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1 Exercise 1

Omitted.

2 Exercise 2

2.1 Problem

How familiar are you with the notions of

1. normal subgroup of a group;

2. determinant;

3. ring;

4. Cayley–Hamilton theorem;

5. quotient vector space V/W ;

1



Solutions to homework set #0 page 2 of 13

6. exact sequence;

7. complex number;

8. Gaussian integer;

9. primitive n-th root of unity;

10. discrete Fourier transform?

11. greatest common divisor of two (univariate) polynomials;

12. tensor product;

13. cyclotomic polynomial;

14. Reed–Muller code;

15. Elkies–Stanley code;

16. Bose–Chaudhuri–Hocquenghem code?

(Write in a number between 0 (for “never seen it”) and 5 (for “could teach a lecture
about it with no preparation”) for each one.)

2.2 Solution sketch

Here are the answers I got, with some comments of mine (modulo my data entry errors):

1. normal subgroup of a group: 4, 4, 4, 4, 3, 1, 5, 4, 4, 4, 5, 3.

Anyone with ≤ 3 on this should look this one up, as we will use this concept at least
as a motivation. More importantly, we will use the concept of a quotient of a group
G by a subgroup H. When H is “only” a subgroup of G, this quotient (usually called
G/H) is just a set with an action of G on it. However, when H is a normal subgroup,
this quotient G/H also becomes a group, i.e., we can define a multiplication on it by
the rule g1 ·g2 := g1g2 (or, to use more standard notation, g1H ·g2H := g1g2H) without
running into ambiguities.

This is in Chapter 9 of Gallian’s Contemporary Abstract Algebra (10th edition 2020),
but he calls quotient groups “factor groups”.

The analogous concepts for rings are called “ideal” and “quotient ring”, and will be two
rather crucial concepts in this course.

2. determinant: 1, 4, 2, 4, 5, 5, 5, 4, 4, 5, 5, 3.

We won’t use them much here, but they might come handy in some homework ex-
ercises. Since you have seen group theory, I can define them quickly: Let A =

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

... . . . ...
an,1 an,2 · · · an,n

 ∈ Rn×n be an n × n-matrix with entries in a commuta-

tive ring R. Then, its determinant detA is an element of R, defined by the formula

detA :=
∑
σ∈Sn

signσ · a1,σ(1)a2,σ(2) · · · an,σ(n)︸ ︷︷ ︸
=

n∏
i=1

ai,σ(i)

.
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Here, Sn is the n-th symmetric group (i.e., the group of all permutations of {1, 2, . . . , n}),
and signσ denotes the sign of a permutation σ (which is 1 if σ is even, and −1 if σ is
odd; I called this (−1)σ back in Math 222). You have likely seen and used determi-
nants for matrices with real entries; the case of entries in an arbitrary commutative
ring R is similar. All their basic properties such as Laplace expansion, invariance un-
der row/column operations, etc. still hold for commutative rings1. In particular, one
can show that a square matrix A ∈ Rn×n is invertible if and only if its determinant
detA ∈ R is invertible (in R). Determinants have lots of surprising applications; proofs
in algebraic combinatorics often boil down to equalities between certain determinants.

One reason why determinants are so useful in abstract algebra is that they survive
generalization to commutative rings better than other linear-algebraic tools. A matrix
with entries in an arbitrary R cannot always be row-reduced to a row echelon form,
so Gaussian elimination doesn’t work in general, but determinants are still available.

3. ring: 1, 3, 2, 1, 0, 0, 3, 2, 2, 2, 4, 3.

Well, here’s hoping the numbers will improve over time :)

4. Cayley–Hamilton theorem: 0, 0, 1, 0, 0, 0, 2, 3, 0, 0, 0, 3.

It’s a beautiful result of linear algebra. It says that if you plug a square matrix A ∈
Rn×n (again, R can be any commutative ring) into its own characteristic polynomial
χA (t) = det (A− tIn), then you obtain the zero matrix. Here at Drexel, it is probably
Math 504 material (but usually only proved for R = R and R = C).

