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Math 332 Winter 2023, Lecture 4: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont’d)

1.3. Subrings (cont’d)

1.3.2. Examples (cont’d)

Here are some more examples of subrings:

• There are myriad rings between Q and R. One example is the ring

S = Q
[√

5
]
=

{
a + b

√
5 | a, b ∈ Q

}
we defined in Lecture 2. Another example is the ring

Q
[√

2
]
=

{
a + b

√
2 | a, b ∈ Q

}
.

Another is
Q
[

3
√

2
]
=

{
a + b 3

√
2 + c 3

√
4 | a, b, c ∈ Q

}
(exercise: check that this is a subring of R !). Another is

Q [π] =
{

a + bπ + cπ2 + dπ3 + · · · | a, b, c, d, . . . ∈ Q and

only finitely many of a, b, c, d, . . . are ̸= 0} .

• There are no rings between R and C. Any subring of C that contains R

as a subset must be either R or C. (This is not hard to prove, but I won’t
do it here.)

• There are rings between Z and C that are neither subrings nor “super-
rings” of R.

A particularly important one is the ring Z [i] of Gaussian integers.

A Gaussian integer is a complex number of the form a+ bi, where a and b
are integers (and where i is the imaginary unit

√
−1). For instance, 3 + 5i

and 7 − 9i are Gaussian integers.

It is easy to see that Z [i] is a subring of C and contains Z as a subring.
But Z [i] is neither a subring of Q or of R, nor contains any of Q and R as
a subring.

Visually, if you think of the complex numbers as the points in the Eu-
clidean plane, then you can think of the Gaussian integers as the integer

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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lattice points – i.e., the points whose both coordinates are integers. (See,
e.g., the first picture in the “The Gaussian Integers” section of Bill Cassel-
man’s note Circles and Squares.)

Likewise, there is a ring Q [i] of Gaussian rationals, which are defined
just like the Gaussian integers but with a, b ∈ Q instead of a, b ∈ Z. The
ring Q [i] is sandwiched between Q and C.

Here is a diagram representing the subring relations between some of the
rings discussed above:

H

C

sr

OO

R

sr

OO

Q [i]

sr

88

Q
[√

2
]sr

<<

Q
[√

5
]sr

bb

Z [i]

sr

OO

Q

sr

OO

sr
bb

sr
<<

sr

jj

Z

sr

OO

sr

kk

(where an arrow of the form “A sr→ B” means “A is a subring of B”). Of
course, there are many further rings that would fit into this diagram (for
example, the ring of all rational numbers

a
b

with b ∈ Z odd would fit
between Z and Q), but it is already fairly crowded.

• Recall the ring of functions from Q to Q. Similarly, there is a ring of
functions from R to R. The latter ring has a subring that consists of all
continuous functions from R to R. Why is it a subring? Because the
(pointwise) sum and the (pointwise) product of two continuous functions
are continuous, as is the (pointwise) negation of a continuous function, as
are the constant-0 and constant-1 functions.

• Let n ∈ N, and let R be any ring. Recall the matrix ring

Rn×n =

all n × n-matrices


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

an,1 an,2 · · · an,n

 with ai,j ∈ R

 .

http://www.ams.org/publicoutreach/feature-column/fc-2015-11
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(Its addition and its multiplication are matrix addition and matrix multi-
plication.)

Define a subset Rn≤n of Rn×n by

Rn≤n =
{

all upper-triangular n × n-matrices in Rn×n}
=

all n × n-matrices


a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
...

... . . . ...
0 0 · · · an,n

 with ai,j ∈ R

 .

This subset is a subring of Rn×n (since the sum and the product of two
upper-triangular matrices are again upper-triangular, and since −A is
upper-triangular when A is upper-triangular, and since the zero matrix
0n×n and the identity matrix In are upper-triangular). (I call this subring
Rn≤n because the nonzero entries in such a matrix all have the form ai,j
with i ≤ j.)

Likewise, the subset Rn≥n of Rn×n defined by

Rn≥n =
{

all lower-triangular n × n-matrices in Rn×n}
=

all n × n-matrices


a1,1 0 · · · 0
a2,1 a2,2 · · · 0

...
... . . . ...

an,1 an,2 · · · an,n

 with ai,j ∈ R


is a subring of Rn×n.

On the other hand, the subset

Rn×n
symm =

{
all symmetric matrices in Rn×n}

=

all n × n-matrices


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

an,1 an,2 · · · an,n

 with ai,j = aj,i ∈ R


is not a subring of Rn×n (unless R is trivial or n ≤ 1). The problem here is
that the product of two symmetric matrices is not always symmetric: for

example,
(

0 1
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
is not a symmetric matrix.

