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Math 530 Spring 2023, Lecture diary

website: https://www.cip.ifi.lmu.de/~grinberg/t/23s
Note: This is a rough, unedited version of what I typed in class (but lacking

the illustrations I drew on the blackboard)! See the 2022 notes for a more
detailed and fleshed-out writeup of this material.

https://www.cip.ifi.lmu.de/~grinberg/t/23s
https://www.cip.ifi.lmu.de/~grinberg/t/22s
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Lecture 1

0.1. Plan

This is a course on graphs – a rather elementary concept (actually a cluster of
related concepts) that appears all over mathematics. We will discuss several
kinds of graphs: simple graphs, multigraphs, simple digraphs, multidigraphs
("di" means "directed") and study their features and properties. In particular,
we will see walks, cycles, paths, matchings, flows, ... on graphs.

The theory of graphs goes back to Euler in 1736. In the 19th century (?),
Jacobi, Cayley, Borchardt and others picked up the subject in earnest. In the
20th century, it became mainstream. Many textbooks, lecture notes, journals on
it now exist.

We will mostly follow my lecture notes from 2022
( https://www.cip.ifi.lmu.de/~grinberg/t/22s/ ). Feel free to interject with
questions and ideas. If you are interested in research, this is a great place to
start!

A few administrativa:

• The website ( https://www.cip.ifi.lmu.de/~grinberg/t/23s ) is the syl-
labus.

• HW1 is on the website. But I’ve changed problem 4.

• HWs will be due on Mondays at 23:59 (= 11:59 PM).

• We will use gradescope for HW. Please sign up there, using the code I
sent out.

• Homeworks should be typewritten, not handwritten. You can use LaTeX
or Office or Google Docs or even .txt. You can scan pictures (e.g., graphs).

• Office hours: Mon 1–3PM.

0.2. Notations

• We let N = {0, 1, 2, 3, . . .}. In particular, 0 ∈ N.

• If S is a set, then the powerset of S means the set of all subsets of S. This
powerset is denoted by P (S).

• Moreover, if S is a set and k ∈ N, then Pk (S) means the set of all k-element
subsets of S. For example,

P2 ({1, 2, 3}) = {{1, 2} , {1, 3} , {2, 3}} .

https://www.cip.ifi.lmu.de/~grinberg/t/22s/
https://www.cip.ifi.lmu.de/~grinberg/t/23s
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• For any number n and any k ∈ N, we define the binomial coefficient(
n
k

)
to be the number

n (n − 1) (n − 2) · · · (n − k + 1)
k!

.

This is the number of k-element subsets of any given n-element set. In

other words, if S is an n-element set, then |Pk (S)| =
(

n
k

)
.

If n, k ∈ N and n ≥ k, then
(

n
k

)
=

n!
k! · (n − k)!

.

In particular, if S is an n-element set, then

|P2 (S)| =
(

n
2

)
=

n (n − 1)
2

= 1 + 2 + · · ·+ (n − 1) .

Famously, the binomial coefficients satisfy Pascal’s recursion(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
.

1. Simple graphs

1.1. Definitions

The first type of graphs we will consider are the simple graphs, called so for
the simplicity of their definition:

Definition 1.1.1. A simple graph is a pair (V, E), where V is a finite set, and
E is a subset of P2 (V).

Thus, a simple graph is a pair (V, E), where V is a finite set, and E is a set
of 2-element subsets of V. We will abbreviate "simple graph" as "graph" for a
while, but later "graph" will have different meanings as well.

Example 1.1.2. Here is a simple graph:

({1, 2, 3, 4} , {{1, 3} , {1, 4} , {3, 4}}) .

Example 1.1.3. For any n ∈ N, we can define a simple graph Copn to be the
pair (V, E), where V = {1, 2, . . . , n} and

E = {{u, v} ∈ P2 (V) | gcd (u, v) = 1} .

We call this the n-th coprimality graph.
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The purpose of simple graphs is to encode binary relations on a finite set –
specifically the sort of relations that are symmetric (i.e., mutual) and irreflexive
(i.e., no element relates to itself). For example, the graph Copn encodes the
relation of being coprime on the set {1, 2, . . . , n}, except that it "forgets" that 1
is coprime to itself.

Definition 1.1.4. Let G = (V, E) be a simple graph.

(a) The set V is called the vertex set of G, and is denoted by V (G).

The elements of V are called the vertices (or the nodes) of G.

(b) The set E is called the edge set of G, and is denoted by E (G).

The elements of E are called the edges of G.

So every simple graph G satisfies G = (V (G) , E (G)).

(c) We use the abbreviation uv for an edge {u, v}. Note that uv = vu.

(d) Two vertices u and v of G are said to be adjacent if uv ∈ E. In this case,
the edge uv is said to join u with v (or connect u and v); the vertices u
and v are called the endpoints of this edge.

(e) Let v be a vertex of G (that is, v ∈ V). Then, the neighbors of v (in G)
are the vertices u of G that are adjacent to v (that is, satisfy uv ∈ E).

For example, the graph

G = ({1, 2, 3, 4} , {{1, 3} , {1, 4} , {3, 4}})

has vertex set V (G) = {1, 2, 3, 4} and edge set E (G) = {{1, 3} , {1, 4} , {3, 4}}.
Its vertices 1 and 3 are adjacent, but its vertices 1 and 2 are not. The neighbors
of 1 are 3 and 4, whereas 2 has no neighbors. The endpoints of the edge 34 are
3 and 4.

Definition 1.1.5. A simple graph G = (V, E) can be pictorially represented
by

• drawing each vertex v ∈ V as a point (at which we put the name of the
vertex), and

• drawing each edge uv ∈ E as a line (not necessarily straight) that con-
nects the u-point to the v-point.

One place to draw graphs online is https://q.uiver.app/ (don’t forget to re-
move the arrowheads).
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Example 1.1.6. Consider the simple graph

({1, 2, 3, 4, 5} , P2 ({1, 2, 3, 4, 5})) .

This is known as the "complete graph K5". There are many ways to draw
it. The most logical one (drawing it as a regular pentagon + regular penta-
gram) has a lot of crossing edges. If you are more strategic, you can reduce
the crossings to just one crossing. But you cannot get rid of crossing edges
completely. This is a nontrivial result in topology, one of the first results in
the theory of planar graphs. (See [Fritsch/Fritsch].)

1.2. A first fact: The Ramsey number R (3, 3) = 6

Proposition 1.2.1. Let G be a simple graph with |V (G)| ≥ 6. Then, at least
one of the following two statements holds:

• Statement 1: There exist three distinct vertices a, b and c of G such that
ab, bc and ca are edges of G.

• Statement 2: There exist three distinct vertices a, b and c of G such that
none of ab, bc and ca is an edge of G.

In other words, we are claiming that if a graph G has at least 6 vertices, then
it has either 3 mutually adjacent vertices, or 3 mutually non-adjacent (distinct)
vertices, or both. Often, this is restated as follows: "In a group of at least six
people, you can find either three mutual friends or three mutual non-friends".

Let us introduce some convenient terminology before proving this:

Definition 1.2.2. Let G be a simple graph.

(a) A set {a, b, c} of three distinct vertices of G is said to be a triangle if
ab, bc, ca are edges of G.

(b) A set {a, b, c} of three distinct vertices of G is said to be an anti-triangle
if none of ab, bc, ca is an edge of G.

So our above proposition claims that every simple graph with ≥ 6 vertices
contains a triangle or an anti-triangle (or both).

Proof of the proposition. We need to show that G has a triangle or an anti-triangle.
Choose any vertex u ∈ V (G). Then, there are at least 5 vertices distinct from

u (since G has at least 6 vertices). We are in one of the following two cases:
Case 1: The vertex u has at least 3 neighbors.
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Case 2: The vertex u has at most 2 neighbors.
Consider Case 1. In this case, u has 3 distinct neighbors p, q, r (and possibly

more). If {p, q, r} is an anti-triangle, then we are done. If not, then at least one
of pq, qr, rp is an edge, and thus forms a triangle with u. Either way, we are
done in Case 1.

Now, consider Case 2. Here, u has at most 2 neighbors. Thus, u has at least 3
non-neighbors (distinct from u) (since there are at least 5 vertices distinct from
u). In other words, u has 3 distinct non-neighbors p, q, r (and possibly more). If
{p, q, r} is a triangle, then we are done. If not, then at least one of pq, qr, rp is
a non-edge, and thus forms an anti-triangle with u. Either way, we are done in
Case 2.

So our proposition is proved.

The above proposition is the first result in a field of graph theory known as
Ramsey theory. I shall not dwell on it, but let me state some main results. The
first step beyound the above proposition is the following generalization:

Proposition 1.2.3. Let r and s be two positive integers. Let G be a simple

graph with |V (G)| ≥
(

r + s − 2
r − 1

)
. Then, at least one of the following two

statements holds:

• Statement 1: There exist r distinct vertices of G that are mutually adja-
cent (i.e., any two distinct ones among them are adjacent).

• Statement 2: There exist s distinct vertices of G that are mutually non-
adjacent (i.e., no two distinct ones among them are adjacent).

For r = s = 3, this becomes our previous proposition.
This generalization is actually not hard to prove by induction on r + s, using

Pascal’s recursion.

In general, the
(

r + s − 2
r − 1

)
in the above proposition is not the smallest num-

ber that could stand in its place! The smallest number that could stand in its
place is denoted by R (r, s), and is called the (r, s)-th Ramsey number. We just

showed that R (3, 3) = 6. In general, R (r, s) ≤
(

r + s − 2
r − 1

)
. Can we compute

R (r, s) for bigger r and s ?
There is no known general answer. There are some bounds that are slightly

better than
(

r + s − 2
r − 1

)
, but all the values of R (r, s) that have been really com-

puted have been computed using a lot of case analysis and brute force. We now
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know that

R (3, 4) = 9, R (3, 5) = 14, R (3, 6) = 18, R (3, 7) = 23,
R (3, 8) = 28, R (3, 9) = 36, R (4, 4) = 18, R (4, 5) = 25,

and R (1, s) = 1 and R (2, s) = s + 1 for all s ≥ 2. These are all the Ramsey
numbers known exactly. We also know, e.g., that 43 ≤ R (5, 5) ≤ 48.

Even this is far from the most general kind of Ramsey theory. See more in
the 2022 notes.

1.3. Degrees

The degree of a vertex in a simple graph just counts how many edges contain
this vertex:

Definition 1.3.1. Let G = (V, E) be a simple graph. Let v ∈ V be a vertex.
Then, the degree of v (with respect to G) is defined to be

deg v := (the number of edges e ∈ E that contain v)
= (the number of neighbors of v)
= |{u ∈ V | uv ∈ E}|
= |{e ∈ E | v ∈ e}| .

(Note that these equality signs will no longer hold once we get to multi-
graphs.)

For example, in the graph shown on the board, we have

deg 1 = 3, deg 2 = 2, deg 3 = 3, deg 4 = 2, deg 5 = 0.

Here are some basic properties of degrees in graphs:

Proposition 1.3.2. Let G be a simple graph with n vertices. Let v be any
vertex of G. Then,

deg v ∈ {0, 1, . . . , n − 1} .

Proposition 1.3.3 (Euler 1736). Let G be a simple graph. Then, the sum of
the degrees of all vertices of G equals twice the number of edges of G. In
other words,

∑
v∈V(G)

deg v = 2 · |E (G)| .

Proof. Essentially, when you take the sum ∑
v∈V(G)

deg v, each edge is counted

twice.
See the 2022 notes for a more rigorous way to say this, by "double-counting"

the number of pairs (v, e) where v ∈ V and e ∈ E and v ∈ e.
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Corollary 1.3.4 (handshake lemma). Let G be a simple graph. Then, the
number of vertices of G that have odd degree is even.

Proof. The preceding proposition yields that ∑
v∈V(G)

deg v is even. Hence, it must

have an even number of odd addends (because a sum with an odd number of
odd addends would be odd). This proves the corollary.

Here is another curious property of degrees in a simple graph:

Proposition 1.3.5. Let G be a simple graph with at least two vertices. Then,
there exist two distinct vertices of G that have the same degree.

Proof. Assume the contrary. So the degrees of all n vertices are distinct, where
n = |V (G)|.

In other words, the map

deg : V (G) → {0, 1, . . . , n − 1} ,
v 7→ deg v

is injective (i.e., is one-to-one). However, this map is a map between two finite
sets of the same size (n). When such a map is injective, it is automatically
bijective (this is one form of the pigeonhole principle). THus, our map deg is
bijective. In particular, it is surjective, so that it takes both 0 and n− 1 as values.

In other words, there are a vertex u with degree 0 and a vertex v with degree
n − 1. Are these two vertices adjacent or not? Both. Contradiction! Proof
complete.

Next time, a more interesting application.
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Lecture 2

Here is an application of degrees to proving another fact about triangles:

Theorem 1.3.6 (Mantel’s theorem). Let G be a simple graph with n vertices
and e edges. Assume that e > n2/4. Then, G has a triangle (i.e., three distinct
vertices that are mutually adjacent).

Proof. We will prove this by strong induction on n. Thus, we assume (as the
induction hypothesis) that the theorem holds for all graphs with fewer than
n vertices. We must now prove it for our graph G with its n vertices. Let
V = V (G) and E = E (G), so that G = (V, E).

We must prove that G has a triangle. Assume the contrary. Thus, G has no
triangle.

From e > n2/4 ≥ 0, we see that G has at least one edge. Pick any such edge,
and call it vw. Thus, v ̸= w.

Let us now color each edge of G with one of three colors:

• The edge vw is colored black.

• Each edge that contains exactly one of v and w is colored red.

• All other edges are colored blue.

We now count the edges of each color:

• There is exactly 1 black edge, namely vw.

• There are at most n − 2 red edges. Indeed, any vertex other than v and w
is joined to at most one of v and w by a red edge, since otherwise it would
form a triangle with v and w.

• There are at most (n − 2)2 /4 blue edges. Indeed, if there were more,
then the induction hypothesis could be applied to the blue graph (i.e., the
graph (V \ {v, w} , {blue edges})) would yield that the blue graph has a
triangle, which would mean the same for the original graph.

In total, G has thus at most

1 + (n − 2) + (n − 2)2 /4

many edges. But 1 + (n − 2) + (n − 2)2 /4 = n2/4, so this is saying that
e ≤ n2/4, which contradicts e > n2/4 (our assumption). So we found the
contradiction we wanted, and the induction step is complete.
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Can we improve the n2/4 bound in the theorem? No, since for each n ∈ N,
there is a simple graph with n vertices and

⌊
n2/4

⌋
edges that has no triangle:

namely,
({1, 2, . . . , n} , {ij | i ̸≡ j mod 2}) .

So much for triangles. What about “higher” structures, e.g., several vertices
mutually adjacent?

Theorem 1.3.7 (Turan’s theorem). Let r be a positive integer. Let G be a
simple graph with n vertices and e edges. Assume that

e >
r − 1

r
· n2

2
.

Then, G has r + 1 distinct vertices that are mutually adjacent.

This generalizes Mantel’s theorem (which is obtained for r = 2). We will see
a proof of this later.

1.4. Graph isomorphism

Two graphs can be distinct and yet “the same”, meaning that they have the
same vertices under different names. For instance,

1 − 2 − 3 and 1 − 3 − 2

are not the same graph, but they become the same if we relabel 2 and 3 as 3
and 2 in the former. Let us give this a name:

Definition 1.4.1. Let G and H be two simple graphs.

(a) A graph isomorphism (short: isomorphism) from G to H means a
bijection ϕ : V (G) → V (H) that “preserves edges”: i.e., that has the
property that for any two vertices v and w of G, we have

(vw ∈ E (G)) ⇐⇒ (ϕ (v) ϕ (w) ∈ E (H)) .

(b) We say that G and H are isomorphic (and write G ∼= H) if there exists
a graph isomorphism from G to H.

For example, the above two graphs

1 − 2 − 3 and 1 − 3 − 2

are isomorphic, since the map that sends 1, 2, 3 to 1, 3, 2 is an isomorphism. The
map that sends 1, 2, 3 to 2, 3, 1 is also an isomorphism from the left graph to the
right.

Here are some basic general properties of isomorphisms:
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Proposition 1.4.2. Let G and H be two graphs. Then, the inverse of any
graph isomorphism from G to H is a graph isomorphism from H to G.

Proposition 1.4.3. Let G, H and I be three graphs. If ϕ is an isomorphism
from G to H, and ψ is an isomorphism from H to I, then ψ ◦ ϕ is an isomor-
phism from G to I.

These propositions entail that ∼= is an equivalence relation.
Furthermore, graph isomorphisms preserve all “intrinsic” properties of a

graph, e.g.:

Proposition 1.4.4. Let G and H be two simple graphs, and ϕ an isomorphism
from G to H. Then:

(a) For every v ∈ V (G), we have degG v = degH ϕ (v). Here, degG v means
the degree of v as a vertex of G.

(b) We have |E (H)| = |E (G)|.

Graph isomorphisms can be used to relabel the vertices of a graph. For exam-
ple, if G is a graph with n vertices, then we can relabel its vertices as 1, 2, . . . , n
(i.e., we can find a graph isomorphic to G whose vertices are 1, 2, . . . , n). Let me
state this precisely:

Proposition 1.4.5. Let G be a simple graph. Let S be a finite set such that
|S| = |V (G)|. Then, there exists a simple graph H that is isomorphic to G
and has vertex set V (H) = S.

1.5. Some families of graphs

We shall now discuss certain families of graphs.

1.5.1. Complete and empty graphs

Definition 1.5.1. Let V be a finite set.

(a) The complete graph on V means the simple graph (V, P2 (V)). It is the
simple graph with the vertex set V and with any two distinct vertices
being adjacent.

If V = {1, 2, . . . , n} for some n ∈ N, then this complete graph is called
Kn.

(b) The empty graph on V means the simple graph (V, ∅). It is the simple
graph with the vertex set V and with no edges.
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Note that a simple graph G is isomorphic to the complete graph Kn if and only
if it has n vertices and every two of them are adjacent (except for a vertex and
itself).

Question: Given two finite sets V and W, how many isomorphisms are there
from the complete graph on V to the complete graph on W ?

Answer: If |V| ̸= |W|, then there are none. Otherwise, |V|!, since they are
just the bijections V → W.