5. quotient vector space V/W : 0, 1, 0, 0, 0, 3, 0, 4, 1, 1, 0, 2.

Quotient vector spaces are “like Z/n but for vector spaces”. We’ll soon learn about
quotient rings and quotient modules; quotient vector spaces are a particular case of
the latter.

6. exact sequence: 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0.

We won’t need them, but I was curious. They would appear at the very start of a
course on homological algebra (or midway through a first course in algebraic topology).

7. complex number: 4, 5, 3, 3, 9(?), 5, 5, 5, 4, 4, 5, 5.

Good to see some large numbers here; they will be a recurring example in our class.

8. Gaussian integer: 0, 1, 0, 0, 3, 0, 2, 0, 1, 1, 1, 0, 0, 4.

A Gaussian integer is a complex number a+ bi where both a and b are integers (as
opposed to arbitrary real numbers). We will learn more about them very soon.

9. primitive n-th root of unity: 0, 0, 0, 0, 0, 1, 0, 0, 3, 1, 0, 5.

For your culture: There are conflicting definitions of a “primitive n-th root of unity”
in the literature. The one I prefer is the following: A primitive n-th root of unity
in a field2 means an element x of the field such that xn = 1 while the n − 1 powers
x1, x2, . . . , xn−1 are distinct from 1. For example, the imaginary unit i of the field C
is a primitive 4-th root of unity. More example, the primitive n-th roots in C are the

1For their proofs, see, e.g., Section 12 and Appendix B in: Neil Strickland, MAS201 Linear Mathematics for
Applications, lecture notes, 28 September 2013. https://neilstrickland.github.io/linear_maths/

Note that these proofs are stated for numbers, but work just as well in any commutative ring.
2Field = nontrivial commutative ring in which every nonzero element has an inverse.
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numbers of the form e2πik/n, where k ∈ {1, 2, . . . , n} is coprime to n. Primitive n-th
roots of unity are essential in number theory and applied mathematics, and directly
related to the ancient problem of constructing regular n-gons; but I’m not sure if we’ll
see much of them in this course.

10. discrete Fourier transform: 0, 2, 1, 0, 0, 2, 0, 2, 1, 2, 3, 2.

I thought I might get to it as an application of primitive n-th roots of unity. At this
point, probably unlikely. You might learn about it somewhere else, though.

11. greatest common divisor of two (univariate) polynomials: 1, 0, 0, 2, 0, 0, 0, 1, 2, 1, 2,
0.5.

OK, I had expected higher numbers here. I’ll have to cover this in more detail than I
thought.

12. tensor product: 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 3.

Sadly, won’t get there. Hugely important topic, but takes a couple weeks of acclima-
tization.

13. cyclotomic polynomial: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.

Another ship passing in the wind; it would fit well if we had another quarter.

14. Reed–Muller code: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.

I hope to get to this one. It’s a nice application of polynomials over finite fields.

15. Elkies–Stanley code: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.

Good! This was a control question. Elkies and Stanley have both worked in coding
theory, but there is no such thing as an Elkies–Stanley code.

16. Bose–Chaudhuri–Hocquenghem code: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.

This one is not a control question; this code (or, rather, these codes – it’s a whole
class) exists! Another application of polynomials over finite fields, but too advanced
to realistically cover in Math 332.

3 Exercise 3

3.1 Problem

(a) Factor the polynomial a3 + b3 + c3 − 3abc.

(b) Factor the polynomial bc (b− c) + ca (c− a) + ab (a− b).

(c) How general have your methods been? Did you use tricks specific to the given poly-
nomials, or do you have an algorithm for factoring any polynomial (say, with integer
coefficients)?
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3.2 Solution sketch

(a) The answer is

a3 + b3 + c3 − 3abc = (a+ b+ c)
(
a2 + b2 + c2 − bc− ca− ab

)
.

This is if you want to factor the polynomial over Z (i.e., into polynomials with integer
coefficients). Over C, you can factor it further:

a3 + b3 + c3 − 3abc = (a+ b+ c)
(
a+ ζb+ ζ2c

) (
a+ ζ2b+ ζc

)
,

where ζ = e2πi/3 =
−1 +

√
3i

2
. (This ζ is a primitive 3-rd root of unity, by the way; the

three complex numbers 1, ζ, ζ2 are the vertices of an equilateral triangle when drawn in the
plane.)

