every
multiple of n is a multiple of m, which means that nZ ⊆ mZ, which we can
rewrite as I ⊆ J (since I = nZ and J = mZ). Combining these two implications,
we see that we have I ⊆ J if and only if m | n. This proves Proposition 1.11.3
(d).

(e) We have I = J if and only if we have both I ⊆ J and J ⊆ I. But I ⊆ J is
equivalent to m | n (by Proposition 1.11.3 (d)), whereas J ⊆ I is equivalent to
n | m (similarly). Thus, we have I = J if and only if we have both m | n and n |
m. But the latter statement (“both m | n and n | m”) is equivalent to |n| = |m|,
by basic properties of integers. Thus, Proposition 1.11.3 (e) follows.
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