Math 322: Undergraduate Abstract Algebra II, Winter 2023: Homework 0

Darij Grinberg

January 3, 2023

1 Exercise 1

1.1 Problem

Open the Gradescope shell of this course and make sure you know how to upload your homework submission. Try it out.

(Don't worry about uploading an unfinished version; you can update it as often as you wish until the deadline.)

1.2 SOLUTION

...

2 Exercise 2

2.1 Problem

How familiar are you with the notions of

1. normal subgroup of a group;

- 2. determinant;
- 3. ring;
- 4. Cayley–Hamilton theorem;
- 5. quotient vector space V/W;
- 6. exact sequence;
- 7. complex number;
- 8. Gaussian integer;
- 9. primitive n-th root of unity;
- 10. discrete Fourier transform?
- 11. greatest common divisor of two (univariate) polynomials;
- 12. tensor product;
- 13. cyclotomic polynomial;
- 14. Reed–Muller code;
- 15. Elkies–Stanley code;
- 16. Bose-Chaudhuri-Hocquenghem code.

(Write in a number between 0 (for "never seen it") and 5 (for "could teach a lecture about it with no preparation") for each one.)

2.2 Solution

...

3 Exercise 3

3.1 Problem

- (a) Factor the polynomial $a^3 + b^3 + c^3 3abc$.
- **(b)** Factor the polynomial bc(b-c) + ca(c-a) + ab(a-b).
- (c) How general have your methods been? Did you use tricks specific to the given polynomials, or do you have an algorithm for factoring any polynomial (say, with integer coefficients)?

3.2 SOLUTION

...

4 Exercise 4

4.1 Problem

Simplify $\sqrt[3]{2 + \sqrt{5}} + \sqrt[3]{2 - \sqrt{5}}$.

4.2 SOLUTION

...

5 Exercise 5

5.1 Problem

Let $n \in \mathbb{N}$. Let a_1, a_2, \ldots, a_n be n integers, and let b_1, b_2, \ldots, b_n be n further integers. The Gaussian elimination algorithm tells you how to solve the system

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = 0;$$

 $b_1x_1 + b_2x_2 + \dots + b_nx_n = 0$

for n unknowns $x_1, x_2, \ldots, x_n \in \mathbb{Q}$. The answer, in general, will have the form "all \mathbb{Q} -linear combinations (i.e., linear combinations with rational coefficients) of a certain bunch of vectors". (More precisely, "a certain bunch of vectors" are n-2 or n-1 or n vectors with rational coordinates, depending on the rank of the $2 \times n$ -matrix $\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{pmatrix}$.)

Now, how can you solve the above system for n unknowns $x_1, x_2, \ldots, x_n \in \mathbb{Z}$? Will the answer still be "all \mathbb{Z} -linear combinations (i.e., linear combinations with integer coefficients) of a certain bunch of vectors"?

What about more general systems of linear equations to be solved for integer unknowns?

5.2 SOLUTION

. . .

6 Exercise 6

6.1 Problem

You are given a 5×5 -grid of lamps, each of which is either on or off. For example, writing 1 for "on" and 0 for "off", it may look as follows:

1	0	0	1	1
1	1	0	0	1
1	0	0	1	0
0	1	1	1	1
0	1	0	0	0

In a single move, you can toggle any lamp (i.e., turn it on if it was off, or turn it off if it was on); however, this will also toggle every lamp adjacent to it. ("Adjacent to it" means "having a grid edge in common with it"; thus, a lamp will have 2 or 3 or 4 adjacent lamps.) For example, if we toggle the second lamp (from the left) in the topmost row in the above example grid, then we obtain

1	0	0	1	1
1	1	0	0	1
1	0	0	1	0
0	1	1	1	1
0	1	0	0	0

(where the boldfaced numbers correspond to the lamps that have been affected by the move). Assume that all lamps are initially off. Can you (by a strategically chosen sequence of moves) achieve a state in which all lamps are on?

[Remark: You can play this game on https://codepen.io/wintlu/pen/ZJJLGz.]

6.2 SOLUTION

. . .

7 Exercise 7

7.1 Problem

- (a) How many of the numbers $0, 1, \dots, 6$ appear as remainders of a perfect square divided by 7?
- (b) How many of the numbers $0, 1, \dots, 13$ appear as remainders of a perfect square divided by 14?

What about replacing 7 or 14 by n? Can you do better than just squaring them all? [For example, 3 of the numbers $0, 1, \ldots, 4$ appear as remainders of a perfect square divided by 5 – namely, the three numbers 0, 1, 4.]

7.2 SOLUTION

...

8 Exercise 8

8.1 Problem

Solve the following system of equations:

$$a^{2} + b + c = 1;$$

 $b^{2} + c + a = 1;$
 $c^{2} + a + b = 1$

for three complex numbers a, b, c.

8.2 SOLUTION

...

9 Exercise 9

9.1 Problem

The following triangular table shows the binomial coefficients $\binom{n}{m}$ for $n \in \{0, 1, ..., 7\}$ and $m \in \{0, 1, ..., n\}$:

(This is part of what is known as *Pascal's triangle*.)

Now, in this table, let us replace each even number by a 0 and each odd number by a 1. We obtain

									k=0							
$n=0 \rightarrow$								1	K	k=1						
$n=1$ \rightarrow							1		1		k=2	1 0				
$n=2$ \rightarrow						1		0		1		k=3 ✓	L-4			
$n=3$ \rightarrow					1		1		1		1		<i>k</i> =4 ✓	k=5		
$n=4$ \rightarrow				1		0		0		0		1		<i>κ</i> −3	k=6	
$n=5$ \rightarrow			1		1		0		0		1		1		κ_0 	k=7
$n=6$ \rightarrow		1		0		1		0		1		0		1		λ-1
$n=7$ \rightarrow	1		1		1		1		1		1		1		1	

This looks rather similar to the third evolutionary stage of Sierpinski's triangle:

(Each 0 in the above table corresponds to a white \triangle triangle, and each 1 corresponds to a black \blacktriangle triangle.)

Where does this similarity come from?

9.2 SOLUTION

. . .

10 Exercise 10

10.1 PROBLEM

The number $\sqrt{2}$ is a root of the polynomial x^2-2 . The number $\sqrt{3}$ is a root of the polynomial x^2-3 . Can you find a polynomial with integer coefficients that has $\sqrt{2}+\sqrt{3}$ as a root? Yes, I know about the zero polynomial. Find a better one!

10.2 SOLUTION

. . .

REFERENCES