Math 332: Undergraduate Abstract Algebra II, Winter 2023: Homework 3

Please solve at most 3 of the 6 problems!

Darij Grinberg

January 27, 2023

1 EXERCISE 1

1.1 PROBLEM

Let R and S be two rings. Let $f : R \to S$ be a ring morphism.

...

Which of the following two claims are true? (Prove the true ones and give counterexamples to the false ones.)

(a) If I is an ideal of R, then $f(I) := \{f(i) \mid i \in I\}$ is an ideal of S.

(b) If K is an ideal of S, then $f^{-1}(K) := \{i \in I \mid f(i) \in K\}$ is an ideal of R.

1.2 Solution

1

$2 \quad \text{Exercise} \ 2$

2.1 Problem

Let R be any ring. Recall that $R^{n \le n}$ denotes the ring of all upper-triangular $n \times n$ -matrices with entries in R. In particular,

$$R^{2 \le 2} = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, b, d \in R \right\}.$$

Define four subsets I, J, K, L of $\mathbb{R}^{2\leq 2}$ by

$$I := \left\{ \begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} \mid b, d \in R \right\};$$
$$J := \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in R \right\};$$
$$K := \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in R \right\};$$
$$L := \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \mid a, d \in R \right\}.$$

Prove that I, J and K are ideals of $R^{2\leq 2}$, but L is not (unless R is trivial).

Feel free to omit the proofs of the "contains zero" and "is closed under addition" ideal axioms. (These axioms are satisfied for all four of I, J, K, L for pretty obvious reasons.)

2.2 Solution

•••

3 EXERCISE 3

3.1 Problem

Let R be a ring. An element $a \in R$ is said to be *nilpotent* if there exists an $n \in \mathbb{N}$ such that $a^n = 0$. (For example, the residue class $\overline{6}$ in $\mathbb{Z}/8$ is nilpotent, since its 3-rd power is $\overline{0}$.)

- (a) If a and b are two nilpotent elements of R satisfying ab = ba, then prove that a + b is nilpotent as well.
- (b) Find a counterexample to part (a) if we don't assume ab = ba.
- (c) Assume that the ring R is commutative. Let N be the set of all nilpotent elements of R. Prove that N is an ideal of R.

3.2 Remark

The ideal N defined in part (c) is called the *nilradical* of R.

3.3 SOLUTION

4 EXERCISE 4

4.1 PROBLEM

Let *n* be a positive integer with prime factorization $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$, where p_1, p_2, \ldots, p_k are distinct primes and a_1, a_2, \ldots, a_k are positive integers. Let *R* be the ring \mathbb{Z}/n . Prove that the nilradical¹ of *R* is the principal ideal $\overline{p_1 p_2 \cdots p_k} R$.

4.2 Solution

•••

...

5 EXERCISE 5

5.1 Problem

Let R be the ring of all real numbers of the form $a + b\sqrt{5}$ with $a, b \in \mathbb{Z}$. (You can take for granted that this is indeed a ring; the proof is analogous to the proof for S in Lecture 2.)

- (a) Is the quotient ring R/(2R) a field?
- (b) Is the quotient ring R/(3R) a field?
- (c) Prove that the quotient ring R/(5R) is not a field, and in fact the residue class $\sqrt{5}$ in this quotient is nilpotent. (See Exercise 3 above for the definition of "nilpotent".)

5.2 Solution

•••

6 EXERCISE 6

6.1 PROBLEM

Let R be the ring $\mathbb{Z}[i]$ of Gaussian integers. Let $z = 1 + 2i \in R$.

 $^{^1\}mathrm{See}$ the remark after Exercise 3 for the definition of this notion.

- (a) Prove that the quotient ring R/(zR) has exactly 5 elements, namely 0, 1, 2, 3, 4.
 (This requires, in particular, showing that these 5 elements are distinct.)
- (b) Which of these five elements is $\overline{12+7i}$?

6.2 Hint

Proceed as in Lecture 8. In particular, first show that $5 \in zR$.

6.3 Solution

•••