1.5.2. Path and cycle graphs

Definition 1.5.2. For each n ∈ N, we define the n-th path graph Pn to be the
simple graph

({1, 2, . . . , n} , {{i, i + 1} | 1 ≤ i < n})
= ({1, 2, . . . , n} , {12, 23, 34, . . . , (n − 1) n}) .

It looks as follows:
1 − 2 − 3 − · · · − n.

It has n vertices and n − 1 edges (unless n = 0, in which case it has 0 edges).

Definition 1.5.3. For each n > 1, we define the n-th cycle graph Cn to be the
simple graph

({1, 2, . . . , n} , {{i, i + 1} | 1 ≤ i < n} ∪ {{n, 1}})
= ({1, 2, . . . , n} , {12, 23, 34, . . . , (n − 1) n, n1}) .

This graph has n vertices and n edges (unless n = 2, in which case it has 1
edge only). Actually, we will later modify the definition so that it does have
2 edges for n = 2.

Note that the cycle graph C3 is the complete graph K3. Also, P2 = K2.
Question: What are the isomorphisms from Pn to itself?
Answer: One is the identity map. The other is the reversal map

{1, 2, . . . , n} → {1, 2, . . . , n} ,
i 7→ n + 1 − i.

There are no others.
Question: What are the isomorphisms from Cn to itself?
Answer: For any k ∈ Z, we can define a “rotation by k vertices”, which is the

map

{1, 2, . . . , n} → {1, 2, . . . , n} ,
i 7→ (i + k reduced modulo n) .
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Thus, we get n rotations (one for each k ∈ {1, 2, . . . , n}); all of them are graph
isomorphisms. Furthermore, the reflections

{1, 2, . . . , n} → {1, 2, . . . , n} ,
i 7→ (k − i reduced modulo n)

for all k ∈ Z are isomorphisms as well, and again there are n of them. The
group formed by these 2n isomorphisms in total (for n > 2) is called the n-th
dihedral group.

1.5.3. Kneser graphs

Example 1.5.4. If S is a finite set, and if k ∈ N, then we define the k-th Kneser
graph of S to be the simple graph

KS,k := (Pk (S) , {I J | I, J ∈ Pk (S) with I ∩ J = ∅}) .

The vertices of KS,k are the k-element subsets of S, and two such subsets are
adjacent if and only if they are disjoint.

The graph K{1,2,3,4,5}, 2 is called the Petersen graph.

1.6. Subgraphs

Definition 1.6.1. Let G = (V, E) be a simple graph.

(a) A subgraph of G means a simple graph of the form H = (W, F), where
W ⊆ V and F ⊆ E. In other words, a subgraph of G means a simple
graph whose vertices are vertices of G and whose edges are edges of G.

(b) Let S be a subset of V. The induced subgraph of G on the set S denotes
the subgraph

(S, E ∩ P2 (S))

of G. In other words, it denotes the subgraph of G whose vertices are
the elements of S, and whose edges are those edges of G whose both
endpoints lie in S.

(c) An induced subgraph of G means a subgraph of G that is the induced
subgraph of G on S for some S ⊆ V.

Thus, a subgraph of a graph G is obtained by throwing away some vertices
and some edges of G (in such a way that no edge is left “dangling”). Such a
subgraph is an induced subgraph if and only if you don’t throw away any edge
without reason. Thus, induced subgraphs can be characterized as follows:
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Proposition 1.6.2. Let H be a subgraph of a simple graph G. Then, H is
an induced subgraph of G if and only if each edge uv ∈ E (G) whose both
endpoints are vertices of H is also an edge of H.

Example 1.6.3. Let n > 1 be an integer.

(a) The path graph Pn is a subgraph of the cycle graph Cn. It is not an
induced subgraph (for n > 2), since it is missing the edge n1 despite
containing both of its endpoints.

(b) The path graph Pn−1 is an induced subgraph of Pn. It is the induced
subgraph of Pn on the set {1, 2, . . . , n − 1}. In other words, it is what
remains of Pn if we remove the vertex n.

(c) Assume that n > 3. Is Cn−1 a subgraph of Cn ? No, since the edge
(n − 1) 1 exists in Cn−1 but not in Cn.

Here is another easy fact:

Proposition 1.6.4. Let G be a simple graph, and let H be a subgraph of G.
Assume that H is a complete graph. Then, H is automatically an induced
subgraph of G.

We can now rewrite the notion of triangles in terms of induced subgraphs as
follows:

Remark 1.6.5. Let G be a simple graph. Let u, v, w be three distinct vertices
of G. Then, the following are equivalent:

1. The set {u, v, w} is a triangle of G.

2. The induced subgraph of G on the set {u, v, w} is isomorphic to K3.

3. The induced subgraph of G on the set {u, v, w} is isomorphic to C3.

This lets you generalize questions about triangles to questions about sub-
graphs isomorphic to Kn or Cn or other fixed graphs, or induced subgraphs, ...
– this is the beginning of a deep theory. Turan’s theorem in particular is about
subgraphs isomorphic to Kr+1.

1.7. Disjoint unions

Another way to construct new graphs from old is the disjoint union. Essentially,
it takes two arbitrary graphs and puts them aside one another. You have to
relabel the vertices of both graphs to ensure that the vertex sets are disjoint, but
other than this it’s exactly what you expect. Here is the formal definition:
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Definition 1.7.1. Let G1, G2, . . . , Gk be simple graphs, where Gi = (Vi, Ei) for
each i ∈ {1, 2, . . . , k}. The disjoint union of these k graphs G1, G2, . . . , Gk is
the simple graph (V, E), where

V = {(i, v) | i ∈ {1, 2, . . . , k} and v ∈ Vi} ;
E = {{(i, v1) , (i, v2)} | i ∈ {1, 2, . . . , k} and {v1, v2} ∈ Ei} .

This disjoint union is denoted by G1 ⊔ G2 ⊔ · · · ⊔ Gk. (LaTeX for ⊔ is \sqcup.)

If G and H are two graphs, then the graphs G ⊔ H and H ⊔ G are isomorphic,
but usually not equal.

1.8. Walks and paths

Imagine a graph as a road network: Each vertex is a town, and each edge is a
road that connects the respective towns. Then, you can often get from one town
to another by a sequence of roads, even if they are not directly adjacent. This is
made formal in the concept of a “walk”:

Definition 1.8.1. Let G be a simple graph. Then:

(a) A walk (in G) means a finite sequence (v0, v1, . . . , vk) of vertices of G
(with k ≥ 0) such that all of v0v1, v1v2, v2v3, . . . , vk−1vk are edges of
G. (This latter condition is vacuously true for k = 0.)

(b) If w = (v0, v1, . . . , vk) is a walk, then:

• The vertices of w are v0, v1, . . . , vk.

• The edges of w are v0v1, v1v2, v2v3, . . . , vk−1vk.

• The length of w is k. This is the number of edges of w, and is 1
less than the number of vertices of w.

• The vertex v0 is called the starting point of w, and the vertex vk is
called the ending point of w.

• We say that the walk w starts (or begins) at v0 and ends at vk.

(c) A path (in G) means a walk whose vertices are distinct. In other words,
a path means a walk (v0, v1, . . . , vk) such that v0, v1, . . . , vk are distinct.

(d) Let p and q be two vertices of G. Then, a walk from p to q means a
walk that starts at p and ends at q. Likewise for “path from p to q”.

(e) We often say “walk of G” instead of “walk in G”. Likewise for paths.
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Example 1.8.2. Let G be the graph on the blackboard. Then:

1. The sequence (1, 3, 4, 5, 6, 1, 3, 2) is a walk in G. Its length is 7. It is not
a path. It is a walk from 1 to 2.

2. The sequence (1, 2, 4, 3) is not a walk in G, since 24 is not an edge.

3. The sequence (1, 3, 2, 1) is a walk from 1 to 1. It has length 3. It is not a
path.

4. The sequence (1, 2, 1) is a walk from 1 to 1. It has length 2. It is not a
path.

5. The sequence (5) is a walk from 5 to 5. It has length 0. It is a path.
More generally, every vertex v of G produces a length-0 path (v).

6. The sequence (2, 1, 3, 4, 5, 6) is a path from 2 to 6, and has length 5.

7. For any edge uv of G, the sequence (u, v) is a path from u to v of length
1.

Exercise 1. Prove that the edges of a path are always distinct. (Done in Spring
2017.)

1.8.1. Composing/concatenating and reversing walks

Proposition 1.8.3. Let G be a simple graph. Let u, v, w be three vertices of G.
Let a = (a0, a1, . . . , ak) be a walk of G from u to v. Let b = (b0, b1, . . . , bℓ) be
a walk from v to w. Then,

a ∗ b := (a0, a1, . . . , ak, b1, b2, . . . , bℓ)
= (a0, a1, . . . , ak−1, b0, b1, . . . , bℓ)
= (a0, a1, . . . , ak−1, v, b1, b2, . . . , bℓ)

is a walk from u to w.

Proposition 1.8.4. Let G be a simple graph. Let u and v be two vertices of G.
Let a = (a0, a1, . . . , ak) be a walk of G from u to v. Then,

rev a := (ak, ak−1, . . . , a0)

is a walk from v to u. Moreover, if a is a path, then rev a is a path.

1.8.2. Maximum lengths
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Proposition 1.8.5. Let G be a simple graph with n vertices. Then, each path
of G has length ≤ n − 1. In particular, G has only finitely many paths.

In contrast, G can often have infinitely many walks.

Lecture 3

2. Simple graphs (cont’d)

2.1. Walks and paths (cont’d)

To remind: A walk in a simple graph is a sequence of vertices where each is
adjacent to the next. A path is a walk whose vertices are all distinct.

2.1.1. Reducing walks to paths

Proposition 2.1.1. Let G be a simple graph. Let u and v be two vertices of G.
Let a = (a0, a1, . . . , ak) be a walk from u to v. Assume that a is not a path.
Then, G has a walk from u to v that has length < k.

Proof. Since a is not a path, there exist i < j such that ai = aj. Consider such
i < j. Then, (

a0, a1, . . . , ai, aj+1, aj+2, . . . , ak
)

is a walk from u to v that has length k − j + i < k.
(See 2022 notes for details.)

Corollary 2.1.2 (When there is a walk, there is a path). Let G be a simple
graph. Let u and v be two vertices of G. Assume that there is a walk from u
to v of length k for some k ∈ N. Then, there is a path from u to v of length
≤ k.

Proof. Apply the above proposition repeatedly.

2.2. The equivalence relation “path-connected”

We can use the notions of walks and paths to define a certain equivalence
relation on the vertex set V (G) of any simple graph G:

Definition 2.2.1. Let G be a simple graph. We define a binary relation ≃G on
the set V (G) as follows: Two vertices u and v of G satisfy u ≃G v if and only
if there exists a walk from u to v in G.

This binary relation ≃G is called “path-connectedness”. Two vertices u
and v are said to be path-connected if they satisfy u ≃G v.
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Proposition 2.2.2. This relation ≃G is an equivalence relation.

Proof. We must prove that it is symmetric, reflexive and transitive:

• Symmetry: If u ≃G v, then v ≃G u, because we can take a walk from u to
v and reverse it.

• Reflexivity: We always have u ≃G u, since the trivial walk (u) is a walk
from u to u.

• Transitivity: If u ≃G v and v ≃G w, then u ≃G w, because we can pick any
walk a from u to v and any walk b from v to w and stick them together to
a walk a ∗ b (as defined last time).

Proposition 2.2.3. Let G be a simple graph. Let u and v be two vertices of G.
Then, u ≃G v if and only if G has a path from u to v.

Proof. =⇒: A walk from u to v yields a path from u to v (according to the
previous corollary).
⇐=: A path is a walk.

Definition 2.2.4. Let G be a simple graph. The equivalence classes of the
equivalence relation ≃G are called the connected components (or, for short,
components) of G.

Definition 2.2.5. Let G be a simple graph. We say that G is connected if G
has exactly one component.

See the 2022 notes (Lecture 4) for examples.

Example 2.2.6. The complete graph on a nonempty set is connected.
The complete graph on an empty set is not connected: It has 0 components,

not 1.

Example 2.2.7. The empty graph on a finite set V has |V| many components:
the singleton sets {v} for v ∈ V. Thus, it is connected if and only if |V| = 1.

The following is easy to see:

Proposition 2.2.8. Let G be a simple graph. Let C be a component of G.
Then, the induced subgraph of G on the set C is connected.
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Proof. Let G [C] denote this induced subgraph.
We must prove that G [C] is connected.
Let u and v be two vertices of G [C], that is, two elements of C. Since C is a

component (i.e., a ≃G-equivalence class), we then have u ≃G v. In other words,
G has a walk from u to v. We claim that this walk is actually a walk of G [C]
(not only of G).

But this is easy: Any vertex of this walk is path-connected to u, and thus
belongs to C. So this walk is really a walk of G [C]. Thus we obtain u ≃G[C] v.

So we have shown that any two vertices of G [C] are path-connected in G [C].
Hence, the graph G [C] has at most 1 component. But it also has at least 1
component (since C, being a component, is nonempty). So G [C] has exactly 1
component, i.e., is connected.

In the following proposition, we will be using the notation G [C] for the in-
duced subgraph of a graph G on a subset C of its vertex set.

Proposition 2.2.9. Let G be a simple graph. Let C1, C2, . . . , Ck be all compo-
nents of C, listed without repetition. Then,

G ∼= G [C1] ⊔ G [C2] ⊔ · · · ⊔ G [Ck]︸ ︷︷ ︸
disjoint union

.

Proof. The bijection

G [C1] ⊔ G [C2] ⊔ · · · ⊔ G [Ck] → G,
(i, v) 7→ v

is easily seen to be an isomorphism (since G has no edges that join vertices
from different components).

The above propositions show that any graph can be decomposed (up to iso-
morphism) as a disjoint union of connected graphs.

2.3. Closed walks and cycles

Definition 2.3.1. Let G be a simple graph.

(a) A closed walk of G means a walk whose starting point is its ending
point. In other words, it means a walk (w0, w1, . . . , wk) with w0 = wk.
Sometimes, closed walks are called circuits, but this can also mean
something else.

(b) A cycle of G means a closed walk (w0, w1, . . . , wk) such that k ≥ 3 and
such that the vertices w0, w1, . . . , wk−1 are distinct.
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Example 2.3.2. Let G be the simple graph

({1, 2, 3, 4, 5, 6} , {12, 23, 34, 45, 56, 61, 13}) .

Then:

• The sequence (1, 2, 3, 1) is a closed walk of G, and actually a cycle of G.
Other cycles are (1, 3, 4, 5, 6, 1) and (1, 6, 5, 4, 3, 2, 1). Up to rotation and
reversal, we have thus found all cycles of G.

• The sequence (1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1) is a closed walk of G, but very
much not a cycle.

• The sequence (1, 2, 1) is a closed walk of G, but not a cycle. Same for
(1).

• The walk (1, 2) is not a closed walk.

Authors have different opinions on whether (1, 2, 3, 1) and (1, 3, 2, 1) and (2, 3, 1, 2)
count as the same cycle or not. However, this is not relevant to us, since we will
not count those cycles.

We have now defined paths and cycles in an arbitrary simple graph. We have
also defined path graphs Pn and cycle graphs Cn. Are these related? Yes:

Proposition 2.3.3. Let G be a simple graph.

(a) If (p0, p1, . . . , pk) is a path of G, then there is a subgraph of G isomor-
phic to the path graph Pk+1, namely the subgraph

({p0, p1, . . . , pk} , {pi pi+1 | 0 ≤ i < k}) .

Conversely, any subgraph of G isomorphic to Pk+1 gives a path of G.

(b) Now assume that k ≥ 3. If (c0, c1, . . . , ck) is a cycle of G, then there is a
subgraph of G isomorphic to the cycle graph Ck, namely the subgraph

({c0, c1, . . . , ck} , {cici+1 | 0 ≤ i < k}) .

Conversely, any subgraph of G isomorphic to Ck gives a cycle of G.

Some graphs contain cycles; other graphs don’t. For instance, the complete
graph Kn contains lots of cycles (when n ≥ 3), whereas the path graph Pn
contains none. Let us try to find some criteria for when a graph can and when
it cannot have cycles.
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Definition 2.3.4. Let G be a simple graph. Let w be a walk of G. We say that
w is backtrack-free if no two adjacent edges of w are identical.

Proposition 2.3.5. Let G be a simple graph. Let w be a backtrack-free walk
of G. Then, w either is a path or contains a cycle (i.e., there exists a cycle of
G whose edges are edges of w).

Proof. Assume that w is not a path. We must show that w contains a cycle.
Write w as w = (w0, w1, . . . , wk). Since w is not a path, there exist i < j such

that wi = wj. Pick such i and j with smallest possible j − i.
Consider the subwalk

(
wi, wi+1, . . . , wj

)
of w. This is a closed walk. More-

over, the vertices wi, wi+1, . . . , wj−1 are distinct (since j − i was minimal). To see
that this

(
wi, wi+1, . . . , wj

)
is a cycle, it thus remains to prove that j − i ≥ 3.

However, this is easy:

• We cannot have j − i ≤ 0 (since i < j).

• We cannot have j − i = 1 (since there is no edge joining wi to itself).

• We cannot have j − i = 2 (since this would mean wiwi+1 = wi+1wi+2, but
w is backtrack-free).

So we obtain a cycle.

Corollary 2.3.6. Let G be a simple graph. Assume that G has a closed
backtrack-free walk of length > 0. Then, G has a cycle.

Proposition 2.3.7. Let G be a simple graph. Let u and v be two vertices of G.
Assume that there are two distinct backtrack-free walks from u to v. Then, G
has a cycle.

Proof. We must prove the following:
If p and q are two distinct backtrack-free walks that start at the same vertex

and end at the same vertex, then G has a cycle.
We will prove the proposition in this form.
We shall prove this by induction on the length of p:
The base case (when p has length 0) is trivial.
In the induction step, we assume (as induction hypothesis) that the proposi-

tion is already proved for walks of length smaller than the length of p. Now,
consider two distinct backtrack-free walks p and q that start at the same vertex
and end at the same vertex. We must show that G has a cycle.

Consider the closed walk p ∗ rev q (where rev q means the reversal of q). If
this walk p ∗ rev q is backtrack-free, then we are done by the preceding corol-
lary. If not, then the last edge of p is the last edge of q (since p and q are
backtrack-free on their own), and then you can remove this last edge from
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both p and q and apply the induction hypothesis to the resulting shorter walks
(which are still backtrack-free, still start at the same vertex, and still end at the
same vertex). Qed.

