Math 530: Graph Theory, Spring 2023: Homework 4 due 2023-05-04 at 11:59 PM **Please solve 3 of the 6 problems!**

Darij Grinberg

May 3, 2023

1 EXERCISE 1

1.1 PROBLEM

- (a) Let G = (V, E) be a simple graph, and let u and v be two distinct vertices of G that are not adjacent. Let n = |V|. Assume that $\deg u + \deg v \ge n$. Let $G' = (V, E \cup \{uv\})$ be the simple graph obtained from G by adding a new edge uv. Assume that G' has a hame. Prove that G has a hame.
- (b) Does this remain true if we replace "hamc" by "hamp"?

1.2 Solution

...

$2 \ \text{Exercise} \ 2$

2.1 Problem

Let D be a multidigraph with at least one vertex. Prove the following:

- (a) If each vertex v of D satisfies $\deg^+ v > 0$, then D has a cycle.
- (b) If each vertex v of D satisfies deg⁺ $v = deg^- v = 1$, then each vertex of D belongs to exactly one cycle of D. Here, two cycles are considered to be identical if one can be obtained from the other by cyclic rotation.

2.2 Solution

3 EXERCISE 3

3.1 Problem

Prove the directed Euler–Hierholzer theorem:

Let ${\cal D}$ be a weakly connected multidigraph. Then:

- (a) The multidigraph D has an Eulerian circuit if and only if each vertex v of D satisfies $\deg^+ v = \deg^- v$.
- (b) The multidigraph D has an Eulerian walk if and only if all but two vertices v of D satisfy $\deg^+ v = \deg^- v$, and the remaining two vertices v satisfy $\left|\deg^+ v \deg^- v\right| \le 1$.

3.2 Solution

4 EXERCISE 4

4.1 PROBLEM

(a) Let $D = (V, A, \psi)$ be a multidigraph, where $V = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$. If M is any matrix, and if i and j are two positive integers, then $M_{i,j}$ shall denote the (i, j)-th entry of M (that is, the entry of M in the i-th row and the j-th column). Let C be the $n \times n$ -matrix (with real entries) defined by

 $C_{i,j} = (\text{the number of all arcs } a \in A \text{ with source } i \text{ and target } j)$ for all $i, j \in V$.

Let $k \in \mathbb{N}$, and let $i, j \in V$. Prove that $(C^k)_{i,j}$ equals the number of all walks of D having starting point i, ending point j and length k.

(b) Let E be the following multidigraph:

Let $n \in \mathbb{N}$. Compute the number of walks from 1 to 1 having length n.

4.2 Remark

The matrix C in part (a) of this problem is known as the *adjacency matrix* of D. For example, if the multidigraph is

then its adjacency matrix is

(0)	1	1	0)
0	0		0
1	0	0	2
$\sqrt{0}$	0	0	1/

The adjacency matrix of a multidigraph D determines D up to the identities of the arcs, and thus is often used as a convenient way to encode a multidigraph.

4.3 Solution

•••

5 EXERCISE 5

5.1 PROBLEM

Let $G = (V, E, \varphi)$ be a connected multigraph with 2m edges, where $m \in \mathbb{N}$. A set $\{e, f\}$ of two distinct edges will be called a *friendly couple* if e and f have at least one endpoint in common. Prove that the edge set of G can be decomposed into m disjoint¹ friendly couples (i.e., there exist m disjoint friendly couples $\{e_1, f_1\}, \{e_2, f_2\}, \ldots, \{e_m, f_m\}$ such that $E = \{e_1, f_1, e_2, f_2, \ldots, e_m, f_m\}$).

 $^{^{16}\}mbox{Disjoint"}$ means "disjoint as sets" – i.e., having no edges in common.

Example: Here is a graph with an even number of edges:

One possible decomposition into disjoint friendly pairs is $\{a, y\}, \{b, z\}, \{c, x\}.$]

5.2 Hint

Induct on |E|. Pick a vertex v of degree > 1 and consider the components of $G \setminus v$.

5.3 Solution

...

6 EXERCISE 6

6.1 PROBLEM

Let D be a simple digraph with n vertices and a arcs. Assume that D has no loops, and that we have $a > n^2/2$. Prove that D has a cycle of length 3.

6.2 Remark

Note that this is both an analogue and a generalization (why?) of Mantel's theorem.

6.3 SOLUTION

•••