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Math 332 Winter 2023, Lecture 11: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont’d)

1.9. Quotient rings (cont’d)

1.9.7. The First Isomorphism Theorem for sets

We begin with some basic set theory.
Consider a map f : R → S from some set R to some set S. Then, I claim that

there is a bijection1 hiding inside f .
What do I mean by this?
For an example, let R = {1, 2, 3, 4, 5} and S = {1, 2, 3, 4}, and let f : R → S be

the map that sends 1, 2, 3, 4, 5 to 2, 4, 2, 1, 1, respectively. Here is an illustration
of this map using a standard “blobs and arrows” diagram:

1

2

3

4

5

R

1

2

3

4

S

f

.

As you see, this map f is neither injective nor surjective, thus certainly not bi-
jective. However, I claim that I can make it bijective, by appropriately tweaking
its domain R and its target S as well as the map f itself. Namely:

• First, I make f surjective. To do so, I replace the target S by the image
f (R) = { f (r) | r ∈ R} of the map f . This way, I throw away all elements

1“Bijection” means the same as “bijective map” (i.e., a map that is both injective and surjective)
and as “1-to-1 correspondence”. Also, it is worth recalling that a map is bijective if and only
if it is invertible (i.e., has an inverse).

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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of S that are not taken as values by the map f . The resulting map

f̃ : R → f (R) ,
r 7→ f (r)

(which differs from f only in its choice of target) is thus surjective.

• Next, I make f (or, more precisely, f̃ ) injective. To do so, I equate every
pair of elements a, b ∈ R that satisfy f (a) = f (b). The rigorous way
to do so is to replace the elements of R by their equivalence classes with
respect to an appropriately chosen equivalence relation. To wit: We define
a binary relation ∼ on the set R by stipulating that two elements a, b ∈ R
should satisfy a ∼ b if and only if f (a) = f (b). This relation ∼ is an
equivalence relation2, and will be called f -equivalence. Its equivalence
classes will be called f -classes, and we will use the notation r for the f -
class that contains a given element r ∈ R. We let R/ f denote the set of all
f -classes.

Now, consider the map

f ′ : R/ f → f (R) ,
r 7→ f (r) ,

which sends each f -class r to the value f (r). This map f ′ is well-defined,
since f (r) depends not on the element r but only on its f -class r (because
if two elements a, b ∈ R/ f have the same f -class, then a ∼ b and thus
f (a) = f (b) by the very definition of f ).

Just like f̃ , the map f ′ is surjective (since every element of its target f (R)
is taken as a value by f , and thus also by f ′). But f ′ is also injective,
since any two elements a, b of R that satisfy f (a) = f (b) have already
been merged into the same f -class in R/ f . Thus, f ′ is both injective and
surjective, hence bijective.

We might call f ′ the bijectivization of f (although I don’t think there is a
standard name for f ′). In our above example, this map f ′ looks as follows:

{1, 3}

{2}

{4, 5}

R/ f

1

2

4

f (R)

f ′

.
2For example, it is transitive because if three elements a, b, c ∈ R satisfy f (a) = f (b) and

f (b) = f (c), then f (a) = f (b).
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Moreover, the maps f and f ′ fit together into a nice picture with two other
rather natural maps:

{1, 3}

{2}

{4, 5}

R/ f

1

2

4

f (R)

1

2

3

4

5

R

1

2

3

4

S

π ι

f

f ′

.

Here, π : R → R/ f is the canonical projection (i.e., the map that sends each
r ∈ R to its f -class r), and ι : f (R) → S is the canonical inclusion (i.e., the map
that sends each s ∈ f (R) to s). These four maps f , f ′, π, ι satisfy

f = ι ◦ f ′ ◦ π,

which means (in the language of §1.9.5) that the diagram

R

π
��

f
// S

R/ f
f ′
// f (R)

ι

OO

is commutative.
For the sake of completeness, let us state this all as a theorem:
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Theorem 1.9.9 (First Isomorphism Theorem for sets). Let R and S be any two
sets, and let f : R → S be any map.

Let ∼ be the binary relation on the set R defined by requiring that two
elements a, b ∈ R satisfy a ∼ b if and only if f (a) = f (b).