(See the 2022 notes – Lecture 4, Theorem 1.2.6 – for more details.)

2.4. The longest path trick

Proposition 2.4.1. Let G be a simple graph with at least one vertex. Let d > 1
be an integer. Assume that each vertex of G has degree ≥ d. Then, G has a
cycle of length ≥ d + 1.

Proof. Let p = (v0, v1, . . . , vm) be a longest path of G. (Existence is easy.)
The vertex v0 has degree ≥ d, and thus has ≥ d neighbors.
If all its neighbors belonged to the set {v1, v2, . . . , vd−1} (or {v1, v2, . . . , vm} if

m < d− 1), then v0 would have < d neighbors, which would contradict the pre-
vious sentence. Thus, not all neighbors of v0 belong to the set {v1, v2, . . . , vd−1}.
In other words, v0 has a neighbor u that does not belong to {v1, v2, . . . , vd−1}.
Consider this u. Note that u ̸= v0.

Attaching the vertex u to the front of the path p, we obtain a walk

p′ := (u, v0, v1, . . . , vm) .

If we had u /∈ {v0, v1, . . . , vm}, then this walk p′ would again be a path, which
would contradict the fact that p is a longest path. So we must have u ∈
{v0, v1, . . . , vm}. In other words, u = vi for some i ∈ {0, 1, . . . , m}.

Since u ̸= v0 and u /∈ {v1, v2, . . . , vd−1}, this i must be ≥ d. Therefore, the
subwalk

(u, v0, v1, . . . , vi)

of p′ has length i + 1 ≥ d + 1. But this subwalk is a cycle.

2.5. Bridges

One crucial question about graphs is: What happens to a graph if we remove a
single edge from it? Let us introduce a notation for this:

Definition 2.5.1. Let G = (V, E) be a simple graph. Let e be an edge of G.
Then, G \ e will mean the graph obtained from G by removing the edge e. In
other words,

G \ e := (V, E \ {e}) .

Some authors write G − e for G \ e.
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Theorem 2.5.2. Let G be a simple graph. Let e be an edge of G. Then:

(a) If e is an edge of some cycle of G, then the components of G \ e are
precisely the components of G.

(b) If e appears in no cycle of G (in other words, if there exists no cycle of G
such that e is an edge of this cycle), then the graph G \ e has one more
component than G.

Proof. Here is a sketch (see 2022 for details).
(a) Assume that e is an edge of some cycle of G. We claim that the relation

≃G\e is precisely the relation ≃G. In other words, we claim that two vertices u
and v of our graph G satisfy u ≃G\e v if and only if they satisfy u ≃G v.

The “only if” direction is obvious. For the “if” direction, you can always
replace any use of e by a detour through the rest of the cycle. So the relations
≃G\e and ≃G are identical. Thus, the components of G \ e are the components
of G.

(b) Assume that e appears in no cycle of G. Let u and v be the endpoints of
e. We claim that:

1. The component of G that contains u and v breaks into two components of
G \ e.

2. All other components of G remain components of G \ e.

Claim 2 is intuitively obvious, and easy to formalize.
For Claim 1, we first observe that u and v are not path-connected in G \ e.

Indeed, if they were, then G \ e would have a path from u to v, and we could
then close this path to a cycle of G by inserting the edge e at its end. But
this would contradict the assumption that e appears in no cycle of G. So we
conclude that the component of G that contains u and v breaks into at least two
components of G \ e. It remains to show that no more than two components are
generated. In other words, we must show that every vertex w of this component
is path-connected to either u or v in G \ e. To do so, we pick a vertex w of this
component, and we fix a path p from w to u in G (such a path exists).

• If p does not use the edge e, then it remains a path in G \ e, so that we get
w ≃G\e u.

• If p does use the edge e, then e is the last edge of p, and by removing this
edge e from p we obtain a path from w to v in G \ e, so that w ≃G\e v.

In either case, w is path-connected to either u or v in G \ e, thus belongs
to either the component containing u or the component containing v. So the
component of G that contains u and v breaks into at most two when we pass to
G \ e. This completes our proof.
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Here is a bit of terminology:

Definition 2.5.3. Let e be an edge of a simple graph G.

(a) We say that e is a bridge of G if e appears in no cycle of G.

(b) We say that e is a cut-edge of G if the graph G \ e has more components
than G.

Corollary 2.5.4. Let e be an edge of a simple graph G. Then, e is a bridge if
and only if e is a cut-edge.

We can also define a “cut-vertex” of a simple graph G to be a vertex v such
that if you remove v from G, then the resulting graph (called G \ v) has more
components than G. Cut-vertices are subtler than cut-edges and also less im-
portant.
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Lecture 4

2.6. Dominating sets

Now to something different:

Definition 2.6.1. Let G = (V, E) be a simple graph.
A subset U of V is said to be dominating (for G) if every vertex v ∈ V \ U

has at least one neighbor in U.
Dominating subsets of V are called dominating sets of G.

Example 2.6.2. In the 5-cycle graph C5, the set {1, 3} is dominating, whereas
{1, 2} is not (since 4 has no neighbor in {1, 2}). Any set of size ≥ 3 is
dominating for C5, whereas any set of size ≤ 1 is not.

Some more examples:

• The whole vertex set V is always dominating. The empty set ∅ never is,
unless V = ∅.

• In a complete graph Kn, any nonempty subset of V = [n] is dominating.

• In an empty graph, only the whole vertex set V is dominating.

A useful problem is to find a dominating set of smallest possible size (for a
given graph). There is no general answer, but there are some results. To state
one, let me isolate a stupid case:

Definition 2.6.3. Let G be a simple graph. A vertex v of G is said to be
isolated if it has no neighbors (i.e., if deg v = 0).

An isolated vertex must belong to any dominating set. So you can ignore
isolated vertices when you are looking for dominating sets (they don’t help,
and you just have to always keep them in). It remains to consider the case
when a graph has no isolated vertices. In this case, you can show the following:

Proposition 2.6.4. Let G = (V, E) be a simple graph that has no isolated
vertices. Then:

(a) There exists a dominating subset of V that has size ≤ |V| /2.

(b) There exist two disjoint dominating subsets A and B of V such that
A ∪ B = V.

Proof. See hw#2 exercise 4.

More surprisingly perhaps:
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Theorem 2.6.5 (Brouwer’s dominating set theorem). Let G be a simple graph.
Then, the number of dominating sets of G is odd.

Andries Brouwer gives three proofs in his 2009 note that I reference in the
2022 notes. Let me sketch a particularly neat one:

Definition 2.6.6. Let G = (V, E) be a simple graph. A detached pair will
mean a pair (A, B) of two disjoint subsets A and B of V such that there exists
no edge ab ∈ E with a ∈ A and b ∈ B.

For instance, in the 6-cycle graph C6, the pair ({1, 2} , {4, 5}) is detached.
Note that pairs are always ordered pairs in this course. Thus, if (A, B) is a

detached pair, then so is (B, A), and these two pairs are distinct unless A =
B = ∅. So the total number of detached pairs of a given graph G is odd.

Proof of Brouwer’s dominating set theorem. Write G as G = (V, E). Recall that
P (V) means the set of all subsets of V.

Construct a new graph H with the vertex set P (V) as follows: Two subsets
A and B of V will be adjacent vertices of H if and only if (A, B) is a detached
pair.

I claim that the vertices of H having odd degree are precisely the subsets of
V that are dominating:

Claim 1: Let A be a subset of V. Then, the vertex A of H has odd
degree if and only if A is a dominating set of G.

Proof of Claim 1. We let N (A) denote the set of all vertices of G that have a
neighbor in A.

The neighbors of A in H are the subsets B of V such that (A, B) is a detached
pair. In other words, they are the subsets of V \ (A ∪ N (A)). So there are
2|V\(A∪N(A))| many of them. But of course, the number 2|V\(A∪N(A))| is odd
if and only if |V \ (A ∪ N (A))| = 0, which means that V \ (A ∪ N (A)) = ∅,
which means precisely that A is dominating.

So we have shown that the number of neighbors of A in H is odd if and only
if A is dominating (for G). This proves Claim 1.

Claim 1 tells us that the odd-degree vertices of H are precisely the dominating
sets of G. But we know from the handshaking lemma that H has an even
number of odd-degree vertices. Thus, G has an even number of dominating
sets.

Almost! Our definition of H has a flaw: It pretends to make ∅ adjacent to
itself in H, but this falls afoul of the definition of a simple graph, which does
not allow a vertex to be adjacent to itself. So we must tweak the definition of
H to only allow detached pairs (A, B) with A ̸= B. This results in the vertex ∅
changing its degree by 1, but nothing else changes (since the only detached pair
(A, B) with A = B is (∅,∅)). As a result, the number of odd-degree vertices
changes by 1, so it becomes odd rather than even. And we’re done.



Lecture diary Spring 2023, version June 10, 2023 page 27

We can actually say more about the number of dominating sets. A very recent
result by Heinrich and Tittmann (2017) shows the following:

Theorem 2.6.7. Let G = (V, E) be a simple graph with n vertices, where
n > 0.

Let α be the number of all detached pairs (A, B) such that both |A| and |B|
are even and positive.

Let β be the number of all detached pairs (A, B) such that both |A| and |B|
are odd.

Then:

(a) The numbers α and β are even.

(b) The number of dominating sets of G is 2n − 1 + α + β.

This easily implies Brouwer’s theorem. I reference a proof in the notes.

2.7. Hamiltonian paths and cycles

2.7.1. Basics

Now to something completely different.
We start with a simple question: Given a simple graph G, when is there a

closed walk that contains each vertex of G ? The answer is simple: When G is
connected.

The question becomes a lot more interesting if we replace “closed walk” by
“path” or “cycle”. The resulting objects have a name:

Definition 2.7.1. Let G = (V, E) be a simple graph.

(a) A Hamiltonian path (short: hamp) in G means a walk of G that con-
tains each vertex of G exactly once. Obviously, it is a path.

(b) A Hamiltonian cycle (short: hamc) in G means a cycle (v0, v1, . . . , vk)
of G such that each vertex of G appears exactly once among
v0, v1, . . . , vk−1.

Some graphs have hamps; some don’t. Having a hamc is even stronger than
having a hamp, because if (v0, v1, . . . , vk) is a hamc, then (v0, v1, . . . , vk−1) is a
hamp.

The problem of finding hamps or hamcs, or even deciding their existence,
is one of the famous NP-complete problems. An even harder problem is the
travelling salesman problem, which asks for a Hamiltonian path of smallest
weight. There is a lot of literature on the problem; it’s an active area of research.
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There are some nice sufficient criteria and necessary criteria for the existence
of hamps and hamcs. Let me state a few:

Theorem 2.7.2 (Ore). Let G = (V, E) be a simple graph with n vertices, where
n ≥ 3.

Assume that deg x + deg y ≥ n for any two non-adjacent vertices x and y.
Then, G has a hamc.

Proof sketch. Proof by gradual improvement (stepwise optimization, etc.; an
idea that is used many times in graph theory and outside it):

A listing (of V) shall mean a list of elements of V that contains each element
exactly once. It must always be an n-tuple.

The hamness of a listing (v1, v2, . . . , vn) will mean the number of all i ∈
{1, 2, . . . , n} such that vivi+1 ∈ E. Here, we set vn+1 = v1. In other words, the
hamness of a listing tells you how often two consecutive entries of this listing
are adjacent in G (where you count the last and the first entry as being adjacent
too). Note that a hamc is the same as a listing of hamness n.

Now our plan is the following: Start with an arbitrary listing, and gradually
improve it so that its hamness increases at every step. Eventually, its hamness
will become n, at which point you will have a hamc.

For this to work, we need to show the following:

Claim 1: Let (v1, v2, . . . , vn) be a listing of hamness k < n. Then,
there exists a listing of hamness > k.

Proof of Claim 1. Since the listing (v1, v2, . . . , vn) has hamness k < n, there ex-
ists some i ∈ {1, 2, . . . , n} such that vivi+1 /∈ E. Pick such an i, and ob-
serve that deg (vi) + deg (vi+1) ≥ n (by assumption). We can thus easily con-
clude that there exists a j ∈ {1, 2, . . . , n} \ {i} that satisfies both vivj ∈ E and
vi+1vj+1 ∈ E (because there are deg (vi) many j’s satisfying vivj ∈ E, and there
are deg (vi+1) many j’s satisfying vi+1vj+1 ∈ E, so in total there are at least
deg (vi) + deg (vi+1) ≥ n many j’s that satisfy either vivj ∈ E or vi+1vj+1 ∈ E,
but j = i satisfies neither condition, so that at least one j must satisfy both
because |A ∪ B|+ |A ∩ B| = |A|+ |B| for any finite sets A and B).

Now, replacing our listing (v1, v2, . . . , vn) by(
vj, vj−1, . . . , vi+1, vj+1, vj+2, . . . , vi

)
(that is, flipping the part between vi+1 and vj) gives us a new listing of higher
hamness than k. So we have found a listing of hamness > k.

Thus, as we said above, we can gradually improve an arbitrary listing until
its hamness reaches n. But at that point, it is a hamc.
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Corollary 2.7.3 (Dirac). Let G = (V, E) be a simple graph with n vertices,
where n ≥ 3.

Assume that deg x ≥ n
2

for each x ∈ V. Then, G has a hamc.

2.7.2. A necessary criterion

What about necessary criteria for hamcs and hamps? Here is one:

Proposition 2.7.4. Let G = (V, E) be a simple graph.
For each subset S of V, we let G \ S be the induced subgraph of G on the

set V \ S. In other words, G \ S is obtained from G when you remove the
vertices in S and all edges that use these vertices.

Also, we let conn H denote the number of connected components of a
simple graph H.

(a) If G has a hamc, then every nonempty S ⊆ V satisfies conn (G \ S) ≤
|S|.

(b) If G has a hamp, then every S ⊆ V satisfies conn (G \ S) ≤ |S|+ 1.

Proof. (a) Let S ⊆ V be a nonempty set. If we cut |S| many vertices out of a
cycle, then the cycle splits into at most |S| many paths.

Therefore, if G has a hamc, then the removal of |S| many vertices will break
this hamc into ≤ |S| many paths. Thus, G \ S has at most |S| many components
(since each of these ≤ |S| many paths remains connected). In other words,
conn (G \ S) ≤ |S|.

(b) Analogous.

2.7.3. Hypercubes

We move on to a concrete example of a graph that has a hamc.

Definition 2.7.5. Let n ∈ N. The n-hypercube Qn (more precisely, the n-th
hypercube graph) is the simple graph with vertex set

{0, 1}n = {(a1, a2, . . . , an) | each ai belongs to {0, 1}}

and edge set defined as follows: Two vertices (a1, a2, . . . , an) and
(b1, b2, . . . , bn) are adjacent if and only if there is exactly one i ∈ {1, 2, . . . , n}
such that ai ̸= bi. (For instance, in Q4, the vertex (1, 0, 1, 1) is adjacent to
(1, 0, 0, 1).)

The elements of {0, 1}n are called bitstrings (or binary words), and their
entries are called their bits (or letters). So two bitstrings are adjacent in Qn
if and only if they differ in exactly one bit.
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We will often write a bitstring (a1, a2, . . . , an) as a1a2 · · · an. For example,
(0, 1, 1, 0) is written as 0110.

Theorem 2.7.6 (Gray). Let n ≥ 2. Then, the graph Qn has a hamc.

These hamcs are known as Gray codes. They are circular lists of bitstrings of
length n such that two consecutive bitstrings in the list always differ in exactly
one bit (and such that each bitstring appears exactly once in the list). See the
WP article for applications.

Proof of the theorem. We will show something stronger:

Claim 1: For each n ≥ 1, the n-hypercube Qn has a hamp from
00 · · · 0 to 100 · · · 0.

Once this claim is proved, the theorem will easily follow (since a hamp from
00 · · · 0 to 100 · · · 0 can be made into a hamc simply by repeating its starting
point after its end).

So it suffices to prove Claim 1:

Proof of Claim 1. We induct on n:
Base case: For n = 1, the hamp from 0 to 1 in Q1 is palpable.
Induction step: Fix n ≥ 2. Assume (as the induction hypothesis) that Qn−1 has

a hamp from 00 · · · 0︸ ︷︷ ︸
n−1 zeroes

to 1 00 · · · 0︸ ︷︷ ︸
n−2 zeroes

. Let p be this hamp.

By attaching a 0 to the front of each bitstring in p, we obtain a path

q from 00 · · · 0︸ ︷︷ ︸
n zeroes

to 01 00 · · · 0︸ ︷︷ ︸
n−2 zeroes

in Qn.

By attaching a 1 to the front of each bitstring in p, we obtain a path

r from 1 00 · · · 0︸ ︷︷ ︸
n−1 zeroes

to 11 00 · · · 0︸ ︷︷ ︸
n−2 zeroes

in Qn.

Now, I make a hamp of Qn from 00 · · · 0 to 100 · · · 0 as follows:

• Start by walking along q from 00 · · · 0︸ ︷︷ ︸
n zeroes

to 01 00 · · · 0︸ ︷︷ ︸
n−2 zeroes

= 0.

• Then move to the adjacent vertex 11 00 · · · 0︸ ︷︷ ︸
n−2 zeroes

.

• Then walk r backwards from 11 00 · · · 0︸ ︷︷ ︸
n−2 zeroes

to 1 00 · · · 0︸ ︷︷ ︸
n−1 zeroes

.

This is the hamp we need. So the induction step is done, and Claim 1 is
proved.

So the theorem is proved.

See the 2022 notes (Section 1.2.5 in Lecture 6) for a generalization to Cartesian
products.
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2.7.4. Subset graphs

The n-hypercube Qn can be reinterpreted in terms of subsets of {1, 2, . . . , n}.
Indeed, the bitstrings a1a2 · · · an ∈ {0, 1}n encode subsets of {1, 2, . . . , n} via the
bijection

{0, 1}n → P ({1, 2, . . . , n}) ,
a1a2 · · · an 7→ {i ∈ {1, 2, . . . , n} | ai = 1} .

