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Math 332 Winter 2023, Lecture 8: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont’d)

1.9. Quotient rings (cont’d)

1.9.2. Quotient rings (cont’d)

Last time, we made the following definition and stated the theorem that comes
after it:

Definition 1.9.3. Let I be an ideal of a ring R. Thus, I is a subgroup of the
additive group (R,+, 0), hence a normal subgroup (since (R,+, 0) is abelian).
Thus, the quotient group R/I is a well-defined abelian group. Its elements
are the cosets r + I of I in R. These cosets are called the residue classes
modulo I. A coset r + I is also denoted by r or [r] or [r]I or r mod I. (We will
only use the notations r and r + I.)

Note that the addition on R/I is given by

(a + I) + (b + I) = (a + b) + I for all a, b ∈ R. (1)

We now define a multiplication operation on R/I by setting

(a + I) (b + I) = ab + I for all a, b ∈ R. (2)

(See below for a proof that this is well-defined.)
The set R/I, equipped with the addition and the multiplication we just

defined, and with the elements 0 + I and 1 + I playing the roles of zero and
unity, is a ring (as we will soon see). This ring is called the quotient ring of
R by the ideal I, and is denoted by R/I. It is pronounced “R modulo I”.

Theorem 1.9.4. Let R and I be as in this definition. Then, the multiplication
on R/I is well-defined, and R/I becomes a ring when endowed with the
operations we just introduced.

Note that the rules (1) and (2), by which we defined addition and multiplica-
tion on R/I, can be rewritten as

a + b = a + b for all a, b ∈ R (3)

and
a · b = ab for all a, b ∈ R. (4)

We will prove Theorem 1.9.4 later today. First, however, a few examples:
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• Let n ∈ Z. Then, the set nZ = {all multiples of n} is an ideal of Z

(a principal ideal, in fact). The quotient ring Z/nZ is exactly the ring
Z/n of residue classes modulo n that we introduced a while ago. In
fact, the above definition of R/I is just the natural generalization of the
definition of the ring Z/n, where we replaced integers by elements of R
and multiples of n by elements of I.

• Two stupid general examples:

Recall that every ring R has at least the ideals {0R} and R. What are the
respective quotient rings?

– The quotient ring R/ {0R} is isomorphic to R. Indeed, each residue
class modulo {0R} has the form r + {0R} = {r}, which is a 1-element
set. Thus, the elements of R/ {0R} are just the elements of R “stuck
in set braces”, with the same rules for adding and multiplying as in
R (that is, {a}+ {b} = {a + b} and {a} · {b} = {ab}).

– The quotient ring R/R is trivial. Indeed, there is only one residue
class modulo R, and this class contains all elements of R. (In fact, for
any r ∈ R, the corresponding residue class r + R is R itself.)

These are the most boring quotient rings you can imagine. Interesting
things happen when the ideal I is “between” {0R} and R.

• Let R be the ring Z [i] = {a + bi | a, b ∈ Z} of Gaussian integers. Con-
sider its principal ideal

3R = {3r | r ∈ R}
= {3r | r ∈ Z [i]}
= {3a + 3bi | a, b ∈ Z}
= {c + di | c, d ∈ Z are multiples of 3} .

What is the quotient ring R/ (3R) ? The elements of this ring have the
form

a + bi with a, b ∈ {0, 1, 2}
(do not confuse the line over the a + bi with the identical-looking nota-
tion for “complex conjugate”; we are not using complex conjugates any-
where in this example). In fact, any Gaussian integer can be reduced to
a Gaussian integer of the form a + bi with a, b ∈ {0, 1, 2} by subtracting
an appropriate Gaussian-integer multiple of 3 (because we can subtract a
multiple of 3 to turn its real part into one of 0, 1, 2, and then subtract a
multiple of 3i to turn its imaginary part into one of 0, 1, 2). In other words,

R/ (3R) =
{

0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i
}

.
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It is easy to see that this is a 9-element ring (i.e., the residue classes
0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i are distinct), and a field
(i.e., all the nonzero residue classes are invertible). So we have found a
little finite field with 9 elements.

Let us do some computations in this field: We have

2 + i + 2 + 2i = (2 + i) + (2 + 2i) = 4 + 3i = 1

since (4 + 3i)− 1 = 3 (1 + i) ∈ 3R. Also,

2 + i · 2 + 2i = (2 + i) (2 + 2i) = 2 · 2 + 2 · 2i + i · 2 + i · 2i

= 4 + 4i + 2i − 2 = 2 + 6i = 2,

since (2 + 6i)− 2 = 3 · 2i ∈ 3R. Similarly,

2 + i · 1 + i = 1,

which shows that the elements 2 + i and 1 + i are inverse to each other in
R/ (3R).

For the curious: If we replace 3 by any other positive integer n, then
R/ (nR) will be a finite ring with n2 elements. Depending on the value of
n, it will or won’t be a field. For instance, we found that it is a field for
n = 3. However, it is not a field for n = 5, because in R/ (5R), we have

1 + 2i · 1 − 2i = (1 + 2i) (1 − 2i) = 1 + 4 = 5 = 0.

