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Math 332 Winter 2023, Lecture 6: Rings

website: https://www.cip.ifi.lmu.de/ grinberg/t/23wa

1. Rings and ideals (cont’d)

1.7. Ring morphisms
1.7.1. Definition and examples

Modern mathematics is often a study of (1) sets with some structure, and (2)
maps that respect this structure. The maps are just as important as the sets, if
not more so. For example: Groups have group homomorphisms; vector spaces
have vector space homomorphisms (= linear maps); topological spaces have
topological space homomorphisms (= continuous maps). No wonder that an
analogous concept exists for rings:

Definition 1.7.1. Let R and S be two rings.
(@) A ring homomorphism (or, for short, ring morphism) from R to S
means a map f : R — S that

* respects addition (i.e., satisfies f (a +b) = f (a) + f (b) foralla,b € R);

e respects multiplication (i.e., satisfies f (ab) = f (a) - f (b) for all a,b €
R);

respects the zero (i.e., satisfies f (Og) = 0s);

* respects the unity (i.e., satisfies f (1g) = 1s).

(b) A ring isomorphism from R to S means an invertible ring morphism
f:R — S whose inverse f 1 : S — R is also a ring morphism.

(c) The rings R and S are said to be isomorphic (this is written R = §) if
there exists a ring isomorphism f : R — S.

Examples:
* Letn € Z. The map
w:Z — Z/n,
ar—a

that sends each integer a to its residue class @ = a + nZ is a ring mor-
phism, because any a,b € Z satisty

g+b:ﬁ—|—E, ﬂ:ﬁ@, GZOZ/n, TZlZ/n-
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¢ The map

Z — Z,
aw— 2a

is not a ring morphism. It respects addition and zero, but it does not
respect multiplication and unity.

* The map

Z — Z,
a—0

is not a ring morphism, since it does not respect the unity (although it
respects everything else). However, the map

Z — (the zero ring),
a—0

is a ring morphism. The target of the map matters!

* The map

7z — Z,
a— a2

is not a ring morphism, since it does not respect addition ((a +b)* #
a% + b? in general), although its respects everything else.

* Let S be a subring of a ring R. Leti : S — R be the canonical inclusion;
this is simply the map that sends each element a € S to itself. Then, i is
a ring morphism. For example, it respects addition because i (a) +i (b) =
a+b=i(a+b)forallabe S (and this is true because the addition of S
is inherited from R).

* Consider the map
f:C —R>*?,

a+bin—>< ”b Z) foralla,b € R.

This map f is a ring morphism. For example, let us check that f respects
multiplication: We need to show that

f(zw) = f (2) - f (w) for all z,w € C.
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We fix z,w € C, and we write z and w as z = a + bi and w = ¢ + di with
a,b,c,d € R. Then,

f(zw) = f ((a+bi) (c+di)) = f ((ac — bd) + (ad + bc) i)

B ac—bd ad+bc\ ([ ac—bd ad+bc
~\ —(ad+bc) ac—bd )] \ —bc—ad —bd+ac

and

£ f = s reran=( 5 0) (5 1)

[ ac—bd ad+bc
~ \ —bc—ad —bd+ac )’

which is the same matrix. Thus, f respects multiplication. All the other
morphism axioms are just as easy. So f is a ring morphism.

Since f is injective, you can use the matrix f (z) € R?*? as a “stand-in” for
the complex number z. So instead of calculating with complex numbers,
you can work with their images under f instead.

This is not an isolated occurrence. There is also an injective ring mor-
phism

g:H — R¥,

—b —c —d
a —d ¢
d a —b
—c b a

a—+bi+cj+dk —

QU O S

Several more rings we will study later can be “represented” by matrices,
in the sense that we can find injective morphisms from those rings to
matrix rings, and thus work with matrices instead of with abstract objects.

¢ The map

R*? — R,
A detA

is not a ring morphism, since it disrespects addition (although it respects
everything else).

* Let R be aring. Let S be any set. Let R® be the ring of all maps from S to
R (with pointwise + and -). Fix any s € S. Then, the map

RS — R,
g8 (s)
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is a ring morphism. This is just a roundabout way of saying that any
maps g, h € RS satisfy

(g+h)(s) =g(s)+h(s);
(gh) (s) = g (s) - h(s);
0(s) =0;
1(s) =

But these equalities follow from our definition of how functions in RS are
added and multiplied (namely, pointwise).

See §2.7.1 in the text for more examples of morphismes.

1.7.2. Basic properties of ring morphisms

The composition of two ring morphisms is again a ring morphism. Or, to be
more formal:

Proposition 1.7.2. Let R, S, T be three rings. Let f : S — T and g: R — S be
two ring morphisms. Then, f o g: R — T is a ring morphism.

Proof. Same as for groups. O

The following proposition simplifies the definition of a ring morphism some-
what:

Proposition 1.7.3. Let R and S be two rings. Let f : R — S be a map that
respects addition. Then, f respects the zero.

Proof. We have f (Og +0r) = f (Or) + f (Or) (since f respects addition). In
view of Og + Og = Og, we can rewrite this as

f(Or) = f(Or) + f (OR) -

Now, subtract f (Og) from both sides, and you get 0 = f (Og), which means
that f respects the zero. O

Thus, the “respects the zero” axiom in the definition of a morphism is redun-
dant. Nevertheless, I have chosen to keep it in, as I think it deserves its place in
the definition.