See homework set #1 Exercise 6 for another subring of Rn×n.

More examples can be found in the text (§2.3). I particularly recommend
§2.3.3 for an application of a subring of Z2×2 to the Fibonacci sequence.
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1.4. Zero divisors and integral domains

The following definition shouldn’t come as a surprise:

Definition 1.4.1. An element of a ring R is said to be nonzero if it is ̸= 0R.

As we saw in §1.2.2 (Lecture 3), it can happen that a product of two nonzero
elements of a ring is zero. Let us give this phenomenon a name:

Definition 1.4.2. Let R be a commutative ring. A nonzero element a ∈ R is
called a zero divisor if there exists a nonzero b ∈ R such that ab = 0.

For example, in the ring Z/6, the elements 2, 3, 4 are zero divisors, since

2 · 3 = 6 = 0 = 0Z/6;

3 · 2 = 6 = 0 = 0Z/6;

4 · 3 = 12 = 0 = 0Z/6.

On the other hand, the elements 1 and 5 are not zero divisors. More generally,
in any commutative ring R, the elements 1R and −1R are never zero divisors.

Note that the above definition is slightly controversial, as some authors prefer
to call 0 a zero divisor. Either convention has good reasons speaking in its favor.
Fortunately, the concept of “zero divisor” is not very important, but mostly
serves to motivate the following definition:

Definition 1.4.3. Let R be a commutative ring. Assume that 0 ̸= 1 in R (this
means 0R ̸= 1R, of course). We say that R is an integral domain if all nonzero
a, b ∈ R satisfy ab ̸= 0.

In other words, a commutative ring R with 0 ̸= 1 is an integral domain if and
only if it has no zero divisors.

Examples:

• The rings Z, Q, R and C are integral domains.

• The ring Z/n is an integral domain if and only if n is 0 or a prime or
minus a prime. We will prove this later.

• The ring S′ =
{

a + b
√

5 | a, b ∈ Q
}

with “coefficientwise” multiplication

∗ (defined in Lecture 2) is not an integral domain, since
(

0 + 1
√

5
)
∗(

1 + 0
√

5
)
= 0 + 0

√
5 = 0.

• The ring of all functions from Q to Q is not an integral domain, since
we can find two functions that are not identically 0 but whose prod-
uct is identically 0. (For example, take the function that sends each x



Lecture 4, version May 30, 2023 page 5

to

{
1, if x = 2;
0, if x ̸= 2,

and multiply it by the function that sends each x to{
1, if x = 3;
0, if x ̸= 3.

)

• We required integral domains to be commutative. If we didn’t, then the
ring H of Hamilton quaternions would be an integral domain, but the
matrix ring Q2×2 would not be.

1.5. Units and fields

1.5.1. Units and inverses

By definition, any ring R has an addition, a subtraction and a multiplication.
On the other hand, a division is not guaranteed. Even in the ring Z, you usually
cannot divide. However, any ring R has some elements that you can divide by;
for example, you can always divide by 1 and by −1. Let us give such elements
a name:

Definition 1.5.1. Let R be a ring.
(a) An element a ∈ R is said to be a unit of R (or invertible in R) if there

exists a b ∈ R such that ab = ba = 1. In this case, b is unique and is known
as the inverse (or reciprocal, or multiplicative inverse) of a, and is denoted
by a−1.

(b) We let R× denote the set of all units of R.

Some comments:

• Of course, the “1” here means 1R.

• We required ab = ba = 1 rather than just ab = 1 because R is not commu-
tative in general. When R is commutative, of course, ab = 1 suffices.

• The uniqueness of b is a nice exercise in using associativity of multiplica-
tion. (For the proof, see §2.5.1 in the text.)

• Don’t confuse “unit” (= invertible element) with “unity” (= neutral ele-
ment for multiplication). The unity is always a unit, but not every unit is
the unity!

Here are some examples of units:

• The units of the ring Q are all the nonzero elements of Q. This is because
every nonzero element of Q has a reciprocal, and this reciprocal again
belongs to Q.

The same holds for R and for C.
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• The units of the ring Z are 1 and −1 (and these numbers are their own
inverses). No other integer is a unit of Z. For instance, 2 is not a unit,

since its reciprocal
1
2

is not in Z. And of course, 0 is not a unit either,
since it has no reciprocal.

• The units of the matrix ring Rn×n are the invertible n × n-matrices. You
have seen many ways to characterize them in your linear algebra class.

• In the ring of all functions from Q to Q, the units are the functions that
never take the value 0. Inverses are computed pointwise. (This kind of
inverse is not what is known as an inverse function.)

Next time, we’ll describe the units of Z/n and talk about general properties
of inverses.
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