Math 332 Winter 2023, Lecture 5: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont'd)

1.5. Units and fields (cont'd)

1.5.1. Units and inverses (cont'd)

Recall the last definition we made in Lecture 4:

Definition 1.5.1. Let *R* be a ring.

(a) An element $a \in R$ is said to be a **unit** of R (or **invertible** in R) if there exists a $b \in R$ such that ab = ba = 1. In this case, b is unique and is known as the **inverse** (or **reciprocal**, or **multiplicative inverse**) of a, and is denoted by a^{-1} .

(b) We let R^{\times} denote the set of all units of *R*.

We then gave some examples for units (and non-units). Our next example we state as a proposition:

Proposition 1.5.2. Let $n \in \mathbb{Z}$. Then:

(a) The units of the ring \mathbb{Z}/n are precisely the residue classes \overline{a} where $a \in \mathbb{Z}$ is coprime to n.

(b) Let $a \in \mathbb{Z}$. Then, \overline{a} is a unit of \mathbb{Z}/n if and only if *a* is coprime to *n*.

Proof. Clearly, it suffices to prove part (b).

(b) We prove the "if" (\iff) and "only if" (\implies) direction separately:

 \Leftarrow : Assume that $a \in \mathbb{Z}$ is coprime to n. We must prove that \overline{a} is a unit of \mathbb{Z}/n .

Since *a* is coprime to *n*, we have gcd(a, n) = 1. But Bezout's theorem yields that there exist $x, y \in \mathbb{Z}$ such that xa + yn = gcd(a, n). Consider these *x*, *y*.

We have xa + yn = gcd(a, n) = 1. In other words, xa - 1 = -yn, which is a multiple of *n*. Therefore, $xa \equiv 1 \mod n$. In terms of residue classes, this is saying that $\overline{xa} = \overline{1}$. In other words, $\overline{x} \cdot \overline{a} = \overline{1}$. Since \mathbb{Z}/n is commutative, this entails $\overline{a} \cdot \overline{x} = \overline{1}$ as well. Thus, \overline{x} is an inverse of \overline{a} in \mathbb{Z}/n . Therefore, \overline{a} is a unit of \mathbb{Z}/n .

 \implies : Assume that \overline{a} is a unit of \mathbb{Z}/n . We must prove that a is coprime to n. Since \overline{a} is a unit of \mathbb{Z}/n , it has an inverse \overline{x} . This inverse \overline{x} satisfies $\overline{xa} = \overline{x} \cdot \overline{a} = \overline{1}$, which means that $xa \equiv 1 \mod n$. In other words, xa differs from 1 by a multiple of n. Hence, $\operatorname{add} pcd(xa, n) = \operatorname{gcd}(1, n) = 1$. This shows that xa

¹We are using the following fact here: If α , β , γ are three integers satisfying $\alpha \equiv \beta \mod \gamma$, then $gcd(\alpha, \gamma) = gcd(\beta, \gamma)$. In other words, when we compute the greatest common divisor of two integers, we can add any multiple of one integer to the other.

and *n* are coprime. Since *a* divides *xa*, this also entails that *a* and *n* are coprime (since any common divisor of *a* and *n* would also divide *xa* and thus would be a common divisor of *xa* and *n*). In other words, *a* is coprime to *n*.

Here are some examples of Proposition 1.5.2:

- The units of the ring $\mathbb{Z}/12$ are $\overline{1}, \overline{5}, \overline{7}, \overline{11}$ (because among the integers $0, 1, \ldots, 11$, it is the four numbers 1, 5, 7, 11 that are coprime to 12).
- The units of the ring $\mathbb{Z}/5$ are $\overline{1}, \overline{2}, \overline{3}, \overline{4}$.
- The only unit of the ring $\mathbb{Z}/2$ is $\overline{1}$.

Now here is a general property of units in any ring:

Theorem 1.5.3. Let *R* be a ring. Then, the set R^{\times} is a multiplicative group. More precisely: $(R^{\times}, \cdot, 1)$ is a group.

Proof. It suffices to show the following facts:

- 1. The unity 1 of *R* belongs to R^{\times} .
- 2. If $a, b \in R^{\times}$, then $ab \in R^{\times}$.
- 3. If $a \in R^{\times}$, then *a* has an inverse in R^{\times} .

Once these three facts are proved, all other group axioms for R^{\times} follow from the ring axioms for *R*. So let us prove these three facts:

Proof of Fact 1: The element 1 has an inverse, namely 1 itself.

Proof of Fact 2: Let $a, b \in R^{\times}$. Why is $ab \in R^{\times}$?

Since $a, b \in \mathbb{R}^{\times}$, there are inverses a^{-1} and b^{-1} for a and b.