We will learn more about when R/ (nR) is a field later on.

• Again take R = Z [i], but now consider the quotient ring R/ ((1 + i) R).
How many elements does it have? The answer is 2, but this is not that ob-
vious any more, because how can we tell which Gaussian integers belong
to (1 + i) R (that is, are Gaussian-integer multiples of 1 + i) ?

Here is one way to prove that R/ ((1 + i) R) has 2 elements (and to find
these elements):

– Observe that 2 ∈ (1 + i) R (because 2 = (1 + i) (1 − i)). Thus, every
Gaussian integer can be reduced to a Gaussian integer of the form
a + bi with a, b ∈ {0, 1} by adding an element of (1 + i) R.

– Thus, R/ ((1 + i) R) =
{

0, 1, i, 1 + i
}

.

– Furthermore, 0 = 1 + i and 1 = i (why?).

– Thus, R/ ((1 + i) R) =
{

0, 1
}

(why?).

– Finally, we have 0 ̸= 1, since 0 − 1 is not a multiple of 1 + i (be-

cause
0 − 1
1 + i

=
−1

1 + i
=

−1 (1 − i)
(1 + i) (1 − i)

=
−1 + i

2
=

−1
2

+
1
2

i is not a

Gaussian integer).
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– Consequently, R/ ((1 + i) R) consists of the two distinct elements 0
and 1.

Can we analyze R/ ((7 + 9i) R) likewise? What about R/ ((a + bi) R) for
general a and b ? This will be a ring of size a2 + b2 (unless a = b = 0), but
we don’t quite have the tools to prove this yet.

See the text for a few more examples (some of which will be on homework
set #3).

Let us now make good on our debts and prove Theorem 1.9.4:

Proof of Theorem 1.9.4. We must prove that the operations + and · on R/I are
well-defined, and that R/I is a ring when equipped with these operations.

The latter is very easy: All the ring axioms are inherited from R. For example,
to see that · on R/I is associative, we must show that a ·

(
b · c

)
=

(
a · b

)
· c for

all a, b, c ∈ R; but this is clear since the LHS is a (bc) by definition and the
RHS is (ab) c by definition and since associativity of multiplication in R yields
a (bc) = (ab) c.

The harder part is the first part: We must show that + and · on R/I are
well-defined. For +, this has already been done in group theory (it is part of
what it means for the quotient group R/I to be well-defined). Thus, we only
need to do it for ·.

Well-definedness for · means that the product a · b of two residue classes
a = a + I and b = b + I depends only on these residue classes and not on the
elements a, b ∈ R themselves. In other words, it means that if x and y are two
residue classes modulo I, and if we compute their product xy using the formula
(4) by writing x as a and y as b for some a, b ∈ R, then the exact choices of a
and b do not affect the resulting value xy = ab.

To prove this, we must therefore show the following: If one and the same
residue class in R/I can be written both as a and as a′, and if one and the same
residue class in R/I can be written both as b and as b′, then ab = a′b′.

In other words, we must show the following: If four elements a, b, a′, b′ ∈ R
satisfy a = a′ and b = b′, then ab = a′b′.

This is the ring-theoretical generalization of the well-known fact that if five
integers a, b, a′, b′, n ∈ Z satisfy a ≡ a′ mod n and b ≡ b′ mod n, then ab ≡
a′b′ mod n. As we recall, this classical fact can be proved by rewriting a ≡
a′ mod n as a = a′ + nx for some integer x, and likewise rewriting b ≡ b′ mod n
as b = b′ + ny for some integer y, and then multiplying these two equalities to
find

ab =
(
a′ + nx

) (
b′ + ny

)
= a′b′ + a′ny + nxb′ + nxny︸ ︷︷ ︸

divisible by n

≡ a′b′ mod n.

The proof of the ring-theoretical generalization is not much different: Let
a, b, a′, b′ ∈ R satisfy a = a′ and b = b′. Then, from a = a′, we obtain a − a′ ∈ I.
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In other words, a − a′ = i for some i ∈ I. Similarly, b − b′ = j for some
j ∈ I. Consider these i and j. From a − a′ = i, we obtain a = a′ + i. Similarly,
b = b′ + j. Multiplying the latter two equalities, we obtain

ab =
(
a′ + i

) (
b′ + j

)
= a′b′ + a′ j + ib′ + ij.

Hence, we can conclude that ab = a′b′ if we can show that a′ j + ib′ + ij ∈ I. But
this follows from the ideal axioms, since i and j belong to I. (In more detail:
The second ideal axiom yields a′ j ∈ I and ib′ ∈ I and ij ∈ I; then, the first ideal
axiom yields a′ j + ib′ + ij ∈ I.)

Thus, we have proved that ab = a′b′ (since ab = a′b′ + a′ j + ib′ + ij︸ ︷︷ ︸
∈I

shows

that ab and a′b′ belong to the same coset of I in R). This concludes the proof
that the operation · on R/I is well-defined. As we said, this also completes our
proof of Theorem 1.9.4.
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