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Math 332 Winter 2023, Lecture 2: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

1. Rings and ideals (cont’d)

1.1. Defining rings (cont’d)

1.1.2. Some examples of rings (cont’d)

Here are some more examples of rings:

• Let S be the set of all real numbers of the form a + b
√

5 with a, b ∈ Q.

For instance, 3 ∈ S since 3 = 3 + 0
√

5.

Also,
√

5 ∈ S since
√

5 = 0 + 1
√

5.

But also
30
7

− 25
9

√
5 ∈ S.

We claim that S is a ring (where the addition, multiplication, zero and
unity are the usual ones).

To prove this, we need to show all the ring axioms. Most of them follow
immediately from the analogous properties of real numbers (since S ⊆ R).
The only one that could theoretically go wrong is existence of additive
inverses, because now you need to show that the additive inverse actually
belongs to S (the fact that R is a ring only gives you an additive inverse
in R, not in S). But this is easy:

−
(

a + b
√

5
)
= (−a) + (−b)

√
5 ∈ S.

But we are not done yet! We also need to prove that addition and mul-
tiplication are binary operations on S, that is, maps from S × S to S. In
other words, we need to prove that if we add or multiply two numbers
of the form a + b

√
5 with a, b ∈ Q, then you again get a number of this

form. It is easy to miss this requirement because we didn’t state it as a
“ring axiom”, but it is nevertheless part of the definition, hidden in plain
sight in its first sentence.

So let us check this requirement. For addition, it follows from(
a + b

√
5
)
+

(
c + d

√
5
)
= (a + c) + (b + d)

√
5 ∈ S.

For multiplication, it follows from(
a + b

√
5
) (

c + d
√

5
)
= ac + ad

√
5 + bc

√
5 + bd

√
5
√

5︸ ︷︷ ︸
=5

= (ac + 5bd) + (ad + bc)
√

5 ∈ S.
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Now, we are done proving that S is a ring.

• We could define a different ring structure on the same set S: specifically,
a ring that, as a set, is identical with S, but has a different choice of
multiplication and unity. Namely, we define a binary operation ∗ on S by(

a + b
√

5
)
∗
(

c + d
√

5
)
= ac + bd

√
5

for all a, b, c, d ∈ Q.

This relies on the fact that every element of S can be written in the form
a + b

√
5 for a unique pair (a, b) ∈ Q × Q. (And this fact, in turn, follows

from the irrationality of
√

5: If we had a + b
√

5 = c + d
√

5 for two distinct
pairs (a, b) , (c, d) ∈ Q × Q, then we would have a − c = (d − b)

√
5 and

thus
√

5 =
a − c
d − b

, which would contradict the irrationality of
√

5.)

Now, consider the set S, endowed with the usual addition, the unusual
multiplication ∗, the usual zero and the unusual unity 1 +

√
5. This is

again a ring, although not a very useful one. It is not the same ring as S,
and not even close; its properties are fairly different.

• Let S3 be the set of all real numbers of the form a + b 3
√

5 with a, b ∈ Q.
Is this a ring (endowed with the usual addition, the usual multiplication,
the usual zero and the usual unity)?

No, because multiplication is not a binary operation on S3:(
a + b 3

√
5
) (

c + d 3
√

5
)
= ac + ad 3

√
5 + bc 3

√
5 + bd 3

√
5 3
√

5︸ ︷︷ ︸
= 3√25

= ac + ad 3
√

5 + bc 3
√

5 + bd 3
√

25.

There is no way to rewrite the RHS (= right hand side) in the form u +

v 3
√

5 with u, v ∈ Q, since the bd 3
√

25 term cannot be simplified. (Strictly
speaking, this needs proof, but you can trust me on this.)

So far, all our rings were commutative (i.e., their multiplication was commu-
tative). But there are many noncommutative examples:

• For any n ∈ N, the set Rn×n of all n × n-matrices with real entries (en-
dowed with matrix addition, matrix multiplication, the zero matrix and
the identity matrix) is a ring. It is not commutative unless n ≤ 1, since we
usually don’t have AB = BA for matrices.

More generally: If R is any ring, and if n ∈ N, then the set Rn×n of all
n × n-matrices with entries in R (endowed with matrix addition, matrix
multiplication, the zero matrix and the identity matrix) is a ring. This is
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called the n × n-matrix ring over R; it is denoted by Rn×n or Mn (R). Of
course, the matrix addition is defined in terms of the addition of R, and
the matrix multiplication is defined in terms of both + and · operations
of R.

