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Math 332 Winter 2023, Lecture 1: Rings

website: https://www.cip.ifi.lmu.de/~grinberg/t/23wa

0.1. What is this about?

My name is Darij Grinberg.
This is a course on rings and fields: essentially, the algebraic structures that

have both an “addition” and a “multiplication” defined on them, which we as-
sume to behave reasonably well (i.e., we require them to satisfy certain axioms).

In the previous quarter (Math 331), you have learnt about groups, which
are structures with a (very) well-behaved single operation. These are good for
modelling symmetries and invertible operations in general. Rings and fields,
OTOH, model numbers or things made out of numbers (such as polynomials
or matrices). So I hope you will feel more at home in rings than you did in
groups back when you heard about them for the first time, as I expect you to
have a long history of calculating with numbers.

However, the familiarity can also mislead, since not everything that is true
for numbers is also true for elements of a ring. For example, matrices A and B
don’t always satisfy AB = BA. When studying rings, we will again encounter
surprises like this and worse. This is the price of exploring new places.

0.2. Plans

Everything I’m typing in class will go on the website. The website also serves
as a syllabus and will contain all relevant info, references and links. By the end
of this week, it should include info about grading and assignments.

The course will be split into 6 chapters:

1. Rings and ideals. A ring is like a number system. An ideal is like a
normal subgroup.

2. Modules. Modules are the natural generalization of vector spaces when
the underlying number system is replaced by a ring.

3. Monoid algebras and polynomials. This is a generalization of the classi-
cal notion of polynomials.

4. Finite fields. A finite field is like miniature version of our number system.
They have applications galore. This will include some applications.

5. Polynomials II. We will study polynomials in more detail, approaching
the ancient question of “how do you solve a system of polynomial equa-
tions?”.

https://www.cip.ifi.lmu.de/~grinberg/t/23wa
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6. Modules over a PID. In particular, we will prove the structure theorem
for finite abelian groups, and explore the Smith normal form of a matrix.
[We will not actually get to this topic in this quarter, but it appears as §7
in our text.]

I will get to some applications, including (hopefully) answers to all HW#0
problems.

1. Rings and ideals

1.1. Defining rings

1.1.1. The definition

You may have seen rings before, but keep in mind that there are 4 different
(related but not equivalent) notions of a ring, and the one you know might not
be the one I define.

Definition 1.1.1. A ring means a set R equipped with

• two binary operations (i.e., maps from R × R to R) that are called addi-
tion and multiplication and are denoted by + and ·, and

• two elements of R that are called zero and unity and are denoted by 0
and 1,

such that the following properties (the “ring axioms”) hold:

1. (R,+, 0) is an abelian group. In other words:

a) The operation + is associative (i.e., we have a+(b + c) = (a + b)+
c for all a, b, c ∈ R).

b) The element 0 is a neutral element for + (i.e., we have a + 0 =
0 + a = a for all a ∈ R).

c) Each element a ∈ R has an inverse for the operation + (i.e., an
element b ∈ R such that a + b = b + a = 0).

d) The operation + is commutative (i.e., we have a + b = b + a for all
a, b ∈ R).

2. (R, ·, 1) is a monoid. In other words:

a) The operation · is associative (i.e., we have a · (b · c) = (a · b) · c for
all a, b, c ∈ R).

b) The element 1 is a neutral element for · (i.e., we have a · 1 = 1 · a =
a for all a ∈ R).
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Note that we do not require the operation · to be commutative or to
have inverses.

3. The distributive laws hold in R: That is, for all a, b, c ∈ R, we have

a · (b + c) = a · b + a · c and
(b + c) · a = b · a + c · a.

4. We have 0 · a = a · 0 = 0 for each a ∈ R.

The zero of R and the unity of R don’t necessarily have to be the numbers
0 and 1; we are just calling them 0 and 1 since they play similar roles. If
things can get ambiguous, we will fall back to the notations 0R and 1R for
them.

The unity of R is also known as the identity or the one of R.
The product a · b is also abbreviated ab.
The inverse of an element a ∈ R in the abelian group (R,+, 0) is called the

additive inverse of a, and is denoted −a.
If a, b ∈ R, then the difference a − b ∈ R is defined to be the element

a + (−b) ∈ R.

Definition 1.1.2. A ring R is said to be commutative if its multiplication is
commutative (i.e., we have ab = ba for all a, b ∈ R).

1.1.2. Some examples of rings

You have certainly seen some rings in your life. Here are some examples:

• The sets Z, Q, R and C (endowed with the usual addition, the usual
multiplication, the usual 0 and the usual 1) are commutative rings.

(Notice that the existence of multiplicative inverses – i.e., inverses for the
operation · – is not required.)

• The set N := {0, 1, 2, . . .} of nonnegative integers (again endowed with
the usual addition, the usual multiplication, the usual 0 and the usual 1)
is not a ring: Its elements (other than 0) have no additive inverses in N.
It does, however, satisfy all the other ring axioms. Such an object is called
a semiring.

• We can define a commutative ring Z′ as follows:

We define a binary operation ×̃ on the set Z by setting

a ×̃ b = −ab for all (a, b) ∈ Z × Z.
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Now, let Z′ be the set Z, endowed with the usual addition + and the
unusual multiplication ×̃ and with the usual 0Z′ = 0 and the unusual
unity 1Z′ = −1. It is easy to check that Z′ is a commutative ring. It is an
example of a ring whose unity is clearly not the usual number 1, so we
should not be just calling it 1.

Note that the ring Z′ equals Z as a set, but it is a different ring. So if
you are talking about sets, Z′ = Z. If you are talking about rings (i.e., the
entire packages containing a set, a + operation, a · operation, a 0 and a
1), then Z′ ̸= Z.

This all said, Z′ is not a very interesting ring. It is essentially “a copy of
Z, except that every integer n has been renamed as −n”. To formalize
this intuition, we will soon introduce the concept of a ring isomorphism,
and then we will be able to say that Z′ is isomorphic to Z, and more
concretely, that the map

φ : Z → Z′, n 7→ −n

is a ring isomorphism.

• The polynomial rings

Z [x] = {all polynomials in one indeterminate x with integer coefficients} ,
Q [x] = {all polynomials in one indeterminate x with rational coefficients} ,

R [x, y] = {all polynomials in two indeterminates x, y with real coefficients} ,
R [z1, z2, . . . , zn] = {all polynomials in n indeterminates z1, z2, . . . , zn with real coefficients}

are commutative rings. We will formally define them soon.

• The set of all functions from Q to Q is a commutative ring, where addition
and multiplication are defined pointwise (i.e., addition is defined by

( f + g) (x) = f (x) + g (x) for all f , g : Q → Q and x ∈ Q,

and multiplication is defined by

( f g) (x) = f (x) · g (x) for all f , g : Q → Q and x ∈ Q

), where the zero is the “constant-0” function, and where the unity is the
“constant-1” function.

The same construction holds for functions from Q to R, or from R to Q,
or from N to Q.

More generally, if R is a ring, and if S is any set, then the set of all func-
tions from S to R is a ring (with +, ·, 0 and 1 defined as above). If R is
commutative, then so is this new ring.
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When we specify a ring, we don’t need to provide its zero 0 and its unity 1
(although they do need to exist); they are uniquely determined by the opera-
tions + and ·. This is because the neutral element for any binary operation is
uniquely determined.

Some more examples of rings:

• The set of all real numbers of the form a + b
√

5 with a, b ∈ Q. More on
this next time.


	What is this about?
	Plans
	Rings and ideals
	Defining rings
	The definition
	Some examples of rings