(b) The answer is

bc (b− c) + ca (c− a) + ab (a− b) = (a− b) (a− c) (b− c) .

(c) All of the above factorizations can be found using specialized tricks:
For instance, in part (a), it helps to rewrite a3 + b3 + c3 − 3abc in terms of the three

elementary symmetric polynomials e1 = a + b + c, e2 = ab + ac + bc and e3 = abc (it
is a famous result of Gauss that any symmetric polynomial in a, b, c can be expressed as a
polynomial in e1, e2, e3, and there is an algorithm that finds such an expression); once this is
done, the a+ b+ c factor immediately leaps to the eye. The other factor, a2 + b2 + c2 − bc−
ca − ab, is irreducible over Z (you can check this easily by substituting distinct constants
for b and c and checking that the resulting quadratic in a has no real roots); over C you
can factor it using the usual methods for solving quadratic equations (treating b and c as
constants).

I discussed ways of finding the factorization in (b) on https://math.stackexchange.
com/a/3127648/ . The simplest one is to observe that the polynomial vanishes for b = c
and therefore must be divisible by b− c. (Do you see why?)

The more interesting question is how to factor polynomials in general. There is no fully
general algorithm for factoring polynomials over an arbitrary field, even if the polynomials
are univariate (see https://mathoverflow.net/a/350877/ for a brief outline of the reason
why). However, Kronecker found an algorithm for factoring polynomials in any number of
variables over Z. This algorithm is outlined in §6.5 of the notes, but you may want to find
it yourself. It is based on the following two ideas:

1. If f ∈ Z [x] is a polynomial in one variable x with integer coefficients, and if g ∈ Z [x]
is a polynomial that divides f in Z [x], then the integer g (n) divides f (n) for each
n ∈ Z. Unless f = 0, there are only finitely many n ∈ Z for which f (n) = 0.

2. If f ∈ Z [x1, x2, . . . , xn] is a polynomial in n > 1 variables x1, x2, . . . , xn with in-
teger coefficients, and if g ∈ Z [x1, x2, . . . , xn] is a polynomial that divides f , then
the polynomial g

(
x1, x2, . . . , xn−1, x

k
n−1

)
divides f

(
x1, x2, . . . , xn−1, x

k
n−1

)
in the ring

Z [x1, x2, . . . , xn−1] for any k ∈ N. (Essentially, this is saying that setting xn := xk
n−1

does not break divisibility.) Can you find a sufficiently high k that ensures the converse
also holds?
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This algorithm is mathematically bullet-proof but impractical due to the large num-
bers that quickly appear. Nevertheless, for the above examples, it shouldn’t be too bad
(with a modern computer). In practice, computer algebra software uses more efficient al-
gorithms, e.g., using the Chinese Remainder Theorem (which we will see soon!) to “divide-
and-conquer” the problem into several more manageable (since small) problems.

4 Exercise 4

4.1 Problem

Simplify 3
√

2 +
√
5 +

3
√

2−
√
5.

4.2 Solution sketch

The answer is 1.
You can find this numerically, but how to prove it?
First proof: One way is to set u =

3
√

2 +
√
5 and v =

3
√

2−
√
5. We must then show

that u + v = 1. The definitions of u and v yield u3 = 2 +
√
5 and v3 = 2 −

√
5, so that

u3 + v3 =
(
2 +

√
5
)
+
(
2−

√
5
)
= 4 and u3v3 =

(
2 +

√
5
) (

2−
√
5
)
= 4 − 5 = −1. Hence,

(uv)3 = u3v3 = −1, so that uv = −1 (here we are taking the cube root, which is unique
because u and v are real numbers). Now, the binomial formula yields

(u+ v)3 = u3 + 3u2v + 3uv2 + v3 = u3 + v3︸ ︷︷ ︸
=4

+3 uv︸︷︷︸
=−1

(u+ v) = 4− 3 (u+ v) .

