Math 332: Undergraduate Abstract Algebra II, Winter 2023: Homework 5

Please solve at most 3 of the 6 problems!

Darij Grinberg

March 1, 2023

1 EXERCISE 1

1.1 PROBLEM

Let R be a ring. Let I, J and K be three mutually comaximal ideals of R. Prove that IJ + JK + KI = R.

1.2 HINT

Expand $(i_1 + j_1)(j_2 + k_2)(k_3 + i_3)(i_4 + j_4)(j_5 + k_5)$. Keep in mind that R need not be commutative!

1.3 Solution

•••

2 EXERCISE 2

2.1 Problem

Prove that the ring

$$\mathbb{Z}\left[\sqrt{-2}\right] := \left\{ a + b\sqrt{-2} \mid a, b \in \mathbb{Z} \right\}$$

is Euclidean, and that the map

$$N : \mathbb{Z} \left[\sqrt{-2} \right] \to \mathbb{N},$$

$$a + b\sqrt{-2} \mapsto a^2 + 2b^2 \qquad \text{(for } a, b \in \mathbb{Z}\text{)}$$

is a Euclidean norm for it.

2.2 Hint

Imitate the proof for $\mathbb{Z}[i]$ in Lecture 15.

2.3 Solution

•••

3 Exercise 3

3.1 Problem

Let p be a prime such that $p \equiv 1 \mod 4$. Prove that p can be written in the form $p = x^2 + 4y^2$ for some $x, y \in \mathbb{Z}$.

3.2 HINT

No new rings are required!

3.3 Solution

...

4 EXERCISE 4

4.1 PROBLEM

Let R be the ring $\mathbbm{Z}\left[i\right]$ of Gaussian integers. Let S be the ring

 $\mathbb{Z} [2i] = \{a + b \cdot 2i \mid a, b \in \mathbb{Z}\}\$ = {Gaussian integers with an even imaginary part}. This ring S is a subring of R.

Define two elements $x, y \in S$ by x = 2 + 2i and y = 2 - 2i.

- (a) Find the units of S.
- (b) Prove that we have $x \sim y$ in R, but we don't have $x \sim y$ in S.
- (c) Prove that the ideal xS + yS of S is not principal.
- (d) Conclude that S is not a PID.

4.2 Hint

It may be helpful to write i' for 2i in order to avoid confusing i for an element of S.

For part (c), argue that if xS + yS was zS for some $z \in S$, then xR + yR would be zR as well (why?), but this would force z to be associate to x and y in R (why?), and this would leave only four possibilities for z (why?).

4.3 SOLUTION

...

5 EXERCISE 5

5.1 Problem

Let R be a ring, and $n \in \mathbb{N}$. Consider the left R-module \mathbb{R}^n .

(a) Prove that the set

$$A := \{ (a_1, a_2, \dots, a_n) \in \mathbb{R}^n \mid a_1 = a_2 = \dots = a_n \}$$
$$= \left\{ \left(\underbrace{r, r, \dots, r}_{n \text{ times}} \right) \mid r \in \mathbb{R} \right\}$$

is an R-submodule of R^n .

(b) Prove that the set

$$B := \{ (a_1, a_2, \dots, a_n) \in \mathbb{R}^n \mid 1a_1 = 2a_2 = \dots = na_n \}$$

is an R-submodule of R^n .

(c) Prove that the set

$$C := \{ (a_1, a_2, \dots, a_n) \in \mathbb{R}^n \mid a_1 a_2 \cdots a_n = 0 \}$$

is an *R*-submodule of R^n only if *R* is trivial or n = 1.

(d) Prove that the set

$$D := \{ (a_1, a_2, \dots, a_n) \in \mathbb{R}^n \mid a_i = a_{i-1} + a_{i-2} \text{ for all } i \ge 3 \}$$

is an R-submodule of R^n .

5.2 Hint

For the sake of brevity, feel free to abbreviate an *n*-tuple (a_1, a_2, \ldots, a_n) as *a*.

5.3 Solution

...

6 EXERCISE 6

6.1 PROBLEM

Let R be a ring. Let M be a left R-module. Let I be an R-submodule of M.

For any two elements $a, b \in M$, we write " $a \equiv b \mod I$ " (and say that "a is congruent to $b \mod I$ ") if and only if $a - b \in I$. (This is a generalization of congruence of integers, as it is usually defined in elementary number theory. Indeed, congruence of integers modulo an integer n is recovered when $R = \mathbb{Z}$ and $I = n\mathbb{Z}$.)

Prove the following:

- (a) Each $a \in M$ satisfies $a \equiv a \mod I$.
- (b) If $a, b \in M$ satisfy $a \equiv b \mod I$, then $b \equiv a \mod I$.
- (c) If $a, b, c \in M$ satisfy $a \equiv b \mod I$ and $b \equiv c \mod I$, then $a \equiv c \mod I$.
- (d) If $a, b, c, d \in M$ satisfy $a \equiv b \mod I$ and $c \equiv d \mod I$, then $a + c \equiv b + d \mod I$.
- (e) If $a, b \in M$ and $r \in R$ satisfy $a \equiv b \mod I$, then $ra \equiv rb \mod I$.

Now, we claim a sort of converse:

(f) Let us drop the requirement that I be an R-submodule of M. Instead, we require that the claims of parts (a), (c) and (e) of this exercise hold. Prove that I is an R-submodule of M.

6.2 HINT

This exercise can be summarized as "modular arithmetic modulo a subset I of M works if and only if I is a submodule of M". In other words, roughly speaking, the submodules of a module M are precisely the subsets I that allow "working modulo I". This is most likely the reason why modules are called "modules"¹.

6.3 SOLUTION

•••

¹The name was coined by Dedekind, although in a less general context.