(a) This relation ∼ is an equivalence relation.
Let us refer to this relation ∼ as f -equivalence, and let us refer to its

equivalence classes as the f -classes. Let R/ f denote the set of all f -classes.
For any r ∈ R, we let r denote the f -class that contains r.

(b) The image f (R) := { f (r) | r ∈ R} of f is a subset of S.
(c) The map

f ′ : R/ f → f (R) ,
r 7→ f (r)

is well-defined and bijective.
(d) Let π : R → R/ f denote the canonical projection (i.e., the map that

sends each r ∈ R to its f -class r). Let ι : f (R) → S denote the canonical
inclusion (i.e., the map that sends each s ∈ f (R) to s). Then, the map f ′

defined in part (c) satisfies
f = ι ◦ f ′ ◦ π.

In other words, the diagram

R

π
��

f
// S

R/ f
f ′
// f (R)

ι

OO (1)

is commutative.

Proof. Part (b) is obvious. We explained the proofs of parts (a) and (c) before
even stating this theorem. It remains to prove part (d).

(d) For each r ∈ R, we have(
ι ◦ f ′ ◦ π

)
(r) = ι

(
f ′ (π (r))

)
= f ′ (π (r)) (since the definition of ι yields ι (s) = s for each s ∈ S)
= f ′ (r) (since the definition of π yields π (r) = r)
= f (r)

(
by the definition of f ′

)
.

In other words, ι ◦ f ′ ◦ π = f . Thus, f = ι ◦ f ′ ◦ π. In other words, the diagram
(1) is commutative. This proves Theorem 1.9.9 (d).
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1.9.8. The First Isomorphism Theorem for rings

Now, let us extend the First Isomorphism Theorem to rings and ring morphisms
instead of arbitrary sets and maps.

Theorem 1.9.10 (First Isomorphism Theorem for rings, elementwise form).
Let R and S be two rings, and let f : R → S be a ring morphism. Then:

(a) The kernel Ker f is an ideal of R. Thus, R/ Ker f is a quotient ring of
R. As a set, R/ Ker f is precisely the set R/ f defined in Theorem 1.9.9. The
f -classes (as defined in Theorem 1.9.9) are precisely the cosets of Ker f .

(b) The image f (R) := { f (r) | r ∈ R} of f is a subring of S.
(c) The map

f ′ : R/ Ker f → f (R) ,
r 7→ f (r)

is well-defined and is a ring isomorphism.
(d) This map f ′ is precisely the map f ′ defined in Theorem 1.9.9 (c).
(e) Let π : R → R/ Ker f denote the canonical projection (i.e., the map

that sends each r ∈ R to its f -class r). Let ι : f (R) → S denote the canonical
inclusion (i.e., the map that sends each s ∈ f (R) to s). Then, the map f ′

defined in part (c) satisfies
f = ι ◦ f ′ ◦ π.

In other words, the diagram

R

π
��

f
// S

R/ f
f ′
// f (R)

ι

OO

is commutative.
(f) We have R/ Ker f ∼= f (R) as rings.

Proof. (a) We know that Ker f is an ideal of R (by Theorem 1.8.4 in Lecture 7),
and therefore R/ Ker f is a quotient ring of R.

Let us next prove that the f -classes (as defined in Theorem 1.9.9) are precisely
the cosets of Ker f .

Indeed, let ∼ be the equivalence relation on R defined in Theorem 1.9.9.
Then, the f -classes are defined as the equivalence classes of this relation ∼. For
any a, b ∈ R, we have f (b)− f (a) = f (b − a) (since f is a ring morphism and
thus respects differences). For any two elements a, b ∈ R, we have the chain of
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equivalences

(a ∼ b)
⇐⇒ ( f (a) = f (b)) (by the definition of ∼)

⇐⇒ ( f (b)− f (a) = 0)
⇐⇒ ( f (b − a) = 0) (since f (b)− f (a) = f (b − a))
⇐⇒ (b − a ∈ Ker f ) (by the definition of Ker f ) .

However, if a ∈ R is arbitrary, then

(the f -class that contains a)
= (the equivalence class of the relation ∼ that contains a)

(since the f -classes are the equivalence classes of ∼)

= {b ∈ R | a ∼ b} (by the definition of equivalence classes)
= {b ∈ R | b − a ∈ Ker f }(

by the equivalence (a ∼ b) ⇐⇒ (a − b ∈ Ker f )
that we proved above

)
= {b ∈ R | b ∈ a + Ker f }
= a + Ker f
= (the coset of Ker f that contains a)

(since the coset of Ker f that contains a is a + Ker f by definition). Thus, the
f -classes are precisely the cosets of Ker f .