In other words, u + v is a solution of the cubic equation x3 = 4 − 3x. How do you
solve this cubic equation? If you try to apply Cardano’s formula, you get right back to the
expression 3

√
2 +

√
5 +

3
√

2−
√
5 you started with, which is not very useful. However, if

you already know what you are looking for (viz., you want to show that u + v = 1), you
already know that 1 is a root of the cubic x3 − (4− 3x); polynomial division then shows
that x3 − (4− 3x) = (x− 1) (x+ x2 + 4), and this entails that 1 is the only real root of
this cubic (since the factor x+ x2 + 4 has no real roots). In other words, 1 is the only real
solution of the cubic equation x3 = 4 − 3x. Since u + v is a solution of this equation, we
thus conclude that u+ v = 1, qed.

Remark: If you have no computer to tell you that the answer is conspicuously close to
1, you can still find it using the rational root test, once you suspect that u + v might be
rational.

Second proof: A straightforward computation shows that
(
1

2

(
1 +

√
5
))3

= 2 +
√
5.

Thus, 3
√
2 +

√
5 =

1

2

(
1 +

√
5
)
. Similarly, 3

√
2−

√
5 =

1

2

(
1−

√
5
)
. Adding the latter two

equalities together yields 3
√

2 +
√
5 +

3
√
2−

√
5 =

1

2

(
1 +

√
5
)
+

1

2

(
1−

√
5
)
= 1, qed.

Remark: Guessing the identity
(
1

2

(
1 +

√
5
))3

= 2 +
√
5 is far from straightforward,

however!
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5 Exercise 5

5.1 Problem

Let n ∈ N. Let a1, a2, . . . , an be n integers, and let b1, b2, . . . , bn be n further integers. The
Gaussian elimination algorithm tells you how to solve the system

a1x1 + a2x2 + · · ·+ anxn = 0;

b1x1 + b2x2 + · · ·+ bnxn = 0

for n unknowns x1, x2, . . . , xn ∈ Q. The answer, in general, will have the form “all Q-
linear combinations (i.e., linear combinations with rational coefficients) of a certain bunch
of vectors”. (More precisely, “a certain bunch of vectors” are n−2 or n−1 or n vectors with

rational coordinates, depending on the rank of the 2× n-matrix
(
a1 a2 · · · an
b1 b2 · · · bn

)
.)

Now, how can you solve the above system for n unknowns x1, x2, . . . , xn ∈ Z ? Will the
answer still be “all Z-linear combinations (i.e., linear combinations with integer coefficients)
of a certain bunch of vectors”?

What about more general systems of linear equations to be solved for integer unknowns?

5.2 Solution sketch

Yes, the answer will still be “all Z-linear combinations (i.e., linear combinations with integer
coefficients) of a certain bunch of vectors”. We will see why after we have introduced the
Smith normal form (a variant of Gaussian elimination for PIDs instead of fields). See Remark
7.1.15 in the notes for some details.

6 Exercise 6

6.1 Problem

You are given a 5× 5-grid of lamps, each of which is either on or off. For example, writing
1 for “on” and 0 for “off”, it may look as follows:

1 0 0 1 1
1 1 0 0 1
1 0 0 1 0
0 1 1 1 1
0 1 0 0 0

In a single move, you can toggle any lamp (i.e., turn it on if it was off, or turn it off if it
was on); however, this will also toggle every lamp adjacent to it. (“Adjacent to it” means
“having a grid edge in common with it”; thus, a lamp will have 2 or 3 or 4 adjacent lamps.)

Darij Grinberg 7 darij.grinberg@drexel.edu
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For example, if we toggle the second lamp (from the left) in the topmost row in the above
example grid, then we obtain

1 0 0 1 1
1 1 0 0 1
1 0 0 1 0
0 1 1 1 1
0 1 0 0 0

(where the boldfaced numbers correspond to the lamps that have been affected by the move).
Assume that all lamps are initially off. Can you (by a strategically chosen sequence of

moves) achieve a state in which all lamps are on?
[Remark: You can play this game on https://codepen.io/wintlu/pen/ZJJLGz .]