Under this bijection, two adjacent vertices of Qn become two subsets of {1, 2, . . . , n}
that differ in only one element (i.e., one of them is obtained from this other by
inserting a single element). So a Gray code becomes a circular list of all subsets
of {1, 2, . . . , n} such that two consecutive subsets in the list always differ by a
single element. For instance, the Gray code

(000, 100, 110, 010, 011, 111, 101, 001, 000)

becomes the circular list

(∅, {1} , {1, 2} , {2} , {2, 3} , {1, 2, 3} , {1, 3} , {3} , ∅) .

So we conclude from the above theorem that we can list all the 2n subsets of
{1, 2, . . . , n} in a circular list such that any two consecutive subsets in the list
differ by a single element.

See the 2022 notes for a somewhat different and much more difficult version
of this.
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Lecture 5

3. Multigraphs

3.1. Definitions

Simple graphs are just one version of graphs. Here is a more versatile but more
complex one:

Definition 3.1.1. Let V be a set. Then, P1,2 (V) shall mean the set of all
1-element or 2-element subsets of V. In other words,

P1,2 (V) = {S ⊆ V | |S| ∈ {1, 2}}
= {{u, v} | u, v ∈ V not necessarily distinct} .

For instance,

P1,2 ({1, 2, 3}) = {{1, 2} , {1, 3} , {2, 3} , {1} , {2} , {3}} .

Definition 3.1.2. A multigraph is a triple (V, E, φ), where V and E are two
finite sets, and φ : E → P1,2 (V) is a map.

Example 3.1.3. The picture on the board (Example 1.1.3 in 2022 Lecture 7) is
the multigraph (V, E, φ), where

V = {1, 2, 3, 4, 5} ,
E = {α, β, γ, δ, ε, κ, λ} ,

φ (α) = {1, 2} ,
φ (β) = {2, 3} ,
φ (γ) = {2, 3} ,
φ (δ) = {4, 5} ,
φ (ε) = {4, 5} ,
φ (κ) = {4, 5} ,
φ (λ) = {1} = {1, 1} .

Multigraphs are a “more flexible version” of simple graphs, and many of the
concepts we introduced for simple graphs have analogues for multigraphs:

Definition 3.1.4. Let G = (V, E, φ) be a multigraph. Then:

(a) The elements of V are called the vertices of G.

The set V is called the vertex set of G, and is denoted V (G).
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(a) The elements of E are called the edges of G.

The set E is called the edge set of G, and is denoted E (G).

(c) If e is an edge of G, then the elements of φ (e) are called the endpoints
of e.

(d) We say that an edge e contains a vertex v if v ∈ φ (e) (in other words, if
v is an endpoint of e).

(e) Two vertices u and v are said to be adjacent if G has an edge with
endpoints u and v.

(f) Two edges e and f are said to be parallel if φ (e) = φ ( f ). (In the
example above, δ, ε, κ are mutually parallel.)

(g) We say that G has no parallel edges if no two distinct edges of G are
parallel.

(h) An edge e is called a loop (or self-loop) if φ (e) is a 1-element set. (In
the above example, λ is a loop.)

(i) We say that G is loopless if G has no loops.

(j) The degree deg v (also degG v) of a vertex v of G is defined to be the
number of edges that contain v, where loops are counted twice. In
other words,

deg v = degG v = |{e ∈ E | v ∈ φ (e)}|+ |{e ∈ E | φ (e) = {v}}| .

(Note that, unlike the case of a simple graph, deg v is not the number
of neighbors of v.)

(k) A walk in G means a list of the form

(v0, e1, v1, e2, v2, . . . , ek, vk) (where k ≥ 0) ,

where v0, v1, . . . , vk are vertices of G, where e1, e2, . . . , ek are edges of G,
and where each i ∈ {1, 2, . . . , k} satisfies

φ (ei) = {vi−1, vi}

(that is, the endpoints of each edge ei are vi−1 and vi).

A somewhat more intuitive notation for the above walk would be(
v0

e1−→ v1
e2−→ · · · ek−→ vk

)
.

The vertices of a walk (v0, e1, v1, e2, v2, . . . , ek, vk) are v0, v1, . . . , vk. The
edges of this walk are e1, e2, . . . , ek. The walk is said to start at v0 and
end at vk. Its starting point is v0. Its ending point is vk. Its length is k.
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(l) A path means a walk whose vertices are distinct.

(m) The notions of “path-connected” and “connected” and “component”
are defined exactly as for simple graphs. The symbol ≃G still means
“path-connected”.

(n) A closed walk (or circuit) means a walk (v0, e1, v1, e2, v2, . . . , ek, vk) with
vk = v0.

(o) A cycle means a closed walk (v0, e1, v1, e2, v2, . . . , ek, vk) such that

• the vertices v0, v1, . . . , vk−1 are distinct;

• the edges e1, e2, . . . , ek are distinct;

• we have k ≥ 1.

(Note that we are not requiring k ≥ 3 any more, as we did for simple
graphs. Thus, in the above example, (2, β, 3, γ, 2) and (1, λ, 1) are cycles,
although (2, β, 3, β, 2) is not. The purpose of the “k ≥ 3” requirement
for simple graphs was to disallow closed walks such as (2, β, 3, β, 2)
from being cycles; but now they are excluded by the “e1, e2, . . . , ek are
distinct” condition.)

(p) Hamiltonian paths and cycles are defined just as for simple graphs.

(q) We draw a multigraph by drawing each vertex as a point, each edge
as a curve, and labelling both the vertices and the edges (just as in the
above example).

So there are two main differences between simple graphs and multigraphs:

1. A multigraph can have loops, whereas a simple graph cannot.

2. In a simple graph, an edge e is a set of two vertices, whereas in a multi-
graph, an edge e has a set of two vertices (possibly equal ones, if e is a
loop) assigned to it by the map φ. This not only allows for parallel edges,
but also lets us store some information in the identities of the edges.

Nevertheless, the two notions have much in common, and so we will use the
same word for them if ambiguity is not a problem:

Convention 3.1.5. The word “graph” means either a simple graph or a multi-
graph.

3.2. Conversions

There is a canonical way to turn a simple graph into a multigraph, and also a
canonical way to go backwards (even though this involves losing information).
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Here is the latter:

Definition 3.2.1. Let G = (V, E, φ) be a multigraph. Then, the underlying
simple graph Gsimp of G means the simple graph

(V, {φ (e) | e ∈ E is not a loop}) .

In other words, it is the simple graph with vertex set V in which two vertices are
adjacent if and only if they are adjacent in G. Visually speaking, it is obtained
from G by removing loops and “collapsing” parallel edges into single edges.

Conversely:

Definition 3.2.2. Let G = (V, E) be a simple graph. Then, the corresponding
multigraph Gmult is defined to be the multigraph

(V, E, ι) ,

where ι : E → P1,2 (V) is the map sending each e ∈ E to e itself.

The “underlying simple graph” construction G 7→ Gsimp loses some infor-
mation (loops and parallel edges in particular), so it is irreversible. But the
G 7→ Gmult comes as close as you can get to undoing it:

Proposition 3.2.3.

1. If G is a simple graph, then
(
Gmult)simp

= G.

2. If G is a loopless multigraph that has no parallel edges, then(
Gsimp)mult ∼= G. (This is an isomorphism of multigraphs; we will

define this soon. Note that it is not an equality, because the “identities”
of the edges of G are forgotten in Gsimp.)

3. If G is a multigraph that has loops or (distinct) parallel edges, then(
Gsimp)mult has fewer edges than G and thus is not isomorphic to G.

We will often identify a simple graph G with the corresponding multigraph
Gmult. In particular, when we define a notion for multigraphs, we automatically
obtain the same notion for simple graphs. Sometimes this leads to a slight
notational clash, when one and the same notion is defined for simple graphs
and multigraphs in different ways. For instance, a cycle of a simple graph is
just a list of vertices, whereas a cycle of a multigraph is a list of vertices and
edges. However, the difference is not very substantial. For instance, the two
meanings of “cycle” can be translated into each other:
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Proposition 3.2.4. Let G be a simple graph. Then:

1. If (v0, e1, v1, e2, v2, . . . , ek, vk) is a cycle of the multigraph Gmult, then
(v0, v1, . . . , vk) is a cycle of the simple graph G.

2. If (v0, v1, . . . , vk) is a cycle of the simple graph G, then

(v0, {v0, v1} , v1, {v1, v2} , v2, . . . , vk−1, {vk−1, vk} , vk)

is a cycle of the multigraph Gmult.

Proof. In part 1, you need to show that k ≥ 3.
In part 2, you need to show that the edges are distinct.
Both are fairly easy, but not just a matter of definitions. Easy exercise!

Similar facts about walks, paths, circuits are easily stated and proved.

3.3. Generalizing from simple graphs to multigraphs

Let us now look at some of the results we have seen for simple graphs and
check which of them still hold (or can be generalized to hold) for multigraphs.

3.3.1. Ramsey

Recall Ramsey’s R (3, 3) = 6 theorem from Lecture 1:

Proposition 3.3.1. Let G be a simple graph with |V (G)| ≥ 6. Then, at least
one of the following two statements holds:

• Statement 1: There exist three distinct vertices a, b and c of G such that
ab, bc and ca are edges of G.

• Statement 2: There exist three distinct vertices a, b and c of G such that
none of ab, bc and ca is an edge of G.

Is this true for multigraphs as well? Of course, we need to replace “ab is an
edge of G” by “G has an edge with endpoints a and b”, and likewise. If we
do this, then yes, the proposition holds for multigraphs as well, since its claim
does not change if we pass from the multigraph G to the simple graph Gsimp.
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3.3.2. Degrees

Back in Lecture 1, we defined degrees of vertices in a simple graph by

deg v := (the number of edges e ∈ E that contain v)
= (the number of neighbors of v)
= |{u ∈ V | uv ∈ E}|
= |{e ∈ E | v ∈ e}| .

These equalities no longer hold when G is a multigraph. Parallel edges cor-
respond to the same neighbor, and loops are counted twice, so the number of
neighbors of v is only a lower bound on deg v.

Recall the following proposition:

Proposition 3.3.2. Let G be a simple graph with n vertices. Let v be any
vertex of G. Then,

deg v ∈ {0, 1, . . . , n − 1} .

This also fails for multigraphs, since deg v can be arbitrarily large due to
loops or parallel edges.

Let us now recall Euler’s old formula for the sum of the degrees:

Proposition 3.3.3 (Euler 1736). Let G be a simple graph. Then, the sum of
the degrees of all vertices of G equals twice the number of edges of G. In
other words,

∑
v∈V(G)

deg v = 2 · |E (G)| .

This does generalize to multigraphs (and actually, this is one reason why we
are counting loops twice when defining the degree of a vertex!). Let me state
this precisely:

Proposition 3.3.4 (Euler 1736). Let G be a multigraph. Then, the sum of the
degrees of all vertices of G equals twice the number of edges of G. In other
words,

∑
v∈V(G)

deg v = 2 · |E (G)| .

Proof. This is best explained as follows: Write G as G = (V, E, φ). For each
edge e, let us arbitrarily choose one of its endpoints and call it α (e). We then
call the other endpoint β (e) (of course, β (e) = α (e) if e is a loop). Then, for
each vertex v, we have

deg v = (the number of edges e ∈ E with α (e) = v)
+ (the number of edges e ∈ E with β (e) = v) .
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Summing this equality over all v ∈ V, we obtain

∑
v∈V

deg v

= ∑
v∈V

(the number of edges e ∈ E with α (e) = v)︸ ︷︷ ︸
=|E|

+ ∑
v∈V

(the number of edges e ∈ E with β (e) = v)︸ ︷︷ ︸
=|E|

= |E|+ |E| = 2 · |E| ,

which is precisely the claim of the proposition.

The handshake lemma is still true for multigraphs:

Corollary 3.3.5 (handshake lemma). Let G be a multigraph. Then, the num-
ber of vertices of G that have odd degree is even.

Here is another fact we saw back in Lecture 1:

Proposition 3.3.6. Let G be a simple graph with at least two vertices. Then,
there exist two distinct vertices of G that have the same degree.

Is this true for multigraphs? No, since (e.g.) the multigraph 1 − 2 = 3 fails it.
What about Mantel’s theorem?

Theorem 3.3.7 (Mantel’s theorem). Let G be a simple graph with n vertices
and e edges. Assume that e > n2/4. Then, G has a triangle (i.e., three distinct
vertices that are mutually adjacent).

This again fails for multigraphs, since you can get the edge number arbitrar-
ily large by spamming parallel edges or loops.

3.3.3. Graph isomorphisms

Graph isomorphisms (and isomorphy) can still be defined for multigraphs, but
the definition is not the same. For simple graphs, an isomorphism is just a
bijection between the vertex sets. For multigraphs, it needs to act both on
vertices and on edges, so it really is a pair of two bijections:

Definition 3.3.8. Let G = (V, E, φ) and H = (W, F, ψ) be two multigraphs.

1. A graph isomorphism (or isomorphism) from G to H means a pair
(α, β) of bijections

α : V → W and β : E → F

such that if φ (e) = {v, w}, then ψ (β (e)) = {α (v) , α (w)}.
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2. We say that G and H are isomorphic (and we write G ∼= H) if there
exists a graph isomorphism from G to H.

Again, isomorphy of multigraphs is an equivalence relation.

3.3.4. Cycles

We have previously defined complete graphs Kn for each n ≥ 0, as well as the
path graphs Pn for n ≥ 0, as well as the cycle graphs Cn for n ≥ 2. We shall
now define the 1-cycle graph C1 and redefine the 2-cycle graph C2 to look more
like an actual cycle:

• The 2-cycle graph C2 should now consist of two vertices 1 and 2 and two
parallel edges between them.

• The 1-cycle graph C1 shall consist of a single vertex 1 and a loop.

3.3.5. Submultigraphs

Definition 3.3.9. A submultigraph of a multigraph G = (V, E, φ) means a
multigraph of the form (W, F, ψ), where W ⊆ V and F ⊆ E and ψ = φ |F.

Submultigraphs are called subgraphs if there is no confusion to fear.
We can also define induced submultigraphs:

Definition 3.3.10. Let G = (V, E, φ) be a multigraph. Let S be a subset of V.
The induced submultigraph of G on the set S denotes the submultigraph(

S, E′, φ |E′
)

of G,

where
E′ := {e ∈ E | all endpoints of e belong to S} .

It is denoted by G [S].

3.3.6. Disjoint unions

Disjoint unions of multigraphs are defined similarly to the case of simple graphs.

3.3.7. Walk basics

Some basic properties of walks and paths still apply to multigraphs:
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Proposition 3.3.11. Let G be a multigraph. Let u, v, w be three vertices of G.
Let

a = (a0, e1, a1, e2, a2, . . . , ek, ak) be a walk from u to v, and
b = (b0, f1, b1, f2, b2, . . . , fℓ, bℓ) be a walk from v to w.

Then,

(a0, e1, a1, e2, a2, . . . , ek, ak, f1, b1, f2, b2, . . . , fℓ, bℓ)
= (a0, e1, a1, e2, a2, . . . , ek, b0, f1, b1, f2, b2, . . . , fℓ, bℓ)
= (a0, e1, a1, e2, a2, . . . , ek, v, f1, b1, f2, b2, . . . , fℓ, bℓ)

is a walk from u to w. We will denote it by a ∗ b.

Walks can also be reversed (i.e., walked backwards). Details left to the reader.
If a walk is not a path, it can be shortened:

Proposition 3.3.12. Let G be a multigraph. Let u and v be two vertices of G.
Let a = (a0, e1, a1, e2, a2, . . . , ek, ak) be a walk from u to v. Assume that a is not
a path. Then, G has a walk from u to v whose length is smaller than k.

Corollary 3.3.13. Let G be a multigraph. Let u and v be two vertices of G.
Assume that there is a walk from u to v of length k for some k ∈ N. Then,
there is a path from u to v of length ≤ k.

All the proofs are essentially the same as for simple graph.

3.3.8. Connectivity

The relation “path-connected” (denoted ≃G) is defined for multigraphs just as
for simple graphs. Again, u ≃G v if and only if there is a path from u to v.

The notions of “connected” and “component” are defined for multigraphs
just as for simple graphs. Again:

• If C is a component of a multigraph G, then the induced submultigraph
G [C] is connected.

• If C1, C2, . . . , Ck are all the components of a multigraph G (listed with no
repetition), then

G ∼= G [C1] ⊔ G [C2] ⊔ · · · ⊔ G [Ck] .

3.3.9. Cycles

Furthermore, we have the following:
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Proposition 3.3.14. Let G be a multigraph. Let w be a backtrack-free walk of
G (that is, a walk such that no two adjacent edges of w are identical). Then,
w either is a path or contains a cycle.

Proof. Same as for simple graphs, but easier.

Just as for simple graphs, we get the following corollary:

Corollary 3.3.15. Let G be a multigraph. Assume that G has a closed
backtrack-free walk w of length > 0. Then, G has a cycle.

Finally, we get:

Theorem 3.3.16. Let G be a multigraph. Let u and v be two vertices of G.
Assume that there are two distinct backtrack-free walks from u to v. Then, G
has a cycle.

Again, the proofs are the same as for simple graphs, but somewhat simpler.
Next, recall the following:

Proposition 3.3.17. Let G be a simple graph with at least one vertex. Let
d > 1 be an integer. Assume that each vertex of G has degree ≥ d. Then, G
has a cycle of length ≥ d + 1.

This is no longer true for multigraphs, because loops and parallel edges can
be used to pump up degrees without adding vertices.

3.3.10. Bridges

Definition 3.3.18. Let G = (V, E, φ) be a multigraph. Let e be an edge of G.
Then, G \ e will mean the multigraph obtained from G by removing the edge
e. In other words,

G \ e :=
(

V, E \ {e} , φ |E\{e}

)
.

Some authors write G − e for G \ e.

Theorem 3.3.19. Let G be a multigraph. Let e be an edge of G. Then:

(a) If e is an edge of some cycle of G, then the components of G \ e are
precisely the components of G.

(b) If e appears in no cycle of G (in other words, if there exists no cycle of G
such that e is an edge of this cycle), then the graph G \ e has one more
component than G.



Lecture diary Spring 2023, version June 10, 2023 page 42

Proof. Same as for simple graphs.

In particular, it follows that an edge of a multigraph is a bridge (= an edge
that appears in no cycle) if and only if it is a cut-edge (= its removal increases
the number of components).

3.3.11. Dominating sets

The theory of dominating sets for multigraphs is identical to the theory for
simple graphs, since a dominating set of a multigraph G is the same as a dom-
inating set of Gsimp.