I claim that $b^{-1}a^{-1}$ is an inverse for *ab*. Indeed, this follows from

$$b^{-1}\underbrace{a^{-1} \cdot a}_{=1} b = b^{-1}b = 1$$
 and $a\underbrace{b \cdot b^{-1}}_{=1} a^{-1} = aa^{-1} = 1.$

Thus, the element *ab* is a unit (since it has an inverse), i.e., we have $ab \in R^{\times}$.

Proof of Fact 3: Let $a \in R^{\times}$. Then, *a* has an inverse a^{-1} (by the definition of a unit). We need to check that this inverse a^{-1} also belongs to R^{\times} .

But a^{-1} has an inverse, namely a (since $aa^{-1} = 1$ and $a^{-1}a = 1$). Thus, $a^{-1} \in \mathbb{R}^{\times}$ follows.

Theorem 1.5.3 is now proved.

Thus, every ring *R* produces **two** groups: the additive group (R, +, 0) and the multiplicative group $(R^{\times}, \cdot, 1)$ (standardly called the **group of units** of *R*). The latter usually has fewer elements than the former, since it only contains the units of *R*.

Theorem 1.5.4 (Shoe-sock theorem). Let *R* be a ring. Let *a*, *b* be two units of *R*. Then, *ab* is a unit of *R*, and its inverse is

$$(ab)^{-1} = b^{-1}a^{-1}.$$

Proof. See the proof of Fact 2 in the proof of Theorem 1.5.3.

Theorem 1.5.5. Let *R* be a ring. Let *a* be a unit of *R*. Then, a^{-1} is a unit of *R*, and its inverse is $(a^{-1})^{-1} = a$.

Proof. See the proof of Fact 3 in the proof of Theorem 1.5.3.

1.5.2. Fields

As we saw, many rings (such as \mathbb{Z}) have few units, but many other rings (such as \mathbb{Q} or \mathbb{R}) have many. The rings of the latter kind are known as "fields":

Definition 1.5.6. Let *R* be a commutative ring. Assume that $0 \neq 1$ in *R*. We say that *R* is a **field** if every nonzero element of *R* is a unit.

Examples:

- The rings Q, ℝ and C are fields. The ring Z is not (e.g., since 2 is not a unit).
- The ring $S = Q\left[\sqrt{5}\right] = \left\{a + b\sqrt{5} \mid a, b \in Q\right\}$ (from Lecture 2) is a field. Indeed, if $a + b\sqrt{5}$ is a nonzero element of S, then $a + b\sqrt{5}$ is a unit, since its inverse is

$$(a+b\sqrt{5})^{-1} = \frac{1}{a+b\sqrt{5}} = \frac{a-b\sqrt{5}}{(a+b\sqrt{5})(a-b\sqrt{5})}$$
$$= \frac{a-b\sqrt{5}}{a^2-5b^2} = \frac{a}{a^2-5b^2} + \frac{-b}{a^2-5b^2}\sqrt{5} \in S.$$

(Strictly speaking, we need to make sure that $a - b\sqrt{5}$ is nonzero. The reason why this is true is that $\sqrt{5}$ is irrational, so $a + b\sqrt{5} \neq 0$ entails that a and b are not both 0 and therefore we easily obtain $a - b\sqrt{5} \neq 0$.)

• The Hamilton quaternions \mathbb{H} would be a field if they were commutative. Indeed, it is not hard to see that every nonzero quaternion $a + bi + cj + dk \in \mathbb{H}$ is a unit. However, \mathbb{H} is not commutative, thus does not qualify as a field.

A noncommutative ring *R* with $0 \neq 1$ whose all nonzero elements are units is called a **division ring** or a **skew-field**. So \mathbb{H} is a skew-field.

 Let *n* be a positive integer. Then, Z / n is a field if and only if n is prime. (See below for a proof.)

1.6. Fields and integral domains: some connections

The notions of fields and integral domains are related:

Proposition 1.6.1. (a) Every field is an integral domain.(b) Every finite integral domain is a field. (Of course, "finite" means "finite as a set".)

Proof. (a) Let *F* be a field. Why is *F* an integral domain?

Let $a, b \in F$ be nonzero. We must prove that $ab \neq 0$.

Since *a* is nonzero, *a* is a unit (since *F* is a field), thus has an inverse a^{-1} . If we had ab = 0, then we would have $a^{-1} \cdot \underbrace{ab}_{=0} = a^{-1} \cdot 0 = 0$, which would

contradict $\underbrace{a^{-1} \cdot a}_{=1} b = b \neq 0$. So we have $ab \neq 0$.

Thus, *F* is an integral domain.