Note that Rn×n is not commutative even for n = 1 if R itself is not com-
mutative.

At this point, the phrase “endowed with the usual addition, etc.” must have
gotten quite boring. So we agree that if we don’t say what the operations
of a ring are, then we just understand that they are the “obvious ones”. For
example, if our ring R consists of real numbers, then its addition is understood
to be the usual addition of real numbers by default (unless we say that we are
endowing it with a different addition).

More examples:

• Another famous noncommutative ring is the ring of Hamilton quater-
nions H. Its elements are the “formal expressions” of the form

a + bi + cj + dk with a, b, c, d ∈ R.

(To be rigorous, you can define them as 4-tuples (a, b, c, d) of real numbers.
The “formal expression” a+ bi+ cj+ dk is then just a fancy way of writing
such a 4-tuple.)

We make this set H into a ring by defining

– its addition by

(a + bi + cj + dk) +
(
a′ + b′i + c′ j + d′k

)
=

(
a + a′

)
+

(
b + b′

)
i +

(
c + c′

)
j +

(
d + d′

)
k.

– its multiplication by the distributive law and by the formulas

i2 = j2 = k2 = −1,
ij = k, jk = i, ki = j,
ji = −k, kj = −i, ik = −j

(and by the requirement that real numbers commute with i, j, k). For
example, the distributive law yields

(1 + i) (2 + k) = 2 + k + 2i + ik︸︷︷︸
=−j

= 2 + k + 2i + (−j)
= 2 + 2i + (−1) j + k.

– its zero to be 0 = 0 + 0i + 0j + 0k.
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– its unity to be 1 = 1 + 0i + 0j + 0k.

This H is indeed a ring. Indeed, all the ring axioms can be checked by
brute force (i.e., directly by multiplying things out). Later we will learn a
better way.

Back to some simpler examples:

• The zero ring is the ring consisting of a single element 0. This element
serves both as zero and as unity. (So we have 0 = 1 in this ring.) Both
operations + and · do what they have to do:

0 + 0 = 0 · 0 = 0.

The zero ring is commutative.

More generally, a trivial ring means a ring with only one element. Every
trivial ring is just the zero ring with its 0 element renamed.

• Let n be an integer.

Consider the relation ≡
n

on the set Z defined by

a ≡
n

b ⇐⇒ n | a − b.

This relation ≡
n

is called congruence modulo n, and is an equivalence
relation. (We usually write a ≡ b mod n instead of a ≡

n
b.)

The equivalence classes of this relation are called the residue classes of
integers modulo n. Explicitly, for every integer a, the residue class that
contains a is

{all integers that are congruent to a modulo n}
= {all integers that differ from a by a multiple of n}
= {. . . , a − 2n, a − n, a, a + n, a + 2n, a + 3n, . . .} .

We denote this class by a. Two integers a and b satisfy a = b if and only
if a ≡

n
b. Thus, working with residue classes of integers modulo n can be

viewed as working with integers but pretending that n equals 0 (so that
two integers that differ by a multiple of n become equal).

In particular, the residue class 0 of 0 consists of all integers that are mul-
tiples of n. That is:

0 = {. . . , −3n, −2n, −n, 0, n, 2n, 3n, . . .} .
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The set of all residue classes of integers modulo n will be called Z/n or
Z/nZ or Zn. When n is positive, this set Z/n has n elements, which are
the residue classes

0 = {. . . , −3n, −2n, −n, 0, n, 2n, 3n, . . .} ,

1 = {. . . , −3n + 1, −2n + 1, −n + 1, 1, n + 1, 2n + 1, 3n + 1, . . .} ,

2 = {. . . , −3n + 2, −2n + 2, −n + 2, 2, n + 2, 2n + 2, 3n + 2, . . .} ,
. . . ,

n − 1 = {. . . , −2n − 1, −n − 1, −1, n − 1, 2n − 1, 3n − 1, 4n − 1, . . .} .

In modular arithmetic (“clock arithmetic”), we have learned how to add
and multiply such residue classes: The rules are

a + b = a + b;

a · b = ab

for all a, b ∈ Z. This turns the set Z/nZ into a commutative ring. Its
additive part – i.e., the group

(
Z/nZ, +, 0

)
– is known as the cyclic

group of order n.
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