3.3.12. Hamiltonian paths and cycles

Neither Ore’s nor Dirac’s theorems hold for multigraphs. (Again, this is be-
cause degrees in a multigraph don’t tell you much about getting around.)

The necessary criterion for hamcs and hamps actually does work for multi-
graphs. Here, again, the claim for multigraphs follows from the claim for sim-
ple graphs.
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Lecture 6

3.4. Eulerian circuits and walks

Recall that a Hamiltonian path or cycle is a path or cycle that contains all ver-
tices of the graph. Being a path or cycle, it has to contain each of them exactly
once (except, in the case of a cycle, for its starting point).

What about a walk or closed walk that contains all edges exactly once? These
are called “Eulerian” walks or circuits; here is the formal definition:

Definition 3.4.1. Let G be a multigraph.

1. A walk w of G is said to be Eulerian if each edge of G appears exactly
once in this walk.

2. An Eulerian circuit of G means a circuit (i.e., a closed walk) of G that
is Eulerian.

Note that Eulerian walks are usually not paths, and Eulerian circuits are
usually not cycles.

I showed some examples in class (from Spring 2022 Lecture 8).
Unexpectedly, there is a general criterion for the existence of Eulerian circuits

and walks, and there is a fairly efficient algorithm to find them. The criterion
is called the Euler–Hierholtzer theorem:

Theorem 3.4.2 (Euler–Hierholzer). Let G be a connected multigraph. Then:

(a) The multigraph G has an Eulerian circuit if and only if each vertex of
G has even degree.

(b) The multigraph G has an Eulerian walk if and only if all but at most
two vertices of G have even degree.

Why connected? If G has at least two components containing at least one
edge each, then G certainly cannot have an Eulerian circuit or walk. If G has
isolated vertices, then you can ignore those vertices. It thus suffices to consider
connected graphs only.

It is easy to see why the “only if” parts of both parts of the Euler–Hierholzer
theorem hold. Indeed, if w is an Eulerian walk, and v is a vertex that is neither
the starting nor the ending point of w, then w must enter and leave v the
same number of times, so that the degree deg v must be even (since each edge
appears exactly once on w). If w is an Eulerian circuit, then this holds for the
starting and ending point as well.

The hard parts are the “if” parts.
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The proofs of the “if” parts will use some preparation.

Definition 3.4.3. Let G be a multigraph. A trail of G means a walk of G
whose edges are distinct.

Notice: {paths} ⊆ {trails} ⊆ {walks}.
Clearly, any Eulerian walk is a trail.
So it seems like a reasonable strategy to find a Eulerian walk is to pick a

longest possible trail and somehow argue that it must be Eulerian.
First of all, why is there a longest trail?

Lemma 3.4.4. Let G be a multigraph with at least one vertex. Then, G has a
longest trail.

Proof. Each trail has length ≤ |E (G)|. Thus, there are only finitely many trails.
But there is at least one trail (since a trivial path (v) is a trail). So there is a trail
of largest length.

Now, some notations.
We say that an edge e of a multigraph G intersects a walk w if at least one

endpoint of e is a vertex of w.

Lemma 3.4.5. Let G be a connected multigraph. Let w be a walk of G. As-
sume that w is not Eulerian.

Then, there exists an edge of G that is not an edge of w but intersects w.

Proof. Since w is not Eulerian, there is an edge f that is not an edge of w. Pick
such an edge f . If f itself intersects w, then we are done.

Otherwise, build a path from some endpoint of f to some vertex of w (such
a path exists since G is connected). Choose the first edge of this path that is not
an edge of w. This edge must then intersect w, so we are done.

Lemma 3.4.6. Let G be a multigraph such that each vertex of G has even
degree. Let w be a longest trail of G. Then, w is a closed walk.

Proof. Assume the contrary. Let s be the starting point of w. Then, s is not
the ending point of w. Hence, w enters s one fewer time than it leaves s. As
a consequence, w contains an odd number of edges that contain s. But in
total, there is an even number of edges that contain s (since deg s is even by
assumption). Hence, at least one edge that contains s is not in w. Pick such an
edge, and insert it into w at the beginning of w. We get a longer trail than w,
but this contradicts the maximality of w.

Now we can finish the proof of the Euler–Hierholzer theorem:
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Proof of Euler–Hierholzer. (a) =⇒: We have already explained this.
⇐=: Assume that each vertex of G has even degree.
By our first lemma, G has a longest trail. Let w be such a longest trail. By

the last lemma, w is a closed walk. Assume (for contradiction) that w is not
Eulerian. Then, by our second lemma, there exists an edge of G that is not an
edge of w but intersects w. Let f be this edge.

By cyclically rotating our closed walk w, we ensure that w starts at an end-
point of f , and we then insert f at the beginning of w. We thus obtain a longer
trail than w. But this contradicts the fact that w is a longest trail.

This contradiction shows that our assumption was false, so that w is Eulerian.
Since w is closed, this yields that w is an Eulerian circuit. So we have proved
the “⇐=” direction.

[Note that this proof, while being a proof by contradiction, actually contains
a pretty good algorithm to find an Eulerian circuit. The way to do so is to read
the proof “seriously but not literally”.]

(b) =⇒: Already explained.
⇐=: Assume that all but at most two vertices of G have even degree. We

must prove that G has an Eulerian walk.
If there are 0 vertices with odd degree, then we can use part (a) and we are

done.
If there is exactly 1 vertex with odd degree, then we get a contradiction to

the handshake lemma.
So it remains to consider the case when there are exactly 2 vertices with

odd degree. Let u and v be these two vertices. Let G′ be the multigraph
obtained from G by adding an extra edge joining u with v. This graph G′ has
the property that all its vertices have even degree, and it is still connected (since
G is connected). Thus, part (a) yields that G′ has an Eulerian circuit. This circuit
must use the edge uv exactly once. Rotate it so that it starts with this edge, and
cut it at this edge. It thus becomes an Eulerian walk of G. And we are done.

4. Digraphs and multidigraphs

4.1. Definitions

We have so far seen two kinds of graphs: simple graphs and multigraphs.
For all their differences, they have a major commonality: Their edges are

“two-way roads”, i.e., an edge is (or has) an unordered pair of endpoints. So
these kinds of graphs are good for modelling mutual (i.e., symmetric) relation-
ships.

For non-mutual relationships, we need directed graphs, or, for short, di-
graphs. In such digraphs, each edge (now called an “arc”) has a specified
starting point (its “source”) and a specified ending point (its “target”), and is
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drawn as an arrow (from its source to its target). Walks can only use arcs in the
forward direction. Here are formal definitions:

Definition 4.1.1. A simple digraph is a pair (V, A), where V is a finite set,
and where A is a subset of V × V.

Definition 4.1.2. Let D = (V, A) be a simple digraph.

1. The set V is called the vertex set of D, and is denoted V (D).

Its elements are called the vertices (or nodes) of D.

2. The set A is called the arc set of D, and is denoted A (D).

Its elements are called the arcs (or directed edges) of D.

When u and v are two elements of V, we will occasionally abbreviate
the pair (u, v) as uv.

3. If (u, v) is an arc of D (or, more generally, a pair in V × V), then we call
u the source of this arc, and v the target of this arc.

4. We draw D as follows: We represent each vertex each point, and each
arc by an arrow pointing from its source to its target.

Example 4.1.3. For each n ∈ N, we define the divisibility digraph on
{1, 2, . . . , n} to be the simple digraph (V, A), where V = {1, 2, . . . , n} and

A = {(i, j) ∈ V × V | i divides j} .

Note that simple digraphs (unlike simple graphs) are allowed to have loops
(i.e., arcs of the form (u, u)).

Definition 4.1.4. A multidigraph is a triple (V, A, ψ), where V and A are
finite sets, and ψ : A → V × V is a map.

Definition 4.1.5. Let D = (V, A, ψ) be a multidigraph.

1. The set V is called the vertex set of D, and is denoted V (D).

Its elements are called the vertices (or nodes) of D.

2. The set A is called the arc set of D, and is denoted A (D).

Its elements are called the arcs (or directed edges) of D.

3. If a is an arc of D, and if ψ (a) = (u, v), then the vertex u is called the
source of a, and v is called the target of a.

4. We draw D as you would expect.
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Convention 4.1.6. The word “digraph” means either “simple digraph” or
“multidigraph”, depending on the context.

4.2. Outdegrees and indegrees

Digraphs have a concept analogous to degrees for graphs. Actually they have
two of these concepts:

Definition 4.2.1. Let D be a digraph with vertex set V and arc set A. (This
can be a simple digraph or a multidigraph.) Let v ∈ V be any vertex. Then:

1. The outdegree of v denotes the number of arcs of D whose source is v.
It is denoted by deg+ v.

2. The indegree of v denotes the number of arcs of D whose target is v. It
is denoted by deg− v.

Example 4.2.2. In the divisibility digraph on {1, 2, 3, 4, 5, 6}, we have

deg+ 1 = 6, deg− 1 = 1,

deg+ 2 = 3, deg− 2 = 2,

deg+ 3 = 2, deg− 3 = 2,

deg+ 4 = 1, deg− 4 = 3,

deg+ 5 = 1, deg− 5 = 2,

deg+ 6 = 1, deg− 6 = 4.

Recall that in a graph, the sum of all degrees is twice the number of edges.
For digraphs, an analogous fact holds:

Proposition 4.2.3 (diEuler). Let D be a digraph with vertex set V and arc set
A. Then,

∑
v∈V

deg+ v = ∑
v∈V

deg− v = |A| .

Proof. Same idea as for graphs, but even easier: Each arc has exactly one source,
so you can count the arcs source by source. Thus you get ∑

v∈V
deg+ v = |A|.

Similarly ∑
v∈V

deg− v = |A|. Details in the 2022 notes (Lecture 9).
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4.3. Conversions

We now have four different types of “graph”: simple graphs, multigraphs,
simple digraphs, multidigraphs. There are some ways to convert between these
types.

4.3.1. Multidigraphs to multigraphs

Any multidigraph D can be turned into an (undirected) graph G by “removing
the arrowheads” (aka “forgetting the directions of the arcs”):

Definition 4.3.1. Let D be a multidigraph. Then, Dund will mean the multi-
graph obtained from D by replacing each arc with an edge whose endpoints
are the source and the target of the arc. In other words, if D = (V, A, ψ),
then Dund = (V, A, φ), where φ : A → P1,2 (V) is defined as follows: If
ψ (a) = (u, v), then φ (a) = {u, v}.

4.3.2. Multigraphs to multidigraphs

Conversely, each multigraph G can be turned into a multidigraph Gbidir by
“duplicating” each edge (turning it into two arcs going both ways):

Definition 4.3.2. Let G = (V, E, φ) be a multigraph. For each edge e ∈ E,
let us choose one of the endpoints of e and call it se; the other endpoint will
then be called te. (If e is a loop, then te = se.)

We then define Gbidir to be the multidigraph (V, E × {1, 2} , ψ), where
ψ : E × {1, 2} → V × V is defined as follows:

ψ (e, 1) = (se, te) and ψ (e, 2) = (te, se)

for each edge e ∈ E.
We call Gbidir the bidirectionalized multidigraph of G.

Question: Is there a way to make this definition canonical?
Note that the map ψ depends on our choice of se’s, but different choices lead

to isomorphic multidigraphs Gbidir. (The notion of isomorphism for multidi-
graphs is defined in a pretty natural way.)

Note that the operation that sends G to Gbidir is injective – i.e., you can re-
construct G from Gbidir. In contrast, the operation that sends a multidigraph D
to Dund is not injective, since it forgets the orientations of the arcs.

4.3.3. Simple digraphs to multidigraphs

We learned previously how to make a simple graph into a multigraph. A
similar technique works for directed graphs:
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Definition 4.3.3. Let D = (V, A) be a simple digraph. Then, the correspond-
ing multidigraph Dmult is defined to be the multidigraph

(V, A, ι) ,

where ι : A → V × V is the map sending each arc a ∈ A to a itself.

4.3.4. Multidigraphs to simple digraphs

In analogy to the G 7→ Gsimp operation for graphs (which drops loops and
collapses parallel edges), we can define a D 7→ Dsimp operation for digraphs:

Definition 4.3.4. Let D = (V, A, ψ) be a multidigraph. Then, the underlying
simple digraph Dsimp of D means the simple digraph

(V, {ψ (a) | a ∈ A}) .

In other words, Dsimp is obtained by “collapsing” parallel arcs (note that
loops are not collapsed).

4.3.5. Multidigraphs as a big tent

As a consequence, every notion of “graph” we have seen so far can be trans-
formed losslessly into a multidigraph:

• Each simple graph becomes a multigraph via G 7→ Gmult.

• Each multigraph, in turn, becomes a multidigraph via D 7→ Dbidir.

• Each simple digraph becomes a multidigraph via D 7→ Dmult.

Thus, multidigraphs are the most general notion of “graphs”. If a theorem
holds for multidigraphs, you can then automatically conclude properties of the
other types of “graphs” from it.

4.4. Walks, paths, closed walks, cycles

Let us define walks (and their various types) for digraphs. We begin with the
case of simple digraphs:

Definition 4.4.1. Let D be a simple digraph. Then:

1. A walk (in D) means a finite sequence (v0, v1, . . . , vk) of vertices of D
(with k ≥ 0) such that v0v1, v1v2, v2v3, . . . , vk−1vk are arcs of D.

2. If w = (v0, v1, . . . , vk) is a walk of D, then:
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a) The vertices of w are defined to be v0, v1, . . . , vk.

b) The arcs of w are defined to be the pairs
v0v1, v1v2, v2v3, . . . , vk−1vk.

c) The nonnegative integer k is called the length of w.

d) The vertex v0 is called the starting point of w, and the vertex vk is
called the ending point of w.

e) The walk w is said to start at v0 and to end at vk.

3. A path (in D) means a walk whose vertices are distinct.

4. A walk from p to q means a walk that starts at p and ends at q. A path
from p to q means a path that starts at p and ends at q.

5. A closed walk means a walk whose starting point is its ending point.
It is also called a circuit.

6. A cycle of D means a closed walk (w0, w1, . . . , wk) such that k ≥ 1 and
such that the vertices w0, w1, . . . , wk−1 are distinct.

See the 2022 notes for examples.
We can also define all of these things for multidigraphs:

Definition 4.4.2. Let D = (V, A, ) be a multidigraph. Then:

1. A walk (in D) means a finite sequence (v0, a1, v1, a2, v2, . . . , ak, vk) of
vertices and arcs of D (with k ≥ 0) such that v0, v1, . . . , vk are vertices
and a1, a2, . . . , ak are arcs and ψ (ai) = (vi−1, vi) for each i ∈ {1, 2, . . . , k}.

2. If w = (v0, a1, v1, a2, v2, . . . , ak, vk) is a walk of D, then:

a) The vertices of w are defined to be v0, v1, . . . , vk.

b) The arcs of w are defined to be the arcs a1, a2, . . . , ak.

c) The nonnegative integer k is called the length of w.

d) The vertex v0 is called the starting point of w, and the vertex vk is
called the ending point of w.

e) The walk w is said to start at v0 and to end at vk.

3. A path (in D) means a walk whose vertices are distinct.

4. A walk from p to q means a walk that starts at p and ends at q. A path
from p to q means a path that starts at p and ends at q.

5. A closed walk means a walk whose starting point is its ending point.
It is also called a circuit.
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6. A cycle of D means a closed walk (w0, a1, w1, . . . , ak, wk) such that k ≥ 1
and such that the vertices w0, w1, . . . , wk−1 are distinct. (This yields that
the arcs are distinct – check it!)
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Lecture 7

Last time, we defined digraphs of two kinds (simple digraphs and multidi-
graphs), and we defined walks, paths, circuits and cycles in them.

Let’s study a few of their properties:

Proposition 4.4.3. Let D be a multidigraph. Let u, v and w be three vertices
of D. Let

a = (a0, e1, a1, e2, a2, . . . , ek, ak) be a walk from u to v, and
b = (b0, f1, b1, f2, b2, . . . , fℓ, bℓ) be a walk from v to w.

Then,

a ∗ b := (a0, e1, a1, e2, a2, . . . , ek, ak, f1, b1, f2, b2, . . . , fℓ, bℓ)
= (a0, e1, a1, e2, a2, . . . , ek, b0, f1, b1, f2, b2, . . . , fℓ, bℓ)
= (a0, e1, a1, e2, a2, . . . , ek, v, f1, b1, f2, b2, . . . , fℓ, bℓ)

is a walk from u to w.

However, unlike for undirected graphs, we can no longer reverse a walk. So
the existence of a walk from u to v does not ensure the existence of a walk from
v to u.

We can again reduce walks to paths:

Proposition 4.4.4. Let D be a multidigraph. Let u and v be two vertices of D.
Let a be a walk from u to v. Let k be the length of a. Assume that a is not a
path. Then, there exists a walk from u to v whose length is smaller than k.

Corollary 4.4.5 (When there is a walk, there is a path). Let D be a multidi-
graph. Let u and v be two vertices of D. Assume that there is a walk from u
to v of length k for some k ∈ N. Then, there is a path from u to v of length
≤ k.

Proposition 4.4.6. Let D be a multidigraph. Let w be a walk of D. Then, w
either is a path or contains a cycle (i.e., there exists a cycle of D whose arcs
are arcs of w).

All the proofs are the same as for multigraphs (occasionally easier).

4.5. Connectivity

We defined the relation “path-connected” for multigraphs in terms of paths or
walks. For digraphs, this gets trickier, since the existence of a walk from u to v
does not ensure the existence of a walk from v to u. So the existence of a walk
from u to v does not define an equivalence relation.
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There are two ways to “fix” this. One is to define strong path-connectedness
to mean the existence of both walks:

Definition 4.5.1. Let D be a multidigraph. We define a binary relation ≃D
on the set V (D) as follows: For two vertices u and v of D, we set u ≃D v if
and only if there exists a walk from u to v and a walk from v to u.

This binary relation ≃D is called strong path-connectedness.

Proposition 4.5.2. This relation ≃D is an equivalence relation.

Proof. Straightforward using a ∗ b.

Proposition 4.5.3. Let D be a multidigraph. Let u and v be two vertices of D.
Then, u ≃D v if and only if there exist a path from u to v and a path from v
to u.

Proof. Just as for graphs.

Definition 4.5.4. Let D be a multidigraph.
(a) The equivalence classes of the equivalence relation ≃D are called the

strong components of D.
(b) We say that D is strongly connected if D has exactly one strong com-

ponent.