In other words, the cosets of Ker f are precisely the f -classes. Hence, the set
R/ Ker f is precisely the set R/ f (since the former set consists of the cosets of
Ker f , while the latter set consists of the f -classes). This concludes the proof of
Theorem 1.9.10 (a).

(b) This is just Proposition 1.7.5 in Lecture 6.

(c) Theorem 1.9.10 (a) yields that R/ f = R/ Ker f , and that the f -classes are
precisely the cosets of Ker f . Hence, the meaning of the notation r in Theorem
1.9.9 is identical with the meaning of this notation in Theorem 1.9.10 (indeed,
the former denotes the f -class that contains r, whereas the latter denotes the
coset of Ker f that contains r; but as we just said, the f -classes are precisely the
cosets of Ker f ). Hence, Theorem 1.9.9 (c) shows that the map

f ′ : R/ f → f (R) ,
r 7→ f (r)

is well-defined and bijective. Since R/ f = R/ Ker f (as sets), we can restate this
as follows: The map

f ′ : R/ f → f (R) ,
r 7→ f (r)
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is well-defined and bijective. It remains to prove that this map f ′ is a ring
isomorphism.

We shall first show that f ′ is a ring morphism. Indeed, this is a direct con-
sequence of Theorem 1.9.6 from Lecture 10 (applied to I = Ker f ), since we
have f (Ker f ) = 0 (by the definition of Ker f ). Alternatively, we can prove this
by hand3. Hence, f ′ is an invertible ring morphism (invertible because it is
bijective). Thus, f ′ is a ring isomorphism (since Proposition 1.7.6 from Lecture
6 shows that any invertible ring morphism is a ring isomorphism). Thus, the
proof of Theorem 1.9.10 (c) is finished.

(d) As we have seen in our above proof of Theorem 1.9.10 (c), we have R/ f =
R/ Ker f , and the meaning of the notation r in Theorem 1.9.9 is identical with
the meaning of this notation in Theorem 1.9.10. Thus, the map f ′ in Theorem
1.9.10 (c) is precisely the map f ′ defined in Theorem 1.9.9 (c). This proves
Theorem 1.9.10 (d).

(e) As we have seen in our above proof of Theorem 1.9.10 (c), we have R/ f =
R/ Ker f , and the meaning of the notation r in Theorem 1.9.9 is identical with
the meaning of this notation in Theorem 1.9.10. Therefore, the maps π and ι
defined in Theorem 1.9.10 (e) are precisely the maps π and ι in Theorem 1.9.9
(e). Hence, the claim of Theorem 1.9.10 (e) follows immediately from Theorem
1.9.9 (e).

(f) This follows directly from Theorem 1.9.9 (c).

As our proof has shown, Theorem 1.9.9 (c) is merely a partial improvement
on the universal property of quotient rings (Theorem 1.9.6 in Lecture 10): The
latter yields a ring morphism, while the former produces a ring isomorphism

3Proof. We must show that f ′ is a ring morphism, i.e., that f ′ respects addition, multiplication,
zero and unity.

To see that f ′ respects multiplication, we must show that f ′ (xy) = f ′ (x) · f ′ (y) for any
x, y ∈ R/ Ker f . So let x, y ∈ R/ Ker f be arbitrary. Then, we can write x and y as x = a
and y = b for two elements a, b ∈ R. Consider these a, b. From x = a and y = b, we obtain
xy = a · b = ab (by the definition of the product on R/ Ker f ), so that

f ′ (xy) = f ′
(

ab
)
= f (ab)

(
by the definition of f ′

)
= f (a) · f (b) (since f is a ring morphism) .

Comparing this with

f ′

 x︸︷︷︸
=a

 · f ′

 y︸︷︷︸
=b

 = f ′ (a)︸ ︷︷ ︸
= f (a)
(by the

definition of f ′)

· f ′
(

b
)

︸ ︷︷ ︸
= f (b)
(by the

definition of f ′)

= f (a) · f (b) ,

we obtain f ′ (xy) = f ′ (x) · f ′ (y), just as desired. Thus, we have shown that f ′ respects mul-
tiplication. Similarly, f ′ satisfies all the other axioms in the definition of a ring morphism.
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(but in a less general setup: R/ Ker f instead of R/I). Nevertheless, it is a useful
result, as it can be used to identify certain quotient rings as (isomorphic copies
of) known rings.