(b) Let *R* be a **finite** integral domain. We must show that *R* is a field. Let $a \in R$ be nonzero. Our goal is to show that *a* is a unit, i.e., has an inverse. Consider the map

$$\begin{array}{l} R \to R, \\ x \mapsto ax. \end{array}$$

This map is injective (because if $x, y \in R$ satisfy ax = ay, then a(x - y) = ax - ay = 0, so that x - y = 0 since *R* is an integral domain², and therefore x = y). However, the Pigeonhole Principle for Injections says that if a map between two finite sets of the same size is injective, then it is bijective. Hence, our map

$$\begin{array}{l} R \to R, \\ x \mapsto ax \end{array}$$

is bijective. In particular, it must take the unity 1 as a value. In other words, there exists some $x \in R$ such that ax = 1. This x must therefore also satisfy xa = 1 (since R is an integral domain, thus commutative), and thus is an inverse of a. So a is a unit, and we are done.

Without the word "finite", Proposition 1.6.1 (b) would fail, since \mathbb{Z} is an integral domain but not a field. Other examples of this nature are polynomial rings.

²Indeed, if we had $x - y \neq 0$, then we would obtain $a(x - y) \neq 0$ (since $a \neq 0$ and $x - y \neq 0$, and since *R* is an integral domain), which would contradict a(x - y) = 0.

Corollary 1.6.2. Let *n* be a positive integer. Then, the following equivalences hold:

 $(\mathbb{Z}/n \text{ is an integral domain}) \iff (\mathbb{Z}/n \text{ is a field}) \iff (n \text{ is prime}).$

Proof. The first of these two \iff signs follows from Proposition 1.6.1. So we only need to prove the second \iff sign.

 \implies : Assume that \mathbb{Z}/n is a field. Then, all its nonzero elements are units. In other words, the residue classes $\overline{1}, \overline{2}, \dots, \overline{n-1}$ are units. Equivalently, the numbers $1, 2, \dots, n-1$ are coprime to *n* (because of Proposition 1.5.2 (b)). Hence, *n* is prime (why?).

 \Leftarrow : Assume that *n* is prime. Then, the only positive divisors of *n* are 1 and *n*. Hence, the numbers 1, 2, ..., n - 1 are coprime to *n* (because if *a* is any of these numbers, then gcd (a, n) must be a positive divisor of *n*, but the only positive divisors of *n* are 1 and *n*; hence, we must have either gcd (a, n) = 1 or gcd (a, n) = n; but the second possibility is ruled out by the fact that gcd $(a, n) \leq a < n$). In other words, the residue classes $\overline{1}, \overline{2}, \ldots, \overline{n-1}$ are units (by Proposition 1.5.2 (b)). This yields that \mathbb{Z}/n is a field (since n > 1 entails that $\overline{0} \neq \overline{1}$ in \mathbb{Z}/n).

The group of units $(\mathbb{Z}/p)^{\times}$ of the field \mathbb{Z}/p (where *p* is a prime) has a nice application: Fermat's Little Theorem. See §2.6.3 in the text for details.

1.6.1. Division

As we know, rings have addition, subtraction and multiplication, but not always division. Nevertheless, when *b* is a unit of a ring, it makes sense to define $\frac{a}{b}$ to be the product ab^{-1} . Unfortunately, it makes just as much sense to define it to be $b^{-1}a$ instead. Usually, $ab^{-1} \neq b^{-1}a$. Thus, even if *b* is a unit, it is ill-advised to define $\frac{a}{b}$ for arbitrary rings *R*. (If you really want to, you can talk about "left division" and "right division", but you should distinguish between the two.)

However, when *R* is commutative, this ambiguity disappears, and the notation $\frac{a}{b}$ becomes useful. Thus, we do introduce it:

Definition 1.6.3. Let *R* be a commutative ring. Let $a \in R$ and $b \in R^{\times}$. Then, $\frac{a}{b}$ means the element $ab^{-1} = b^{-1}a \in R$. This element is also written a/b, and is called the **quotient** of *a* by *b*. The operation $(a, b) \mapsto \frac{a}{b}$ is called **division**.

In particular, in a field, we can divide by any nonzero element.

Division satisfies the rules that you would expect: If *R* is a commutative ring, and if $a, c \in R$ and $b, d \in R^{\times}$, then

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd};$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd};$$
$$\frac{a}{b} \swarrow \frac{c}{d} = \frac{ad}{bc} \qquad (\text{if } c \in R^{\times});$$

etc.. And of course, division undoes multiplication: When $b \in \mathbb{R}^{\times}$, we have the equivalence

$$\left(\frac{a}{b}=c\right) \Longleftrightarrow \left(a=bc\right).$$