See Spring 2022 lecture 10 for examples.
There is also a weaker notion of connected components and connectivity:

Definition 4.5.5. Let D be a multidigraph. Consider its underlying undi-
rected multigraph Dund.

(a) The components of this undirected multigraph Dund are called the
weak components of D.

(b) We say that D is weakly connected if D has exactly one weak compo-
nent (i.e., if Dund is connected).

Proposition 4.5.6. Any strongly connected digraph is weakly connected.

Let us look at what happens to walks, paths, circuits and cycles if we replace
a graph G by its bidirectionalized digraph Gbidir:

Proposition 4.5.7. Let G be a multigraph. Then:

1. The walks of G are “more or less the same as” the walks of Gbidir. More
precisely, each walk of G gives rise to a walk of Gbidir (with the same
starting point and the same ending point), and conversely, each walk of
Gbidir gives rise to a walk of G. If G has no loops, then this is a bijection.
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2. The paths of G are “more or less the same as” the paths of Gbidir. This
is an actual bijection.

3. The closed walks of G are “more or less the same as” the closed walks
of Gbidir.

4. The cycles of G are not quite the same as the cycles of Gbidir. In fact, if
e is an edge of G with two distinct endpoints u and v, then (u, e, v, e, u)
is not a cycle of G, but (u, (e, 1) , v, (e, 2) , u) or (u, (e, 2) , v, (e, 1) , u) is a
cycle of Gbidir. But it is still true that each cycle of G gives rise to a cycle
of Gbidir.

4.6. Eulerian walks and circuits

Let us now define analogues of Eulerian walks and circuits for multidigraphs.

Definition 4.6.1. Let D be a multidigraph.

1. A walk of D is said to be Eulerian if each arc of D appears exactly once
in this walk.

2. An Eulerian circuit of D means a circuit of D that is Eulerian.

The Euler–Hierholzer theorem gave us a nice and simple criterion for a multi-
graph to have an Eulerian circuit or walk. Something very similar works for
multidigraphs:

Theorem 4.6.2 (diEuler, diHierholzer). Let D be a weakly connected multidi-
graph. Then:

1. The multidigraph D has an Eulerian circuit if and only if each vertex v
of D satisfies deg+ v = deg− v.

2. The multidigraph D has an Eulerian walk if and only if all but two
vertices v of D satisfy deg+ v = deg− v, and the remaining two vertices
v satisfy

∣∣deg+ v − deg− v
∣∣ ≤ 1.

Proof. Homework set #4.

Incidentally, the condition “each vertex v of D satisfies deg+ v = deg− v” has
a name:



Lecture diary Spring 2023, version June 10, 2023 page 55

Definition 4.6.3. A multidigraph D is said to be balanced if each vertex v of
D satisfies deg+ v = deg− v.

Proposition 4.6.4. Let G be a multigraph. Then, the multidigraph Gbidir is
balanced.

Corollary 4.6.5. Let G be a connected multigraph. Then, the multidigraph
Gbidir has an Eulerian circuit. In other words, there is a circuit of G that
contains each edge exactly twice, and uses it once in each direction.

Proof. Combine the last proposition with the last theorem.

4.7. Hamiltonian cycles and paths

We can define Hamiltonian paths and cycles for simple digraphs just as we
defined them for simple graphs:

Definition 4.7.1. Let D = (V, A) be a simple digraph.

1. A Hamiltonian path of D means a walk of D that contains each vertex
of D exactly once. Clearly, it is a path.

2. A Hamiltonian cycle of D means a cycle (v0, v1, . . . , vk) of D such that
each vertex of D appears exactly once among v0, v1, . . . , vk−1.

We will abbreviate Hamiltonian paths and cycles as hamps and hamcs.

What can we say about them?
Ore’s theorem has the following analogue:

Theorem 4.7.2 (Meyniel). Let D = (V, A) be a strongly connected loopless
simple digraph with n vertices. Assume that for each pair (u, v) ∈ V × V
of two vertices u and v satisfying u ̸= v and (u, v) /∈ A and (v, u) /∈ A, we
have deg u + deg v ≥ 2n − 1, where deg w = deg+ w + deg− w. Then, D has
a hamc.

I don’t know of a simple proof, but I give references in the 2022 notes (Lecture
10). It is more complicated than Ore.

4.8. The reverse and complement digraphs

Definition 4.8.1. Let D = (V, A) be a simple digraph. Then:

1. The elements of (V × V) \ A are called the non-arcs of D.



Lecture diary Spring 2023, version June 10, 2023 page 56

2. The reversal of a pair (i, j) ∈ V × V means the pair (j, i).

3. We define Drev as the simple digraph (V, Arev), where

Arev = {(j, i) | (i, j) ∈ A} .

Thus, Drev is the digraph obtained from D by reversing each arc (i.e.,
swapping its source with its target). This is called the reversal of D.

4. We define D as the simple digraph (V, (V × V) \ A). This is called the
complement of D. The arcs of D are the non-arcs of D.

We shall now try to count hamps in simple digraphs.

Convention 4.8.2. The symbol # means “number”. For example,
(# of subsets of {1, 2, 3}) = 8.

Proposition 4.8.3. Let D be the simple digraph (V, A), where

V = {1, 2, . . . , n} for some n ∈ N,

and
A = {(i, j) | i < j} .

Then, (# of hamps of D) = 1.

Proof. The only hamp of D is (1, 2, . . . , n).

Proposition 4.8.4. Let D be a simple digraph. Then,

(# of hamps of Drev) = (# of hamps of D) .

Proof. Walking a hamp of D backwards gives a hamp of Drev. And vice versa.
So there is a bijection.

Theorem 4.8.5 (Berge). Let D be a simple digraph. Then,(
# of hamps of D

)
≡ (# of hamps of D)mod 2.

Proof: zoom/youtube this weekend?

4.9. Tournaments
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Definition 4.9.1. A digraph D is said to be loopless if it has no loops.

Definition 4.9.2. A tournament is defined to be a loopless simple digraph D
that satisfies the

• Tournament axiom: For any two distinct vertices u and v of D, exactly
one of (u, v) and (v, u) is an arc of D.

Proposition 4.9.3. A simple digraph D is a tournament if and only if Drev is
D without the loops.

Theorem 4.9.4 (Easy Redei theorem). A tournament always has at least one
hamp.

Theorem 4.9.5 (Hard Redei theorem). Let D be a tournament. Then,

(# of hamps of D) is odd.

Clearly, the Hard Redei theorem implies the Easy one. The Easy one we proved
on the blackboard. For the Hard one, see this weekend’s lecture.

What about Hamiltonian cycles?
Not every tournament has a hamc: for example, the one constructed above

(that has only 1 hamp) has no hamc. There is clearly a necessary condition:

Proposition 4.9.6. If a digraph D has a hamc, then D is strongly connected.

In general, this is only a necessary criterion, not a sufficient one. However,
for tournaments, it actually is sufficient:

Theorem 4.9.7 (Camion’s theorem). If a tournament D is strongly connected
and has at least two vertices, then D has a hamc.

Proof. See the Spring 2022 notes for more details, and the Spring 2017 notes for
even more.

We pick a longest cycle (v1, v2, . . . , vk, vk+1) of D. Assume that this is not a
hamc.

We show that if w is a vertex not on this cycle, then w is either a from-vertex
(i.e., we have an arc (w, vi) for each i) or a to-vertex (i.e., we have an arc (vi, w)
for each i). Assume that our longest cycle is not a hamc. Then, there is at least
one vertex that is a from-vertex or a to-vertex. Now:

1. If there exist from-vertices but not to-vertices, then we get a contradiction
to strong connectedness of D, because there is no path from v1 to our
from-vertices.
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2. If there exist to-vertices but not from-vertices, then we get a contradiction
to strong connectedness of D, because there is no path from our to-vertices
to v1.

3. If there exist both from-vertices and to-vertices, then we argue as follows:

• If there is some arc from a to-vertex t to a from-vertex f , then we can
use this arc as a detour to make our cycle longer.

• If no such arc exists, then there is no path from v1 to a from-vertex
(since the only arcs leading into a from-vertex are coming from from-
vertices), which contradicts the strong connectedness of D.

In either case, we get a contradiction.
Except we are not quite done: We picked a longest cycle, which tacitly relies

on the existence of a cycle. Why does D have a cycle?
We assumed that D is strongly connected and has at least 2 vertices; call them

u and v. Hence, there is a walk from u to v and a walk from v to u. Combining
these walks yields a circuit with at least one arc. By one of the propositions
above, this circuit must contain a cycle.

Note that a strongly connected tournament with at least two vertices must
necessarily have at least three vertices.

4.10. A few words on finding paths

Given a digraph D. How do we efficiently find a path from a vertex u to a
vertex v, or show that it does not exist?

If u = v, then clearly (u) works.
If u ̸= v, then any path from u to v must have at least one arc and thus a

second-to-last vertex. If w is this second-to-last vertex, then this path is a path
from u to w followed by an arc from w to v. Hence, there exists a path from u
to v if and only if there exists a path from u to w and an arc from w to v for
some vertex w.

Better yet: There exists a path from u to v of length ≤ k if and only if there
exists a path from u to w of length ≤ k − 1 and an arc from w to v for some
vertex w.

Can you use this to obtain an efficient algorithm for finding paths (shortest
paths even)? (Note that the length of a path is always < |V (D)|).

We’ll discuss the answer next time.



Lecture diary Spring 2023, version June 10, 2023 page 59

Lecture 8

Recall our problem from last time:
Given a multidigraph D = (V, A, ψ). How do we efficiently find a path from

a vertex u to a vertex v, or show that it does not exist? Even better, how do we
find a shortest path (= a path of minimum length)?

The idea is to consider walks of a given length. For any two vertices u, v ∈ V
and any k ∈ N, we let Wk (u, v) be the set of all length-k walks from u to v.
Then, it is easy to see that:

• We have

W0 (u, v) =

{
{(u)} , if u = v;
∅, if u ̸= v.

• For any positive integer k, we have

Wk (u, v) =
⋃

x∈V
{w ∗ (x, a, v) | w ∈ Wk−1 (u, x) and a is an arc x → v} .

In particular, a length-k walk u → v exists if and only if there is an x ∈ V
such that a length-(k − 1) walk u → x and an arc x → v exist.

This theoretically gives an algorithm for recursively computing all Wk (u, v).
(You need to recurse on k and compute Wi (u, x) for all i ≤ k and all vertices x.)
This algorithm tends to be slow because these sets Wi (u, x) tend to be large. So
it would be great if, instead of keeping track of all walks, we could just figure
out which ones are the shortest, or, even better, just keep track of one shortest
path for every i and u.

This is indeed possible: Instead of recursively computing Wi (u, x) for all i
and x, we can recursively choose a single walk of length i from u to x for each
i and x. The recursion goes something like this:

def some_walk(u, v, i):
if i == 0:
if u == v:
return (u)

else:
return None

for x in V:
if some_walk(u, x, i-1) is not None and arcs(x, v) is not None:
return some_walk(u, x, i-1) * some_arc(x, v)

return None

(This is Python pseudocode, not hard to implement.)
If we are looking for paths, not just walks of a given length, we just need to

keep in mind that:
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• A shortest walk is always a path. So if you look for a walk of length 0,
then a walk of length 1, then a walk of length 2, and so on, then the first
time you find such a walk you actually find a path.

• You don’t have to look very far: Any path has length ≤ |V| − 1. Thus,
if you have not found a walk of length ≤ |V| − 1, then you can stop
searching; there is no walk.

Implemented well, this results in the Bellman–Ford algorithm for finding
shortest paths. There is a variant of this algorithm that finds minimum-cost
paths (aka minimum-weight paths). See the Wikipedia for more details.

5. Trees and arborescences

Trees are particularly nice graphs. Among other things, they can be character-
ized as

• the minimally connected graphs on a given set of vertices, or

• the maximally acyclic (= having no cycles) graphs on a given set of ver-
tices, or

in many other ways.
Arborescences are directed analogues of trees.
We will study their theory and applications and answer some enumerative

questions. See courses on TCS for many more applications (but be warned: in
TCS, a tree is not quite the same as in combinatorics).

5.1. Some general properties of components and cycles

5.1.1. Backtrack-free walks revisited

Recall:

Definition 5.1.1. A walk in a multigraph G is said to be backtrack-free if no
two adjacent edges of this walk are identical.

Proposition 5.1.2. Let G be a multigraph. Let w be a backtrack-free walk of
G. Then, w either is a path or contains a cycle.

Proposition 5.1.3. Let G be a multigraph. Let u and v be two vertices of G.
Assume that there are two distinct backtrack-free walks from u to v in G.
Then, G has a cycle.

We proved these propositions for simple graphs at least. The proofs for
multigraphs are more or less analogous.
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5.1.2. Counting components

Definition 5.1.4. Let G be a multigraph. Then, conn G means the number of
components of G.

This is also denoted by b0 (G) in a homage to topologists.

So a multigraph G satisfies conn G = 1 if and only if G is connected.
Recall:

Theorem 5.1.5. Let G be a multigraph. Let e be an edge of G. Then:

(a) If e is an edge of some cycle of G, then the components of G \ e are
precisely the components of G.

(b) If e appears is no cycle of G, then the graph G \ e has one more compo-
nent than G.

Again, we proved this for simple graphs, but the same proof applies to multi-
graphs mutatis mutandis.

Corollary 5.1.6. Let G be a multigraph. Let e be an edge of G. Then:

(a) If e is an edge of some cycle of G, then conn (G \ e) = conn G.

(b) If e appears in no cycle of G, then conn (G \ e) = conn G + 1.

(c) In either case, we have conn (G \ e) ≤ conn G + 1.

Corollary 5.1.7. Let G = (V, E, φ) be a multigraph. Then, conn G ≥ |V| − |E|.

Proof. Let’s remove all edges of G and then add them back in one by one.
At first, G has no edges and V vertices, thus |V| many components.
Then, we add the first edge, and obtain ≥ |V| − 1 many components (by part

(c) of the previous corollary).
Then, we add the second edge, and obtain ≥ |V| − 2 many components

(again by that part (c)).
And so on. At the end, we have added back all |E| many edges, and obtained

≥ |V| − |E| many components. In other words, conn G ≥ |V| − |E|.
(To make it rigorous, you induct on |E|. See Spring 2022 Lecture 13 Corollary

1.1.7 for this.)

Corollary 5.1.8. Let G = (V, E, φ) be a multigraph that has no cycles. Then,
conn G = |V| − |E|.
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Proof. Replay we the previous proof, but now using part (b) of the first corollary
instead of part (c), since we know that all the edges appear in no cycles. So we
get an = sign instead of a ≥ sign.

Corollary 5.1.9. Let G = (V, E, φ) be a multigraph that has at least one cycle.
Then, conn G ≥ |V| − |E|+ 1.

Proof. Again, replay the old proof, but now make sure that the last edge to be
added back in is an edge of a cycle. Then, when we add that edge in, it just
completes a cycle, so the number of component does not grow.

(See Spring 2022 for details.)

Let’s combine these corollaries into a theorem:

Theorem 5.1.10. Let G = (V, E, φ) be a multigraph. Then:

(a) We have conn G ≥ |V| − |E|.

(b) We have conn G = |V| − |E| if and only if G has no cycles.

Remark 5.1.11. The number conn G − (|V| − |E|) is called the cyclomatic
number of G. It does not determine the number of cycles of G, but as we
just saw it is 0 if and only if G has no cycles.

5.2. Forests and trees

Definition 5.2.1. A forest is a multigraph that has no cycles.
(In particular, it has no parallel edges and no loops.)

Definition 5.2.2. A tree is a connected forest.

In particular, the empty graph with no vertices is a forest but not a tree.
Trees can be described in many equivalent ways:

Theorem 5.2.3 (tree equivalence theorem). Let G = (V, E, φ) be a multigraph.
Then, the following eight statements are equivalent:

• T1: The multigraph G is a tree.

• T2: The multigraph G has no loops, and we have V ̸= ∅, and for each
u, v ∈ V, there is a unique path from u to v.

• T3: We have V ̸= ∅, and for each u, v ∈ V, there is a unique backtrack-
free walk from u to v.
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• T4: The multigraph G is connected, and we have |E| = |V| − 1.

• T5: The multigraph G is connected, and |E| < |V|.

• T6: We have V ̸= ∅, and the graph G is a forest, but adding any new
edge to G creates a cycle.

• T7: The multigraph G is connected, but removing any edge from G
yields a disconnected (i.e., non-connected) graph.

• T8: The multigraph G is a forest, and we have |E| ≥ |V| − 1 and V ̸= ∅.

Proof. (These are just sketches; see 2022 Lecture 13 for details.)
T4=⇒T5 is obvious. T5=⇒T4 follows from conn G ≥ |V| − |E|. T3=⇒T2 is

easy. T1=⇒T4 follows from conn G = |V| − |E| when G has no cycles. T4=⇒T1
follows from the converse of that statement. T4=⇒T8 via T1. We have T7=⇒T1
because an edge of a cycle could be removed without disconnecting G. We
have T8=⇒T1 because conn G = |V| − |E| ≤ 1 and thus conn G = 1. We have
T2=⇒T1 because a cycle is either a loop or has two different paths between two
vertices. We have T1=⇒T3 by the second proposition today. We have T4=⇒T6,
because adding any new edge turns |E| = |V| − 1 into |E| = |V|. Similarly,
T4=⇒T7. Similarly, T6=⇒T1.

Remark 5.2.4. Let G = (V, E, φ) be a multigraph.

(a) If G is a forest, then |E| ≤ |V| − 1 (unless V = ∅).

(b) If G is connected, then |E| ≥ |V| − 1.

(c) If G is a tree, then |E| = |V| − 1.

So trees live in the goldilocks zone where |E| = |V| − 1. As a consequence,
adding an edge to a tree or removing an edge from a tree breaks the treeness.

For comparison: Let v1, v2, . . . , vk be a bunch of vectors in a vector space
V. Then:

(a) If the vectors v1, v2, . . . , vk are linearly independent, then k ≤ dim V.

(b) If the vectors v1, v2, . . . , vk span V, then k ≥ dim V.

(c) If the vectors v1, v2, . . . , vk form a basis of V, then k = dim V.