6.2 Solution sketch

The desired state can be achieved. The same holds for any n×m-grid, and more generally
for any (finite undirected) graph grid. This is an illustration of linear algebra over the finite
field Z/2 (that is, linear algebra where the scalars are not real numbers but elements of
Z/2). Indeed, a state of our grid can be viewed as a vector over Z/2 (that is, a vector with
entries in Z/2); then, a move corresponds to the addition of a certain fixed vector to it. See
§6.1.4 in https://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf for how to use this
model to solve the problem in general. (We’ll learn the prerequisites for that solution soon.)

See https://en.wikipedia.org/wiki/Lights_Out_(game) for more about the game.

7 Exercise 7

7.1 Problem

(a) How many of the numbers 0, 1, . . . , 6 appear as remainders of a perfect square divided
by 7 ?

(b) How many of the numbers 0, 1, . . . , 13 appear as remainders of a perfect square divided
by 14 ?

What about replacing 7 or 14 by n? Can you do better than just squaring them all?
[For example, 3 of the numbers 0, 1, . . . , 4 appear as remainders of a perfect square

divided by 5 – namely, the three numbers 0, 1, 4.]

7.2 Solution sketch

We will use the notation u%n for the remainder obtained when dividing an integer u by a
positive integer n. For example, 16%7 = 2.

(a) The following table shows the remainders of some perfect squares divided by 7:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
k2%7 0 1 4 2 2 4 1 0 1 4 2 2 4 1

.
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You see that these remainders repeat every 7 columns, because (k + 7)2%7 = k2%7 for
every integer k (this follows from (k + 7)2 ≡ k2mod 7, which in turn is a consequence
of k + 7 ≡ kmod 7). Thus, we only need to count the remainders obtained from any 7
consecutive integers – for example, from 0, 1, . . . , 6. There are 4 of these remainders (namely,
0, 1, 2, 4).

(b) The following table shows the remainders of some perfect squares divided by 14:

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
k2%14 0 1 4 9 2 11 8 7 8 11 2 9 4 1

.

As in part (a), we see that there are 8 of these remainders (namely, 0, 1, 2, 4, 7, 8, 9, 11).
Remark: We can simplify our counting by observing the symmetry (14− k)2%14 =

k2%14 for each integer k (so it suffices to only scan the first 8 squares 02, 12, . . . , 72).

What about the general question: Given a positive integer n, how many of the numbers
0, 1, . . . , n− 1 appear as remainders of a perfect square divided by n ? Here is an outline of
a solution:

1. Rewrite the question as “How many elements of the finite ring Z/n are squares?”.
(Here, a square means an element of the form a2, where a ∈ Z/n.)

2. Solve this question when n = pi for some prime p and some i ∈ N. The answers will
be different depending on whether p is 2 or not.

3. Use the Chinese Remainder Theorem to solve the case of general n.

Note that the answer will not always be
⌈
n+ 1

2

⌉
, although we got this answer in both

parts (a) and (b) of the problem.

8 Exercise 8

8.1 Problem

Solve the following system of equations:

a2 + b+ c = 1;

b2 + c+ a = 1;

c2 + a+ b = 1

for three complex numbers a, b, c.

8.2 Solution sketch

Let (a, b, c) be a solution. Subtracting the equations a2 + b+ c = 1 and b2 + c+ a = 1 from
one another, we obtain

a2 + b− b2 − a = 0.
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The left hand side of this equation factors as (a− b) (a+ b− 1); thus, we have

(a− b) (a+ b− 1) = 0.

In other words,
a− b = 0 or a+ b− 1 = 0.

Similarly, we have
b− c = 0 or b+ c− 1 = 0.

Similarly, we have
c− a = 0 or c+ a− 1 = 0.