Here are some examples for what can be done with the first isomorphism
theorem:

• Consider the map

f : Q4≤4 → Q2≤2,
a b c d
0 u v w
0 0 x y
0 0 0 z

 7→
(

u v
0 x

)
,

which removes the “outer shell” (i.e., the first and the fourth rows and
columns) from an upper-triangular 4 × 4-matrix. This map f is a ring
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morphism4. The kernel of this morphism f is

Ker f =




a b c d
0 u v w
0 0 x y
0 0 0 z

 ∈ Q4≤4 |
(

u v
0 x

)
= 0


=




a b c d
0 u v w
0 0 x y
0 0 0 z

 ∈ Q4≤4 | u = v = x = 0


=




a b c d
0 0 0 w
0 0 0 y
0 0 0 z

 ∈ Q4≤4

 .

So you can conclude right away that Ker f is an ideal of Q4≤4. Moreover,
the image f

(
Q4≤4) is the whole Q2≤2 (that is, the map f is surjective).

The First Isomorphism theorem (Theorem 1.9.10 (c)) yields a ring isomor-
phism

f ′ : Q4≤4/ Ker f → f
(

Q4≤4
)

,

r 7→ f (r) .

4Proving this is a nice exercise in matrix multiplication! It is obvious that f respects addition,
zero and unity, but you might be skeptical that it respects multiplication. (And indeed, the
analogous map

F : Q4×4 → Q2×2,
a b c d
a′ b′ c′ d′

a′′ b′′ c′′ d′′

a′′′ b′′′ c′′′ d′′′

 7→
(

b′ c′

b′′ c′′

)
,

which removes the “outer shell” from an arbitrary (not upper-triangular) 4× 4-matrix, does
not respect multiplication.) You can convince yourself of this property of f by a straightfor-
ward computation:
a b c d
0 u v w
0 0 x y
0 0 0 z




a′ b′ c′ d′

0 u′ v′ w′

0 0 x′ y′

0 0 0 z′

 =


aa′ ab′ + bu′ ac′ + bv′ + cx′ ad′ + bw′ + cy′ + dz′

0 uu′ uv′ + vx′ uw′ + vy′ + wz′

0 0 xx′ xy′ + yz′

0 0 0 zz′


(note the uu′, uv′ + vx′, 0 and xx′ entries, which are precisely the entries of(

u v
0 x

)(
u′ v′

0 x′

)
).
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In other words, it yields a ring isomorphism

f ′ : Q4≤4/ Ker f → Q2≤2,
a b c d
0 u v w
0 0 x y
0 0 0 z

 7→
(

u v
0 x

)

(since f
(
Q4≤4) = Q2≤2). In particular, Q4≤4/ Ker f ∼= Q2≤2.

• We have not properly defined polynomials yet, but once we will, you will
be inundated with good examples for the First Isomorphism Theorem.
Many of these examples will have the form

(a polynomial ring) / (an ideal) ∼= (a ring of numbers) .

For instance, recalling that R [x] is the ring of all polynomials in one in-
determinate x with real coefficients, we have a ring morphism

f : R [x] → C,
p 7→ p (i)

(which sends each polynomial p ∈ R [x] to its value at the imaginary unit
i =

√
−1). This morphism is surjective (that is, f (R [x]) = C) and has

kernel Ker f =
(
x2 + 1

)
R [x] (the principal ideal generated by x2 + 1), so

that the First Isomorphism theorem (Theorem 1.9.10 (f)) yields

R [x] /
((

x2 + 1
)

R [x]
)
∼= C.

Informally, this is saying that if you are working with polynomials in
an indeterminate x over R, but you equate the polynomial x2 + 1 to zero
(that is, you pretend that x2 = −1), then you obtain the complex numbers.
This is the rigorous concept behind the classical idea that “the complex
numbers are what you get if you start with the real numbers and adjoin
a root of the polynomial x2 + 1”. We will make this precise in a later
chapter.
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