This is not just an analogy. Consider a multigraph G = (V, E, φ), where
V = {1, 2, . . . , n}. Model each edge e ∈ E as a vector0, 0, . . . , 0, 1︸︷︷︸

position i

, 0, 0, . . . , 0, −1︸︷︷︸
position j

, 0, 0, . . . , 0

 ∈ Rn,
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where i and j are the endpoints of e. Thus, each edge of G becomes a vector.
Now:

(a) These vectors are linearly independent if and only if G is a forest.

(b) These vectors span {x = (x1, x2, . . . , xn) ∈ Rn | x1 + x2 + · · ·+ xn = 0}
if and only if G is connected.

(c) These vectors form a basis of {x = (x1, x2, . . . , xn) ∈ Rn | x1 + x2 + · · ·+ xn = 0}
if and only if G is a tree.

So you can obtain the graph-theoretical claims from the linear-algebraic
ones.

As we said, trees are connected forests. Conversely, forests are made out of
trees:

Proposition 5.2.5. Let G be a multigraph, and let C1, C2, . . . , Ck be its
components. Then, G is a forest if and only if the induced subgraphs
G [C1] , G [C2] , . . . , G [Ck] are trees.

Proof. Straightforward (see 2022 Lecture 13 for details).

5.3. Leaves

Definition 5.3.1. Let T be a tree. A vertex of T is said to be a leaf if its degree
is 1.

How to find a tree with as many leaves as possible (for a given number of
vertices)? That’s the star graph: For any n ≥ 3, the simple graph

({0, 1, . . . , n − 1} , {0i | i > 0})

is a tree (when considered as a multigraph), and has n− 1 leaves (1, 2, . . . , n− 1).
How to find a tree with as few leaves as possible? The path graph: For any

n ≥ 2, the n-path graph Pn = (1 − 2 − 3 − · · · − n) has only 2 leaves (1 and n).
For n ≥ 2, this is the minimum possible number of leaves:

Theorem 5.3.2. Let T be a tree with at least 2 vertices. Then:

(a) The tree T has at least 2 leaves.

(b) Let v be a vertex of T. Then, there exist two distinct leaves p and q of T
such that v lies on the path from p to q.
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(I say “the path” since T is a tree and thus has only one path from p to q.)

Proof. (a) follows from (b), so we only need to show (b).
(b) Pick a longest path of T passing through v. Let p and q be its starting and

ending points. I claim that p and q are leaves (and it is clear that p and q are
distinct, since the path is not just (v)).

Indeed, assume the contrary. Let’s say p is not a leaf (the other case is anal-
ogous). Then, there exists an edge e containing p that is not part of the path.
Extending the path by this edge e, we obtain a backtrack-free walk, thus a path
(since T is a tree). That path is longer than the one we started with. Contradic-
tion!

(See the 2022 notes – Lecture 14 – for more details and for a different proof
of part (a).)
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Lecture 9

Recall:

Definition 5.3.3. Let T be a tree. A vertex of T is said to be a leaf if its degree
is 1.

Theorem 5.3.4. Let T be a tree with at least 2 vertices. Then:

(a) The tree T has at least 2 leaves.

(b) Let v be a vertex of T. Then, there exist two distinct leaves p and q of T
such that v lies on the path from p to q.

We proved this last time. Now let us see why leaves are so important to trees:

Theorem 5.3.5 (induction principle for trees). Let T be a tree with at least 2
vertices. Let v be a leaf of T. Let T \ v be the multigraph obtained from T by
removing v and all edges that contain v. Then, T \ v is again a tree.

Proof. Since T has at least 2 vertices, T \ v has at least 1 vertex.
Furthermore, T \ v has no cycles (since T has none), thus is a forest.
It remains to show that T \ v is connected.
Consider the unique edge e containing v. Removing this edge e breaks T into

2 components (since e is clearly not on any cycle). One component contains
v and only v (since v has no other edges containing it). Thus, if we remove v
as well, only the other component remains. Therefore, T \ v has just that one
component, i.e., is connected.

(See Spring 2022 Lecture 14 Theorem 1.2.3 for a different proof.)

The theorem also has a converse:

Theorem 5.3.6. Let G be a multigraph. Let v be a vertex of G such that
deg v = 1 and such that G \ v is a tree. Then, G is a tree.

Proof. Left to the reader.

The above two theorems reveal a recursive structure behind trees.

5.4. Spanning trees

First, we define the notion of “spanning”, which makes sense for any kind of
graphs:



Lecture diary Spring 2023, version June 10, 2023 page 67

Definition 5.4.1. A spanning subgraph of a multigraph G = (V, E, φ) means
a multigraph of the form (V, F, φ |F), where F is a subset of E.

In other words, it means a submultigraph of G with the same vertex set as
G.

Informally, it means a multigraph obtained from G by removing some
edges but not removing any vertices.

For comparison:

• A subgraph of G can choose which vertices and which edges of G it con-
tains.

• An induced subgraph chooses its vertices, but has to contain all the edges
it can.

• A spanning subgraph chooses its edges, but has to contain all the vertices.

Spanning subgraphs are particularly useful when they are trees:

Definition 5.4.2. A spanning tree of a multigraph G means a spanning sub-
graph of G that is a tree.

Example 5.4.3. (See the blackboard or 2022 Lecture 14.)

A spanning tree of a graph G can be regarded as a minimum “backbone”
of G – that is, a way to keep G connected using as few edges as possible. Of
course, if G is not connected, this is not possible at all; the best you can then do
is the following:

Definition 5.4.4. A spanning forest of a multigraph G means a spanning
subgraph H of G that is a forest and satisfies conn H = conn G.

When G is a connected multigraph, a spanning forest of G is the same as a
spanning tree of G.

The following theorem is crucial:

Theorem 5.4.5. Each connected multigraph G has at least one spanning tree.

First proof. Let G be a connected multigraph.
Work top-to-bottom: Start with G itself, and keep removing edges until

you’re left with a spanning tree.
More precisely: As long as G has a non-bridge (i.e., an edge that is part of

a cycle), you can remove this edge without disconnecting G. Keep doing this
(take care to never remove two non-bridges simultaneously!). Eventually, you
end up with a spanning subgraph of G that has no non-bridges left, i.e., has
no cycles left. But by its construction, it is connected. So it is a connected
graph with no cycles, i.e., a tree. And it is a spanning subgraph of G. So it is a
spanning tree of G.
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Second proof. Let G be a connected multigraph.
Work bottom-to-top: Let L be the graph with the same vertices as G but with

no edges. Keep adding edges from G to L whenever needed to merge two
components.

Here are the details: At the beginning, L has all the necessary vertices but no
edges. Now, go over all edges of G one by one. Add each edge to L if it does
not create a cycle (= if it merges two components); otherwise skip it.

The resulting graph L at the end of this procedure is a spanning tree of G.
Why?

We certainly created no cycles, so the resulting graph L is a forest. And it is
a spanning subgraph of G. Remains to show that it is connected.

Well: If not, then there is an edge e of G that could be added to L without
creating a cycle (since it would join two components). But we have already
digested this edge e and found it useless since it would have created a cycle at
the time of its digestion. Contradiction, since the graph L at that time was a
subgraph of the final graph L.

Third proof. We construct a spanning tree of G by starting a rumor at some
vertex r of G, and watching it spread across the edges.

In more detail: The rumor starts at vertex r. On day 0, only r knows the
rumor. Each day, every vertex that knows this rumor spreads it to all its neigh-
bors. Since G is connected, the rumor will eventually reach all vertices. Now,
each vertex v ̸= r must have heard the rumor first from some neighbor v′ (if
there are ties, break them arbitrarily). Pick some edge that joins with v and v′

and call it ev; let’s say that this edge ev is “the edge through which v has learned
the rumor”.

I claim that the set of all these edges ev for all vertices v ̸= r forms a span-
ning tree of G. (More precisely: If G = (V, E, φ) and F = {ev | v ̸= r}, then
(V, F, φ |F) is a spanning tree of G.)

Intuitively, this is because:

• We can use these F-edges (i.e., the edges ev) to trace back the rumor from
each vertex v to r. Thus, (V, F, φ |F) is connected.

• We have |F| ≤ |V| − 1.

• Combining these, we conclude that (V, F, φ |F) is a tree (by the tree equiv-
alence theorem).

(An alternative proof is in the 2022 notes, Lecture 14, third proof of Theorem
1.3.5.)

This tree (V, F, φ |F) has an extra feature:

For each k ∈ N, any vertex of G that has distance k from r in G also
has distance k from r in (V, F, φ |F).
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Note that this is only true for distances from r. Distances between two ran-
dom vertices usually grow when we replace G by a spanning tree.

This tree (V, F, φ |F) is called the breadth-first search tree (“BFS tree”) of
G.

Fourth proof (sketched). We imagine a snake that slithers along the edges of G,
trying to eventually bite each vertex. It starts at some vertex r, which it im-
mediately bites. Any time the snake enters a vertex v, it makes the following
step:

• If some neighbor of v has not been bitten yet, then the snake picks such
a neighbor w as well as some edge f that joins w with v; the snake then
moves to w along this edge f , bites the vertex w and marks the edge f .

• If not, then the snake marks the vertex v as fully digested and backtracks
(along the marked edges) to the last vertex it has visited but not yet fully
digested.

Once backtracking is no longer possible (because there are no more vertices
on the snake’s path that are not fully digested), the snake stops, and the marked
edges form a spanning tree of G.

(See examples on blackboard.)
One way to prove that they form a spanning tree is by showing the following

observations:

1. After each step, the marked edges are precisely the edges along which the
snake has moved so far.

2. After each step, the network of bitten vertices and marked edges is a tree.

3. After enough steps, each bitten vertex is fully digested.

4. At that point, the network of bitten vertices and marked edges is a span-
ning tree (since each neighbor of a fully digested vertex is bitten, and thus
also fully digested by observation 3).

Details (not completely trivial) are left to the reader.
The spanning tree T obtained by this algorithm is called a depth-first search

tree (“DFS tree”) of G. It has the following extra property: If u and v are two
adjacent vertices of G, then either u lies on the path from r to v in T, or v lies
on the path from r to u in T. (This is called a “lineal spanning tree”.)

Spanning trees have lots of applications:

• A spanning tree of a graph can be viewed as a kind of “backbone” of that
graph, which connects any two vertices in an unambiguous way. This
is often used when information has to go from one vertex to another
irredundantly (e.g. the “spanning tree protocol”).
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• Spanning trees with extra properties are often valued for those properties.
For example, if c is a cost function on the edges (i.e., if each edge e of the
graph G has a cost c (e) attached to it), then we can look for a spanning
tree of smallest total cost (i.e., the sum of the costs of its edges should
be as small as possible). Nicely enough, such a minimum-cost spanning
tree can be constructed by the algorithm given in the second of our above
proofs: You just have to go over the edges in the order of increasing cost.
(The proof that the resulting tree has minimum cost will be on homework
set #6.)

• Depth-first search (the fourth proof above) can be used as a way to traverse
all vertices of a graph and return to the starting point. More usefully, this
method is “local”: each step only requires knowledge of the neighbors of
the vertex where you’re at. Thus, it can be used as an algorithm to solve
mazes.

Here is a theoretical application of spanning trees (one of many):

Definition 5.4.6. A vertex v of a connected multigraph G is called a cut-vertex
if G \ v is disconnected.

Proposition 5.4.7. Any connected multigraph with ≥ 2 vertices has at least 2
vertices that are not cut-vertices.

Proof. Pick a spanning tree of our multigraph. The spanning tree has ≥ 2 leaves.
These leaves cannot be cut-vertices of the original graph.

This proposition can be used to prove properties of connected graphs by
induction on the number of vertices.

A few words on disconnected graphs:

Corollary 5.4.8. Each multigraph has a spanning forest.

Proof. Pick a spanning tree of each component, and take their union.

5.5. Centers of graphs and trees

Definition 5.5.1. Let G be a multigraph.
For any two vertices u and v of G, we define the distance between u and v

is the smallest length of a path from u to v. If no such path exists, then this
distance is defined to be ∞.

The distance between u and v is called d (u, v) or dG (u, v).
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Remark 5.5.2. Distances in a multigraph satisfy the axioms of a metric space,
except that they can be ∞. In particular,

d (u, v) + d (v, w) ≥ d (u, w) for all u, v, w ∈ V (G) .

Also, the notion of a distance does not change if we replace “path” by
“walk”.

In a tree, we can replace “the smallest length of a path” by “the length of the
path” in the definition of a distance (since there is only one path from u to v).

Definition 5.5.3. Let v be a vertex of a multigraph G = (V, E, φ). The eccen-
tricity of v (with respect to G) is defined to be the number

eccG v := max {d (v, u) | u ∈ V} ∈ N ∪ {∞} .

Definition 5.5.4. Let G = (V, E, φ) be a multigraph. Then, a center of G
means a vertex of G whose eccentricity is minimum (among all vertices).

Theorem 5.5.5. Let T be a tree. Then:

1. The tree T has either 1 or 2 centers.

2. If T has two centers, then these two centers are adjacent.

3. Moreover, these centers can be constructed by the following algorithm:

If T has more than 2 vertices, remove all leaves from T. If the resulting
tree still has more than 2 vertices, remove all leaves from it. Keep doing
this, until you are left with at most 2 vertices. Those remaining vertices
are the centers of T.

Proof. Spring 2022 Lecture 15.
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Lecture 10

A quick reminder about trees and their centers:

• A center of a tree is a vertex with minimum eccentricity (i.e., distance
from the farthest-away vertex). In Spring 2022 Lecture 15, you can find
a proof that any tree has 1 or 2 centers only, and if there are 2, they are
adjacent.

• A centroid of a tree is a vertex with minimum side-size (i.e., largest size
of a component obtained from the tree by removing this vertex). It can be
shown that any tree has 1 or 2 centroids only, and if there are 2, they are
adjacent.

I am wondering why these two different concepts have such similar proper-
ties – is there a common generalization?

5.6. Arborescences

Time to return to directed graphs.
What is the best directed analogue of a tree? I.e., what digraphs play the

same role as trees but for digraphs? Here are some attempts at defining such
an analogue:

• We can study digraphs that are strongly connected and have no cycles.
There is only such digraph up to isomorphism, namely the 1-vertex di-
graph with no arcs.

• We can drop the connectedness requirement. Digraphs that have no cycles
are called acyclic, or, for short, dags. Unfortunately, they are not quite like
trees, even if you additionally require weak connectedness.

Here is a more convincing analogue of trees for digraphs:

Definition 5.6.1. Let D be a multidigraph. Let r be a vertex of D.

1. We say that r is a from-root (or, short, root) of D if for each vertex v of
D, the digraph D has a path from r to v.

2. We say that D is an arborescence rooted from r (short: arb from r) if r
is a from-root of D and the undirected multigraph Dund has no cycles.

Of course, there are analogous notions of “to-roots” and “arbs to r”, and their
properties are analogous because we can just reverse all the arcs (more on that
later).
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Example 5.6.2. (Blackboard, or Spring 2022 Lecture 15)

We observe that an arborescence rooted from r is basically the same as a tree
whose all edges have been “oriented away from r”. More precisely:

Theorem 5.6.3. Let D be a multidigraph, and let r be a vertex of D. Then,
the following two statements are equivalent:

• C1: The multidigraph D is an arb from r.

• C2: The undirected multigraph Dund is a tree, and each arc of D is
“oriented away from r”, which means that the source of this arc lies on
the unique path between r and the target of this arc in Dund.

Proving this is sufficiently nontrivial that I will do this after a few preparatory
results.

First, however, let’s prove a bunch of equivalent criteria for arborescences,
similarly to the tree equivalence theorem:

Theorem 5.6.4 (arborescence equivalence theorem). Let D = (V, A, ψ) be
a multidigraph with a from-root r. Then, the following six statements are
equivalent:

• A1: The multidigraph D is an arb from r. (This means that Dund has
no cycles.)

• A2: We have |A| = |V| − 1.

• A3: The multidigraph Dund is a tree.

• A4: For each vertex v ∈ V, the multidigraph D has a unique walk from
r to v.

• A5: If we remove any arc from D, then r will no longer be a from-root.

• A6: We have deg− r = 0, and each v ∈ V \ {r} satisfies deg− v = 1.

Proof. We have A1=⇒A3 easily (connectedness from from-root) and A3⇐⇒A2
(by the tree equivalence theorem) and A3=⇒A1. Thus, A1⇐⇒A2⇐⇒A3.

We have A3=⇒A4 (since D has no loops, so that walks in D are backtrack-
free walks in Dund, but the latter are unique since Dund has no cycles). We have
A2=⇒A5 (since removing an arc breaks the equality |A| = |V| − 1). We have
A4=⇒A6 (see blackboard). We have A6=⇒A2.

It remains to prove A5=⇒A6. Assume A5. It is easy to see that deg− r = 0
(since an arc with target r is useless for making r a from-root). It remains
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to show that deg− v = 1 for each v ∈ V \ {r}. So let v ∈ V \ {r}. Clearly,
deg− v ≥ 1.

See Spring 2022 Lecture 15 for the rest.

To get closer to the proof of the first theorem we claimed today, let us define
a few more things and prove a few more lemmas:

Proposition 5.6.5. Let T = (V, E, φ) be a tree. Let r ∈ V be a vertex of T. Let
e be an edge of T, and let u and v be its two endpoints.

Then, the distances d (r, u) and d (r, v) differ by exactly 1. That is, we have
d (r, u) = d (r, v) + 1 or d (r, v) = d (r, u) + 1.

Proof. Consider the path p from r to u and the path q from r to v. If p does
not contain e, then we can attach e and v to p and obtain q, so we get d (r, v) =
d (r, u) + 1. If p does contain e, then p must end with e, so that we can remove
e and u from p and obtain q, so we get d (r, u) = d (r, v) + 1.

Definition 5.6.6. Let T = (V, E, φ) be a tree. Let r ∈ V be a vertex of T. Let e
be an edge of T. As we just showed, the distances from r to the endpoints of
e differ by 1. So one of them is smaller than the other.

1. We define the r-parent of e to be the endpoint of e whose distance from
r is smaller than the other. We call it e−r.

2. We define the r-child of e to be the endpoint of e whose distance from
r is larger than the other. We call it e+r.

Definition 5.6.7. Let T = (V, E, φ) be a tree. Let r ∈ V be a vertex of T. Then,
we define a multidigraph Tr→ by

Tr→ := (V, E, ψ) ,

where ψ : E → V × V is the map that sends each edge e ∈ E to the pair
(e−r, e+r). Colloquially, this means that Tr→ is the multidigraph obtained
from T by turning each edge e into an arc from its r-parent e−r to its r-child
e+r (that is, “orienting it away from r”).