By the way, we can restate the definition of a ring morphism as follows: A
ring morphism is a map f : R — S between two rings R and S that is a
group homomorphism from (R, +,0) to (S, +,0) and simultaneously a monoid
homomorphism from (R, -, 1) and (S, -, 1).

Ring morphisms preserve the basic structures of a ring (+, -, 0 and 1) by
definition. Therefore, they also preserve some of the structures that are derived
from these basic structures:
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Proposition 1.7.4. Let R and S be two rings. Let f : R — S be a ring mor-
phism. Then:
(a) The map f respects finite sums: i.e., we have

flaa+az+---+an) = f(a)+f(az) +- -+ f (an)

forall a;,ap,...,a, € R.
(b) The map f respects finite products: i.e., we have

flmaz---an) = f(a)-f(az) - f(an)

forall aj,ap,...,a, € R.

(c) The map f respects differences: i.e., we have f (a —b) = f (a) — f ()
foralla,b € R.

(d) The map f respects inverses: i.e., if a is a unit of R, then f (a) is a unit
of S, with inverse (f (a)) " = f (a1).

(e) The map f respects integer multiples: ie., if 2 € R and n € Z, then
f(na) =nf (a).

(f) The map f respects powers: ie. if a € R and n € N, then f (a") =

(f (@))".
Proof. LTTR (= left to the reader). O

1.7.3. The image of a ring morphism
Recall that the image of a map f : R — S is defined to be the set

fR)=Af(r) | reR};

it is often denoted by Im f. This makes sense for any map between any sets,
but in particular it makes sense for ring morphisms. Their images are nice:

Proposition 1.7.5. Let R and S be two rings. Let f : R — S be a ring mor-
phism. Then, Im f = f (R) is a subring of S.

Proof. For example, the product of two elements of Im f belongs to Im f, since
f(a)f(b) = f(ab). Thus, Im f is closed under multiplication. The other sub-
ring axioms are similar. O

For instance, recall the ring morphism
f:C— R¥>?,

a+bin—>( ”b Z) foralla,b € R.

Its image Im f is a commutative subring of R?*2. It consists of all 2 x 2-matrices
whose diagonal entries are equal and whose off-diagonal entries add up to 0.
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1.7.4. Basic properties of ring isomorphisms

When proving that a map f is a ring isomorphism, you have to check (1) that
f is a ring morphism, (2) that f has an inverse, and (3) that this inverse f~!
is a ring morphism; at least, this is what the definition of a ring isomorphism
would require you to do. It turns out, however, that (3) is unnecessary, since it
follows from (1) and (2):

Proposition 1.7.6. Let R and S be two rings. Let f : R — S be an invertible
ring morphism. Then, f is a ring isomorphism.

Proof. We need to show that f~! is a ring morphism as well. For instance, we
need to check that

Fle+d) =)+ f 1) forallc,d € S.

But this follows easily by setting a = f~!(c) and b = f~!(d) and applying
f(a+b)=f(a)+ f(b). For details, see Proposition 2.7.7 in the text. O

Here are some further properties of ring isomorphisms:

Proposition 1.7.7. Let R, S, T be three rings. Let f : S —+ T and g: R — S be
two ring isomorphisms. Then, f o ¢ : R — T is a ring isomorphism.

Proof. Same as for groups. O

Proposition 1.7.8. Let R and S be two rings. Let f : R — S be a ring isomor-
phism. Then, f 1.5 5 Risa ring isomorphism.

Proof. Same as for groups. [
| Corollary 1.7.9. The relation = for rings is an equivalence relation.

Proof. The previous two propositions show that it is transitive and symmetric.
Reflexivity is clear, since id : R — R is a ring isomorphism. O

The most useful property of ring isomorphisms is the following “meta-theorem”:

Isomorphism principle for rings: Let R and S be two isomorphic
rings. Then, any “ring-theoretic” property of R (that is, any property
that does not refer to specific elements, but can be stated entirely in
terms of ring operations) that holds for R must hold for S as well.

This is rather nebulous (what does “ring-theoretic” mean?), so let me give
examples. Here are some examples of “ring-theoretic” properties:
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* The ring R has 15 elements.

The ring R is commutative.

The ring R is a field.

For any a,b,c € R, we have 3abc (a + b+ ¢) = 0 (where 0 is the zero of R).

The center of R has 10 elements.

There exist two nonzero elements a,b € R such that a2 4+ b* = 0.

So all of these properties can be automatically transported along isomor-
phisms (i.e., if they hold for one ring R, then they also hold for all rings iso-
morphic to R).

Here are some non-"“ring-theoretic” properties:

e The elements of R are matrices.
¢ The set R is disjoint from C.

* The set R contains the complex number i = /1.

Clearly, an isomorphism can destroy these properties, since it can send ele-
ments to different elements.

A ring isomorphism f : R — S is like a train that can transport anything
back and forth between the rings R and S. The isomorphism principle is just a
semi-rigorous way to draw the obvious conclusions from this. I will not state it
precisely, but you should be able to rigorously justify any specific application
of this principle.

1.7.5. What about kernels?

We have defined the image of a ring morphism, which is somewhat similar to
the column space of a matrix. Another standard construction with matrices is
the kernel (aka nullspace). This, too, has an analogue for rings:

Definition 1.7.10. Let R and S be rings. Let f : R — S be a ring morphism.
Then, the kernel of f is defined to be the set

Kerf:={reR | f(r) =0s}.

Is this kernel Ker f a subring of R ? No, because it rarely contains 1. Never-
theless, it has a bunch of the same properties: It is closed under addition and
multiplication and contains 0. And even something stronger. More on that next
time!
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