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1 Exercise 1

1.1 Problem

In this exercise, we shall see how idempotent central elements are responsible for rings
decomposing as direct products.

Let R be a ring, and let e be an idempotent central element of R. (Recall: “Central”
means that eb = be for all b ∈ R.)

Exercise 4 (a) on homework set #1 shows that 1− e ∈ R is again idempotent.

(a) Show that 1− e is furthermore central.

(b) Show that the principal ideal eR is itself a ring, with addition and multiplication
inherited from R and with zero 0R and with unity e. (This almost makes eR a subring
of R, but not quite, since a subring would have to have unity 1R.)

(c) Show that the same holds for the principal ideal (1− e)R (except that its unity will
be 1− e instead of e).
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(d) Consider the map

f : (eR)× ((1− e)R) → R,

(a, b) 7→ a+ b.

Prove that this map f is a ring isomorphism.

1.2 Remark

Part (d) of this exercise shows that if a ring R has an idempotent central element e, then
R can be decomposed (up to isomorphism) as a direct product A×B of two rings A and B
(namely, A = eR and B = (1− e)R). If e is not one of the two trivial idempotents 0 and
1, then these two rings A and B will be nontrivial, so the decomposition really deserves its
name.1

Conversely, any direct product of two nontrivial rings has nontrivial central idempotents:
If R and S are two rings, then (1R, 0S) and (0R, 1S) are two idempotent central elements of
the direct product R× S.

1.3 Solution

...

2 Exercise 2

2.1 Problem

Let R be any nontrivial ring. Consider the ideals

I :=

{(
0 b
0 d

)
| b, d ∈ R

}
,

J :=

{(
a b
0 0

)
| a, b ∈ R

}
,

K :=

{(
0 b
0 0

)
| b ∈ R

}
of the upper-triangular matrix ring R2≤2 defined in Exercise 2 of homework set #1. Note
that K = I ∩ J .

(a) Prove that the ideals I and J are comaximal (i.e., we have I + J = R2≤2).

(b) Prove that IJ = {0}.

(c) Prove that JI = K.
1As an example, take R = Z/6Z, and let e be the idempotent element 3 = 3+ 6Z of R (this is idempotent

since 32 = 9 ≡ 3 mod 6 and thus 3
2
= 32 = 3). Then, eR =

{
0, 3

} ∼= Z/2Z and (1− e)R ={
0, 2, 4

} ∼= Z/3Z. Hence, the ring isomorphism R ∼= (eR) × ((1− e)R) becomes the ring isomorphism
Z/6Z ∼= (Z/2Z) × (Z/3Z) that we have seen in Lecture 13 (as an instance of the Chinese Remainder
Theorem).
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2.2 Remark

This exercise illustrates that I ∩ J = IJ does not always hold in the noncommutative case.

2.3 Solution

...

3 Exercise 3

3.1 Problem

Consider the quotient ring Q3≤3/Q3<<3 that was constructed in Lecture 9. Recall that we
write its elements (which are residue classes of upper-triangular 3× 3-matrices modulo the
ideal Q3<<3) as “partly determined” upper-triangular 3 × 3-matrices with a question mark
in the top-right corner.

(a) Prove that the map

f : Q3≤3 → Q2×2,a b c
0 d e
0 0 g

 7→
(
a b
0 d

)
is a ring morphism.

(b) Prove that this morphism f satisfies f (Q3<<3) = 0.

(c) Use the universal property of quotient rings to conclude that there is a ring morphism

f ′ : Q3≤3/Q3<<3 → Q2×2,a b ?
0 d e
0 0 g

 7→
(
a b
0 d

)
.

(d) Use a similar reasoning to prove the existence of a ring morphism

F ′ : Q3≤3/Q3<<3 → Q4×4,a b ?
0 d e
0 0 g

 7→


a b 0 0
0 d 0 0
0 0 d e
0 0 0 g

 ,

which is furthermore injective.

(e) Conclude that the ring Q3≤3/Q3<<3 is isomorphic to a subring of Q4×4.

[When proving that a map is a ring morphism, feel free to only check the
“respects multiplication” axiom, as the other axioms are essentially obvious in
the present context. Some parts of this exercise can be solved in 1 sentence.]
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3.2 Remark

Part (e) shows that if you want to represent the elements of Q3≤3/Q3<<3 as actual honest
matrices (i.e., not matrices with question marks or other kinds of residue classes), then you
can do it using 4×4-matrices (by duplicating the second entry on the diagonal). Doing it by
3 × 3-matrices alone does not work (see https://mathoverflow.net/questions/439996
for a proof).

More generally, “partly determined” upper-triangular n × n-matrices with a question
mark in their top-right corner can be represented as honest (2n− 1) × (2n− 1)-matrices
(but not as matrices of any smaller size).

3.3 Solution

...

4 Exercise 4

4.1 Problem

Let R be a ring. Prove the following:

(a) If I and J are two ideals of R, then IJ is an ideal of R as well.

(b) The set of all ideals of R is a monoid with respect to the binary operation ·, with
neutral element R = 1R. That is, we have

(IJ)K = I (JK) for any three ideals I, J,K of R;
IR = RI = I for any ideal I of R.

4.2 Remark

This is part of Proposition 1.11.2 in Lecture 12 (which you cannot use without proof, of
course).

I recommend convincing yourself that the rest of said proposition is true as well (but
don’t bother writing it down unless you want to). Most of the work required here is book-
keeping. Note that it is easier to talk abstractly about sums of (I, J)-products than to write
them out as i1j1 + i2j2 + · · · + ikjk. For the proof of (IJ)K = I (JK), a good approach is
to first show that any (IJ,K)-product belongs to I (JK).

4.3 Solution

...
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5 Exercise 5

5.1 Problem

Let R be a ring. Let I and J be two comaximal ideals of R. Let n ∈ N and m ∈ N. Prove
that In and Jm, too, are comaximal.

5.2 Solution

...

6 Exercise 6

6.1 Problem

Let R be a ring. Let n ∈ N.
For each subset I of R, let In×n be the subset{

A ∈ Rn×n | all entries of A belong to I
}

of the matrix ring Rn×n.
Prove the following:

(a) If I is an ideal of R, then In×n is an ideal of the matrix ring Rn×n.

(b) Any ideal of Rn×n has the form In×n for some ideal I of R.

6.2 Remark

In particular, if F is a field, then the matrix ring F n×n has only two ideals, namely {0} and
the whole F n×n (where 0 stands for the zero matrix). This is because the field F has only
two ideals ({0} and F ).

(In contrast, the matrix ring F n×n has many more left ideals and right ideals – i.e.,
almost-ideals that satisfy only one half of the second ideal axiom.2)

6.3 Hint

For each i, j ∈ {1, 2, . . . , n}, let Ei,j ∈ Rn×n be the (i, j)-th elementary matrix – i.e., the
n×n-matrix whose (i, j)-th entry is 1 and whose all remaining entries are 0. What happens
when you multiply a given matrix A ∈ Rn×n by Ei,j from the left or from the right? I.e.,
how can you describe the matrices Ei,jA and AEi,j ? This exercise will make you truly
appreciate elementary matrices for all the operations that they can perform on a matrix.

2For example, a left ideal L of a ring R must satisfy aℓ ∈ L for all a ∈ R and ℓ ∈ L, but not necessarily
ℓa ∈ L.
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6.4 Solution

...
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