Thus, we are in one of the following eight cases:
Case 1: We have a− b = 0 and b− c = 0 and c− a = 0.
Case 2: We have a− b = 0 and b− c = 0 and c+ a− 1 = 0.
Case 3: We have a− b = 0 and b+ c− 1 = 0 and c− a = 0.
Case 4: We have a− b = 0 and b+ c− 1 = 0 and c+ a− 1 = 0.
Case 5: We have a+ b− 1 = 0 and b− c = 0 and c− a = 0.
Case 6: We have a+ b− 1 = 0 and b− c = 0 and c+ a− 1 = 0.
Case 7: We have a+ b− 1 = 0 and b+ c− 1 = 0 and c− a = 0.
Case 8: We have a+ b− 1 = 0 and b+ c− 1 = 0 and c+ a− 1 = 0.
In each of the eight cases, we are left with a system of 3 linear equations in 3 unknowns,

which we can solve. Here are the details:
In Case 1, the system of linear equations yields a = b = c. Hence, in our original equation

a2+ b+ c = 1, we can replace all three unknowns by c. Thus, we obtain c2+ c+ c = 1. This
is a quadratic equation in c, and its solutions are

√
2 − 1 and −

√
2 − 1. Hence, we obtain

the solutions

(a, b, c) =
(√

2− 1,
√
2− 1,

√
2− 1

)
and

(a, b, c) =
(
−
√
2− 1, −

√
2− 1, −

√
2− 1

)
.

Check that these two solutions are indeed solutions of the original system!

In Case 2, the system of linear equations yields (a, b, c) =

(
1

2
,
1

2
,
1

2

)
. However, this

does not satisfy the original equation a2 + b + c = 1. Hence, we do not get any solution in
Case 2.

Case 3, too, does not contribute any solutions.
In Case 4, the system of linear equations yields a = 1− c and b = 1− c. Hence, in our

original equation a2 + b + c = 1, we can replace the unknowns a and b by 1 − c. Thus, we
obtain (1− c)2 + (1− c) + c = 1. This is a quadratic equation in c, and its solution is 1.
Thus, c = 1 and therefore a = 1− c = 1− 1 = 0 and similarly b = 0. Hence, we obtain the
solution

(a, b, c) = (0, 0, 1) .

Again, check that this satisfies the original system!
Case 5 does not contribute any solutions.
Cases 6 and 7 contribute the solutions

(a, b, c) = (1, 0, 0) and (a, b, c) = (0, 1, 0) ,

respectively.
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Finally, Case 8 contributes the fake solution (a, b, c) =

(
1

2
,
1

2
,
1

2

)
(in the sense that the

linear equations yield this solution, but it fails to satisfy the original system).
Thus, altogether, our system has the five solutions(√

2− 1,
√
2− 1,

√
2− 1

)
,

(
−
√
2− 1, −

√
2− 1, −

√
2− 1

)
,

(1, 0, 0) , (0, 1, 0) , (0, 0, 1) .

Remark: Systems of polynomial equations in general can be rather hard to solve. The
one in this exercise was chosen to be susceptible to a simple trick (as we have seen above);
but wiggle one of the coefficients a little bit (e.g., replacing one of the three 1’s by a 2), and
the answer gets much more complicated. The fact that all three equations are quadratic
does not save us: A system of quadratic equations can be as complicated as a univariate
equation of arbitrarily high degree.

There is a general way of solving systems of polynomial equations, assuming that you
can solve univariate polynomial equations. This is known as elimination theory, and can be
done either using resultants or using Gröbner bases (which we should see near the end of
the course). Note that this is not what we have done in our above solution.

9 Exercise 9

9.1 Problem

The following triangular table shows the binomial coefficients
(
n

m

)
for n ∈ {0, 1, . . . , 7} and

m ∈ {0, 1, . . . , n}:

k=0

↙
n = 0 → 1

k=1

↙
n = 1 → 1 1

k=2

↙
n = 2 → 1 2 1

k=3

↙
n = 3 → 1 3 3 1

k=4

↙
n = 4 → 1 4 6 4 1

k=5

↙
n = 5 → 1 5 10 10 5 1

k=6

↙
n = 6 → 1 6 15 20 15 6 1

k=7

↙
n = 7 → 1 7 21 35 35 21 7 1

(This is part of what is known as Pascal’s triangle.)
Now, in this table, let us replace each even number by a 0 and each odd number by a 1.
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We obtain
k=0

