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Math 332 Winter 2023, Lecture 5: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont’d)

1.5. Units and fields (cont’d)

1.5.1. Units and inverses (cont’d)

Recall the last definition we made in Lecture 4:

Definition 1.5.1. Let R be a ring.
(a) An element a ∈ R is said to be a unit of R (or invertible in R) if there

exists a b ∈ R such that ab = ba = 1. In this case, b is unique and is known
as the inverse (or reciprocal, or multiplicative inverse) of a, and is denoted
by a−1.

(b) We let R× denote the set of all units of R.

We then gave some examples for units (and non-units).
Our next example we state as a proposition:

Proposition 1.5.2. Let n ∈ Z. Then:
(a) The units of the ring Z/n are precisely the residue classes a where

a ∈ Z is coprime to n.
(b) Let a ∈ Z. Then, a is a unit of Z/n if and only if a is coprime to n.

Proof. Clearly, it suffices to prove part (b).
(b) We prove the “if” (⇐=) and “only if” (=⇒) direction separately:
⇐=: Assume that a ∈ Z is coprime to n. We must prove that a is a unit of

Z/n.
Since a is coprime to n, we have gcd (a, n) = 1. But Bezout’s theorem yields

that there exist x, y ∈ Z such that xa + yn = gcd (a, n). Consider these x, y.
We have xa + yn = gcd (a, n) = 1. In other words, xa − 1 = −yn, which is

a multiple of n. Therefore, xa ≡ 1 mod n. In terms of residue classes, this is
saying that xa = 1. In other words, x · a = 1. Since Z/n is commutative, this
entails a · x = 1 as well. Thus, x is an inverse of a in Z/n. Therefore, a is a unit
of Z/n.
=⇒: Assume that a is a unit of Z/n. We must prove that a is coprime to n.
Since a is a unit of Z/n, it has an inverse x. This inverse x satisfies xa =

x · a = 1, which means that xa ≡ 1 mod n. In other words, xa differs from 1
by a multiple of n. Hence,1 gcd (xa, n) = gcd (1, n) = 1. This shows that xa

1We are using the following fact here: If α, β, γ are three integers satisfying α ≡ β mod γ, then
gcd (α, γ) = gcd (β, γ). In other words, when we compute the greatest common divisor of
two integers, we can add any multiple of one integer to the other.
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and n are coprime. Since a divides xa, this also entails that a and n are coprime
(since any common divisor of a and n would also divide xa and thus would be
a common divisor of xa and n). In other words, a is coprime to n.

Here are some examples of Proposition 1.5.2:

• The units of the ring Z/12 are 1, 5, 7, 11 (because among the integers
0, 1, . . . , 11, it is the four numbers 1, 5, 7, 11 that are coprime to 12).

• The units of the ring Z/5 are 1, 2, 3, 4.

• The only unit of the ring Z/2 is 1.

Now here is a general property of units in any ring:

Theorem 1.5.3. Let R be a ring. Then, the set R× is a multiplicative group.
More precisely: (R×, ·, 1) is a group.

Proof. It suffices to show the following facts:

1. The unity 1 of R belongs to R×.

2. If a, b ∈ R×, then ab ∈ R×.

3. If a ∈ R×, then a has an inverse in R×.

Once these three facts are proved, all other group axioms for R× follow from
the ring axioms for R. So let us prove these three facts:

Proof of Fact 1: The element 1 has an inverse, namely 1 itself.
Proof of Fact 2: Let a, b ∈ R×. Why is ab ∈ R× ?
Since a, b ∈ R×, there are inverses a−1 and b−1 for a and b.
I claim that b−1a−1 is an inverse for ab. Indeed, this follows from

b−1 a−1 · a︸ ︷︷ ︸
=1

b = b−1b = 1 and a b · b−1︸ ︷︷ ︸
=1

a−1 = aa−1 = 1.

Thus, the element ab is a unit (since it has an inverse), i.e., we have ab ∈ R×.
Proof of Fact 3: Let a ∈ R×. Then, a has an inverse a−1 (by the definition of a

unit). We need to check that this inverse a−1 also belongs to R×.
But a−1 has an inverse, namely a (since aa−1 = 1 and a−1a = 1). Thus,

a−1 ∈ R× follows.
Theorem 1.5.3 is now proved.

Thus, every ring R produces two groups: the additive group (R,+, 0) and
the multiplicative group (R×, ·, 1) (standardly called the group of units of R).
The latter usually has fewer elements than the former, since it only contains the
units of R.
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Theorem 1.5.4 (Shoe-sock theorem). Let R be a ring. Let a, b be two units of
R. Then, ab is a unit of R, and its inverse is

(ab)−1 = b−1a−1.

Proof. See the proof of Fact 2 in the proof of Theorem 1.5.3.

Theorem 1.5.5. Let R be a ring. Let a be a unit of R. Then, a−1 is a unit of R,
and its inverse is

(
a−1)−1

= a.

Proof. See the proof of Fact 3 in the proof of Theorem 1.5.3.

1.5.2. Fields

As we saw, many rings (such as Z) have few units, but many other rings (such
as Q or R) have many. The rings of the latter kind are known as “fields”:

Definition 1.5.6. Let R be a commutative ring. Assume that 0 ̸= 1 in R. We
say that R is a field if every nonzero element of R is a unit.

Examples:

• The rings Q, R and C are fields. The ring Z is not (e.g., since 2 is not a
unit).

• The ring S = Q
[√

5
]
=

{
a + b

√
5 | a, b ∈ Q

}
(from Lecture 2) is a field.