↙
n = 0 → 1

k=1

↙
n = 1 → 1 1

k=2

↙
n = 2 → 1 0 1

k=3

↙
n = 3 → 1 1 1 1

k=4

↙
n = 4 → 1 0 0 0 1

k=5

↙
n = 5 → 1 1 0 0 1 1

k=6

↙
n = 6 → 1 0 1 0 1 0 1

k=7

↙
n = 7 → 1 1 1 1 1 1 1 1

This looks rather similar to the third evolutionary stage of Sierpinski’s triangle:

(Each 0 in the above table corresponds to a white △ triangle, and each 1 corresponds to a
black ▲ triangle.)

Where does this similarity come from?

9.2 Solution sketch

See http://larryriddle.agnesscott.org/ifs/siertri/Pascal.htm . (Follow the “proof”
link for the proof, and then the “proof” link from there to a proof of Lucas’s theorem if you
want to know. Note that the proof of Lucas’s theorem is a beautiful illustration of the
usefulness of working with polynomials modulo p – i.e., of working modulo an ideal.)

10 Exercise 10

10.1 Problem

The number
√
2 is a root of the polynomial x2−2. The number

√
3 is a root of the polynomial

x2 − 3. Can you find a polynomial with integer coefficients that has
√
2 +

√
3 as a root?

Yes, I know about the zero polynomial. Find a better one!

10.2 Solution sketch

A better one is x4 − 10x2 + 1.

Proof. Let a :=
√
2 +

√
3. Then, a −

√
2 =

√
3, so that

(
a−

√
2
)2

= 3. Hence, 3 =(
a−

√
2
)2

= a2 − 2
√
2a+ 2. This is equivalent to a2 − 1 = 2

√
2a. Now squaring this again,

we find (a2 − 1)
2
= 8a2. Expanding and bringing everything onto the left hand side, we

obtain a4 − 10a2 + 1 = 0. This completes our proof.
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Incidentally, the polynomial x4 − 10x2 + 1 has four roots:
√
2 +

√
3,

√
2−

√
3, −

√
2 +

√
3, −

√
2−

√
3.

So the three extra roots
√
2−

√
3, −

√
2 +

√
3 and −

√
2−

√
3 are “free-riding” on

√
2 +

√
3.

Why is this not surprising? Or is it?3

So far, so nice. But many questions suggest themselves:

1. Can we do any better than x4 − 10x2 + 1 ? That is, can we find a smaller-degree
polynomial with integer coefficients that still has

√
2 +

√
3 as a root?

2. Can we also find such a polynomial for √p+
√
q where p and q are arbitrary integers?

3. What about 3
√
p+ 5

√
q and more complicated numbers?

These questions are not as easy to answer as the above problem. The answer to Question
1 is “no”, but I’m not sure how easy this is to prove4. Question 2 is fairly easy (just
repeat the above proof with p and q instead of 2 and 3). Question 3 is noticeably trickier,
but nevertheless the answer is positive (although the required polynomials are much more
complicated). The best answer for u

√
p + v

√
q (where p and q are integers and u and v are

positive integers) is a polynomial of degree uv which is most explicitly described as the
determinant of a certain complicated matrix5. If you want something more elementary, try
the u = 2 case (i.e., try finding a polynomial for √

p+ v
√
q).

3Google “conjugate numbers” for the answer; but a proper understanding of conjugate numbers would
require understanding of Galois theory.

4Of course, if you can prove the above implicit observation that a polynomial with integer coefficients that
has

√
2 +

√
3 as a root must also have the three “free riders”

√
2 −

√
3, −

√
2 +

√
3 and −

√
2 −

√
3 as

roots, then this is pretty clear!
5The matrix in question is (depending on your method) either the Sylvester matrix of the two polynomials
tv − q and (x− t)

u − p (in the indeterminate t over the polynomial ring Z [x]), or the Kronecker sum of
the companion matrices of the two polynomials xu − p and xv − q. The first method requires some good
familiarity with determinants; the second relies on tensor products. I wish there was something simpler!
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