Indeed, if a + b
√

5 is a nonzero element of S, then a + b
√

5 is a unit, since
its inverse is(

a + b
√

5
)−1

=
1

a + b
√

5
=

a − b
√

5(
a + b

√
5
) (

a − b
√

5
)

=
a − b

√
5

a2 − 5b2 =
a

a2 − 5b2 +
−b

a2 − 5b2

√
5 ∈ S.

(Strictly speaking, we need to make sure that a − b
√

5 is nonzero. The
reason why this is true is that

√
5 is irrational, so a + b

√
5 ̸= 0 entails that

a and b are not both 0 and therefore we easily obtain a − b
√

5 ̸= 0.)

• The Hamilton quaternions H would be a field if they were commutative.
Indeed, it is not hard to see that every nonzero quaternion a + bi + cj +
dk ∈ H is a unit. However, H is not commutative, thus does not qualify
as a field.

A noncommutative ring R with 0 ̸= 1 whose all nonzero elements are
units is called a division ring or a skew-field. So H is a skew-field.
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• Let n be a positive integer. Then, Z/n is a field if and only if n is prime.
(See below for a proof.)

1.6. Fields and integral domains: some connections

The notions of fields and integral domains are related:

Proposition 1.6.1. (a) Every field is an integral domain.
(b) Every finite integral domain is a field. (Of course, “finite” means “finite

as a set”.)

Proof. (a) Let F be a field. Why is F an integral domain?
Let a, b ∈ F be nonzero. We must prove that ab ̸= 0.
Since a is nonzero, a is a unit (since F is a field), thus has an inverse a−1.

If we had ab = 0, then we would have a−1 · ab︸︷︷︸
=0

= a−1 · 0 = 0, which would

contradict a−1 · a︸ ︷︷ ︸
=1

b = b ̸= 0. So we have ab ̸= 0.

Thus, F is an integral domain.

(b) Let R be a finite integral domain. We must show that R is a field.
Let a ∈ R be nonzero. Our goal is to show that a is a unit, i.e., has an inverse.
Consider the map

R → R,
x 7→ ax.

This map is injective (because if x, y ∈ R satisfy ax = ay, then a (x − y) =
ax − ay = 0, so that x − y = 0 since R is an integral domain2, and therefore
x = y). However, the Pigeonhole Principle for Injections says that if a map
between two finite sets of the same size is injective, then it is bijective. Hence,
our map

R → R,
x 7→ ax

is bijective. In particular, it must take the unity 1 as a value. In other words,
there exists some x ∈ R such that ax = 1. This x must therefore also satisfy
xa = 1 (since R is an integral domain, thus commutative), and thus is an inverse
of a. So a is a unit, and we are done.

Without the word “finite”, Proposition 1.6.1 (b) would fail, since Z is an
integral domain but not a field. Other examples of this nature are polynomial
rings.

2Indeed, if we had x − y ̸= 0, then we would obtain a (x − y) ̸= 0 (since a ̸= 0 and x − y ̸= 0,
and since R is an integral domain), which would contradict a (x − y) = 0.
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Corollary 1.6.2. Let n be a positive integer. Then, the following equivalences
hold:

(Z/n is an integral domain) ⇐⇒ (Z/n is a field) ⇐⇒ (n is prime) .

Proof. The first of these two ⇐⇒ signs follows from Proposition 1.6.1. So we
only need to prove the second ⇐⇒ sign.
=⇒: Assume that Z/n is a field. Then, all its nonzero elements are units. In

other words, the residue classes 1, 2, . . . , n − 1 are units. Equivalently, the num-
bers 1, 2, . . . , n − 1 are coprime to n (because of Proposition 1.5.2 (b)). Hence, n
is prime (why?).
⇐=: Assume that n is prime. Then, the only positive divisors of n are 1

and n. Hence, the numbers 1, 2, . . . , n − 1 are coprime to n (because if a is any
of these numbers, then gcd (a, n) must be a positive divisor of n, but the only
positive divisors of n are 1 and n; hence, we must have either gcd (a, n) =
1 or gcd (a, n) = n; but the second possibility is ruled out by the fact that
gcd (a, n) ≤ a < n). In other words, the residue classes 1, 2, . . . , n − 1 are units
(by Proposition 1.5.2 (b)). This yields that Z/n is a field (since n > 1 entails
that 0 ̸= 1 in Z/n).

The group of units (Z/p)× of the field Z/p (where p is a prime) has a nice
application: Fermat’s Little Theorem. See §2.6.3 in the text for details.

1.6.1. Division

As we know, rings have addition, subtraction and multiplication, but not always
division. Nevertheless, when b is a unit of a ring, it makes sense to define

a
b

to

be the product ab−1. Unfortunately, it makes just as much sense to define it to
be b−1a instead. Usually, ab−1 ̸= b−1a. Thus, even if b is a unit, it is ill-advised
to define

a
b

for arbitrary rings R. (If you really want to, you can talk about “left
division” and “right division”, but you should distinguish between the two.)

However, when R is commutative, this ambiguity disappears, and the nota-
tion

a
b

becomes useful. Thus, we do introduce it:

Definition 1.6.3. Let R be a commutative ring. Let a ∈ R and b ∈ R×. Then,
a
b

means the element ab−1 = b−1a ∈ R. This element is also written a/b, and

is called the quotient of a by b. The operation (a, b) 7→ a
b

is called division.

In particular, in a field, we can divide by any nonzero element.
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Division satisfies the rules that you would expect: If R is a commutative ring,
and if a, c ∈ R and b, d ∈ R×, then

a
b
+

c
d
=

ad + bc
bd

;
a
b
· c

d
=

ac
bd

;

a
b
⧸

c
d
=

ad
bc

(
if c ∈ R×) ;

etc.. And of course, division undoes multiplication: When b ∈ R×, we have the
equivalence ( a

b
= c

)
⇐⇒ (a = bc) .
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