Now, we can rewrite the theorem whose proof we still owe as follows:

Theorem 5.6.8. Let D be a multidigraph, and let r be a vertex of D. Then,
the following two statements are equivalent:

• C1: The multidigraph D is an arb from r.

• C2: The undirected multigraph Dund is a tree, and we have D =(
Dund)r→

.
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We are still not quite ready to prove it. Two lemmas:

Lemma 5.6.9. Let T = (V, E, φ) be a tree. Let r ∈ V be a vertex of T. Then,
the multidigraph Tr→ is an arb from r.

Proof. All we need to show is that r is a from-root of Tr→.
Let v be a vertex of T. Then, T has a path p from r to v. As we walk along

this path, the distance from the root increases by 1 at each step. This means
that this path crosses each edge in the parent-to-child direction. Thus, it is also
a path in the digraph Tr→. Hence, Tr→ has a path from r to v. This shows that
r is a from-root of Tr→.

Lemma 5.6.10. Let D = (V, A, ψ) be an arb from r. Let a ∈ A be an arc of D.
Let s be the source of a, and let t be the target of a. Then:

1. We have d (r, s) < d (r, t), where d means the distance on the tree Dund.

2. In the multidigraph
(

Dund)r→
, the arc a has source s and target t.

Proof. For Claim 1, we observe that the unique walk from r to t must use the
arc a (otherwise, a would be useless and could be thrown away), so the unique
path from r to t in the tree Dund must use the edge a. Hence, s is on this path.
Thus, d (r, s) < d (r, t). Therefore, Claim 2 follows.

Now we can finally prove the theorem:

Theorem 5.6.11. Let D be a multidigraph, and let r be a vertex of D. Then,
the following two statements are equivalent:

• C1: The multidigraph D is an arb from r.

• C2: The undirected multigraph Dund is a tree, and we have D =(
Dund)r→

.

Proof. Proof of C1=⇒C2: Assume C1. Then, Dund is a tree (by the arborescence
equivalence theorem). To show that D =

(
Dund)r→

, we must prove that after
we forget the directions of the arcs of D and recover them again using the
parent-to-child orientation, we actually find the original directions. But this is
what the last lemma claims. Thus, C2 follows.

Proof of C2=⇒C1: Assume C2. We must prove C1.
Our second-to-last lemma says that

(
Dund)r→

is an arb from r (since Dund is
a tree). Since D =

(
Dund)r→

, we conclude that D is an arb from r. Thus, C1
follows.
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So far we have been considering r as fixed. A digraph can have many from-
roots (or none). However, an arborescence can only have one:

Proposition 5.6.12. Let D be an arb from r. Then, r is the only from-root of
D.

Proof. Statement A6 in the arborescence equivalence theorem reveals that the
from-root of an arb is the unique vertex having indegree 0. So it is unique.

Definition 5.6.13. An arborescence means a multidigraph D that is an arb
from r for some vertex r. This r is unique (as we just showed), and we shall
call it the root of this arborescence.

Theorem 5.6.14. There are two mutually inverse maps

{pairs (T, r) of a tree T and a vertex r of T} → {arborescences} ,
(T, r) 7→ Tr→

and

{arborescences} → {pairs (T, r) of a tree T and a vertex r of T} ,

D 7→
(

Dund, root of D
)

.

So an arborescence is “the same as” a tree T equipped with a chosen vertex
r.

Proof. Follows easily from the above results.

5.7. Spanning arborescences

In analogy to spanning subgraphs of a multigraph, we can define spanning
subdigraphs of a multidigraph:

Definition 5.7.1. A spanning subdigraph of a multidigraph D = (V, A, ψ)
means a multidigraph of the form (V, B, ψ |B) for some subset B of A.

So a spanning subdigraph D has all the vertices of D but may miss some of
the arcs.

Definition 5.7.2. Let D be a multidigraph. Let r be a vertex of D. A span-
ning arborescence of D rooted from r (short: sparb of D from r) means a
spanning subdigraph of D that is an arborescence rooted from r.
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Theorem 5.7.3. Let D be a multidigraph. Let r be a from-root of D. Then, D
has a spanning arborescence rooted from r.

Note that this is an actually an “if and only if”: If D has a spanning arbores-
cence rooted from r, then r must be a from-root of D, since you can use the
arborescence to get from r to any vertex of D.

Proof of the theorem. We proved the analogous property of undirected graphs in
four different ways. The first proof definitely generalizes to arborescences. I
am pretty sure the second proof does not. I think the third does. Does the
fourth?

5.8. The BEST theorem

Recall that a multidigraph D is balanced if and only if each vertex v satisfies
deg− v = deg+ v. A weakly connected balanced multidigraph has a Eulerian
circuit (by a homework set #4 problem, IIRC).

Surprisingly, there is a formula for the number of these Eulerian circuits:

Theorem 5.8.1 (The BEST theorem). Let D = (V, A, ψ) be a balanced multi-
digraph such that each vertex has indegree > 0. Fix an arc a of D, and let
r be its target. Let τ (D, r) be the number of spanning arborescences of D
rooted from r. Let ε (D, a) be the number of Eulerian circuits of D whose last
arc is a. Then,

ε (D, a) = τ (D, r) · ∏
u∈V

(
deg− u − 1

)
!.

BEST = de Bruijn, van Aardenne-Ehrenfest, Smith and Tutte.
Next time: a proof of this theorem.
Afterwards: a way to compute τ (D, r).
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Lecture 11

Recall from last time:

Theorem 5.8.2 (The BEST theorem). Let D = (V, A, ψ) be a balanced multi-
digraph such that each vertex has indegree > 0. Fix an arc a of D, and let
r be its target. Let τ (D, r) be the number of spanning arborescences of D
rooted from r. Let ε (D, a) be the number of Eulerian circuits of D whose last
arc is a. Then,

ε (D, a) = τ (D, r) · ∏
u∈V

(
deg− u − 1

)
!.

Today we will prove this theorem.
The best way to visualize this proof involves first reversing all the arcs of D.

So let me introduce “reverse versions” of the existing terminology for arbores-
cences:

Definition 5.8.3. Let D be a multigraph. Let r be a vertex of D.

1. We say that r is a to-root of D if for each vertex v of D, the digraph D
has a path from v to r.

2. We say that D is an arborescence rooted to r (short: arb to r) if r is a
to-root of D and the undirected multigraph Dund has no cycles.

In analogy to the equivalence theorem for arbs from r, there is an equivalence
theorem for arbs to r:

Theorem 5.8.4 (arborescence equivalence theorem, opposite version). Let
D = (V, A, ψ) be a multidigraph with a to-root r. Then, the following six
statements are equivalent:

• A’1: The multidigraph D is an arb to r. (This means that Dund has no
cycles.)

• A’2: We have |A| = |V| − 1.

• A’3: The multidigraph Dund is a tree.

• A’4: For each vertex v ∈ V, the multidigraph D has a unique walk from
v to r.

• A’5: If we remove any arc from D, then r will no longer be a to-root.

• A’6: We have deg+ r = 0, and each v ∈ V \ {r} satisfies deg+ v = 1.
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You can translate between arbs from r and arbs to r by reversing the direction
of each arc:

Definition 5.8.5. Let D = (V, A, ψ) be a multidigraph. Then, Drev shall
denote the multidigraph (V, A, τ ◦ ψ), where τ : V × V → V × V is the map
that sends each pair (s, t) to (t, s). So any arc of D with source s and target t
becomes an arc with source t and target s in Drev.

Now, any walk or path of D can be reversed and thus becomes a walk or path
of Drev. Thus, to-roots of D become from-roots of Drev and vice versa. Arbs
from r become arbs to r, and vice versa.

We can use this dictionary to translate the BEST theorem:

Theorem 5.8.6 (The WORST theorem). Let D = (V, A, ψ) be a balanced mul-
tidigraph such that each vertex has outdegree > 0. Fix an arc a of D, and let
r be its source. Let τ (D, r) be the number of spanning arborescences of D
rooted to r. Let ε (D, a) be the number of Eulerian circuits of D whose first
arc is a. Then,

ε (D, a) = τ (D, r) · ∏
u∈V

(
deg+ u − 1

)
!.

The WORST theorem is equivalent to the BEST one, but is a bit easier to
prove since it is more natural to walk forward than to walk backwards.

Proof of the WORST theorem. An a-Eulerian circuit will mean an Eulerian circuit
of D whose first arc is a.

Let e be an a-Eulerian circuit. Its first arc is a; thus, its first and last vertex is
r.

Being a Eulerian circuit, e must contain each arc of D and therefore each
vertex of D (since each vertex of D has outdegree > 0). For each vertex u ̸= r,
we let e (u) be the last exit of e from u, that is, the last arc of e that has source
u.

Let Exit e denote the set of these last exits e (u) for all vertices u ̸= r. Then
we claim:

Claim 1: This set Exit e (or, more precisely, the corresponding span-
ning subdigraph (V, Exit e, ψ |Exit e)) is a sparb of D to r (this is
short for “spanning arborescence of D rooted to r”).

Let’s assume for a moment that Claim 1 is proven. Thus, given any a-
Eulerian circuit a, we have constructed a sparb of D to r, which we will just
call Exit e. (For any subset B of A, we identify B with the spanning subdigraph
(V, B, ψ |B) of D.)

Now, how many a-Eulerian circuits a lead to a given sparb in this way?
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Claim 2: For each sparb B of D to r, there are exactly ∏
u∈V

(
deg+ u − 1

)
!

many a-Eulerian circuits e such that Exit e = B.

Once Claim 1 and 2 are both proved, we will obtain a ∏
u∈V

(
deg+ u − 1

)
!-

to-1 correspondence between the a-Eulerian circuits and the sparbs of D to r.
Thus, it will follow that the number of the former is ∏

u∈V

(
deg+ u − 1

)
! times

the number of the latter. Hence, the theorem will follow. So we need to prove
Claim 1 and Claim 2.

Proof of Claim 1. We notice that any vertex of Exit e (more precisely, (V, Exit e, ψ |Exit e))
has outdegree 1, except for r, which has outdegree 0. So it remains to show that
r is a to-root of Exit e.

So let v ∈ V be any vertex. We must show that Exit e has a walk from v to
r. In other words, we must show that we can get from v to r by following only
the last exit arcs. Either we can keep walking forever, or we eventually run into
r. If we run into r, then we are done. So we must show that we won’t keep
walking forever.

However, this follows by looking at the arcs along which we walk. All of
these arcs are last exit arcs of e, and each of them comes earlier in e than the
next (because after e enters a vertex, it must exit that vertex). So our walk uses
arcs that come progressively later and later in e. Hence, it cannot go on forever.
Thus, Claim 1 is proved.

Proof of Claim 2. Let B be a sparb to r. We must prove that there are exactly
∏

u∈V

(
deg+ u − 1

)
! many a-Eulerian circuits e such that Exit e = B.

We shall refer to the arcs in B as the B-arcs. We thus are looking for a-Eulerian
circuits e that use these B-arcs as a “last resort”, i.e., only use them whenever
all the other outgoing arcs have already been used.

We construct such a circuit as follows:
A turtle wants to walk through the digraph D using each arc of D at most

once. It starts its walk by heading out from r along the arc a. From that point
on, it proceeds in the usual way you walk on a digraph: Each time it arrives
at a vertex, it chooses an arbitrary arc leading out of this vertex, observing the
following two rules:

1. It never reuses an arc that it has already used.

2. It never uses a B-arc unless it has to (i.e., unless this B-arc is the only
unused outgoing arc from its current position).

Clearly, the turtle will eventually get stuck at some vertex.
Let w be the total walk that the turtle has traced by the time it got stuck.

Thus, w is a trail that starts with r and a.
First, we claim that w is a closed walk (i.e., ends at r).
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[Proof: Assume the contrary. Thus, w ends at a vertex u ̸= r. Hence, the turtle
must have entered u more often that it has exited u. Thus, deg− u = deg+ u
since D is balanced. This is a contradiction, since it means that the turtle still
has at least one arc to exit on and thus cannot be stuck.]

So w is a circuit. We shall next show that w is a Eulerian circuit.
To do so, we need one more notion: A vertex u of D will be called exhausted

if each outgoing arc from u appears in w. So we must show that all vertices of
D are exhausted.

The vertex r is definitely exhausted (since the turtle gets stuck at r).\
Let us now show that every vertex u is exhausted.
[Proof: Assume the contrary. Thus, there exists a vertex u that is not ex-

hausted. Consider this u. Since B is an arb to r, there is a path p from u to r
that uses only B-arcs. This path p starts at the non-exhausted vertex u but ends
at the exhausted vertex r.

Let pi be the first exhausted vertex on this path p. Then, i ̸= 0, so that the
preceding vertex pi−1 is not exhausted. Since p is a path, there is a B-arc from
pi−1 to pi.

Since pi is exhausted, the circuit w contains each arc outgoing from pi. Since
deg− (pi) = deg+ (pi), this means that w also contains each arc incoming into
pi. In particular, w contains the B-arc from pi−1 to pi. But this means that w
contains each arc outgoing from pi−1 (since the turtle only uses B-arcs if it has
exhausted all other options). Therefore, pi−1 is exhausted. Contradiction!]

So every vertex u is exhausted, and thus w is a Eulerian circuit. Since w
starts with a, this means that w is an a-Eulerian circuit.

Now, let us analyze the choices that the turtle has made along its way. Every
time the turtle is at a vertex u ∈ V, it has to decide which arc it takes next; this
arc has to be an unused arc with source u, subject to the conditions that

1. if u ̸= r, then the B-arc has to be used last;

2. if u = r, then a has to be used first.

Let us count how many options the turtle has in total. To clarify this argu-
ment, we modify the procedure somewhat: Instead of deciding ad-hoc which
arc to take, the turtle should now make all its decisions before embarking on
its trip. To do so, it chooses, for each vertex u ∈ V, a total order on the set of
all arcs with source u, such that

1. if u ̸= r, then the B-arc comes last in this order, and

2. if u = r, then a comes first in this order.

Note that this total order can be chosen in
(
deg+ u − 1

)
! many ways. Thus,

in total, there are ∏
u∈V

(
deg+ u − 1

)
! many ways in which the turtle can choose
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these orders. Once these orders have been chosen, the turtle proceeds deter-
ministically, using these orders to decide which arc it follows.

So the turtle has ∏
u∈V

(
deg+ u − 1

)
! many options, and each option leads to a

different a-Eulerian circuit e satisfying Exit e = B (why different? because the
orders chosen by the turtle are reflected in the orders in which the arcs appear
in e). Moreover, any a-Eulerian circuit e satisfying Exit e = B can be obtained
from one of these options.

So we get a bijection between the turtle’s options and the a-Eulerian circuits e
satisfying Exit e = B. Thus, the number of the latter circuits equals the number
of the former options, which is ∏

u∈V

(
deg+ u − 1

)
!. This proves Claim 2.]

With Claims 1 and 2 proved, we are almost done. The map

{a-Eulerian circuits of D} → {sparbs to r} ,
e 7→ Exit e

is well-defined (by Claim 1). Furthermore, Claim 2 shows that this map is a
∏

u∈V

(
deg+ u − 1

)
!-to-1 correspondence (recall: an m-to-1 correspondence means

a map f : X → Y such that each y ∈ Y has exactly m preimages under f ).
Hence, the multijection principle says that

(the number of a-Eulerian circuits of D)

= (the number of sparbs of r) · ∏
u∈V

(
deg+ u − 1

)
!.

In other words,
ε (D, a) = τ (D, r) · ∏

u∈V

(
deg+ u − 1

)
!.

The WORST theorem (and thus also the BEST theorem) is proved.

Corollary 5.8.7. Let D = (V, A, ψ) be a balanced multidigraph. For each
vertex r ∈ V, let τ (D, r) be the number of spanning arborescences of D
rooted to r. Then, τ (D, r) does not depend on r.

Proof. WLOG assume that |V| > 1 and deg+ v > 0 for all v ∈ V. Thus, we can
apply the WORST theorem.

Let r and s be two vertices of D. We want to prove τ (D, r) = τ (D, s).
Pick an arc a with source r and an arc b with source s. Then, the WORST

theorem yields

ε (D, a) = τ (D, r) · ∏
u∈V

(
deg+ u − 1

)
! and

ε (D, b) = τ (D, s) · ∏
u∈V

(
deg+ u − 1

)
!.
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The LHSs of these equalities are equal (since rotation of Eulerian circuits
shows that ε (D, a) = ε (D, b)). Hence, the RHSs are equal. Cancelling ∏

u∈V

(
deg+ u − 1

)
!

(which is nonzero), we obtain τ (D, r) = τ (D, s), qed.

Next time, we will see how to compute τ (D, r): the matrix-tree theorem
(better, matrix-arborescence theorem).

5.9. Spanning arborescences vs. spanning trees

As we have learned previously, an arborescence is essentially just a tree, di-
rected “properly”. Is there also such a relation between spanning arborescences
and spanning trees?

In a way, yes. Let us explain this for the case of a bidirected digraph – i.e., of
a digraph Gbidir where G is an undirected multigraph.

Proposition 5.9.1. Let G = (V, E, φ) be a multigraph. Fix a vertex r ∈ V.
Recall that the arcs of Gbidir are the pairs (e, i) ∈ E × {1, 2}. Identify each
spanning tree of G with its edge set, and each spanning arborescence of
Gbidir with its arc set.

If B is a spanning arborescence of Gbidir rooted to r, then we set

B := {e | (e, i) ∈ B} .

Then:

1. If B is a spanning arborescence of Gbidir rooted to r, then B is a spanning
tree of G.

2. The map{
spanning arborescences of Gbidir rooted to r

}
→ {spanning trees of G} ,

B 7→ B

is a bijection.

Proof. Annoying belaboring of trivialities. See Spring 2022 Lecture 18.

5.10. The matrix-tree theorem

So counting spanning trees in a multigraph is a particular case of counting
spanning arborescences (rooted to a given vertex) in a multidigraph. But how
do we do either? Let us start with simple examples:
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Example 5.10.1. The complete graph K1 has 1 spanning tree.
The complete graph K2 has 1 spanning tree.
The complete graph K3 has 3 spanning trees.
The complete graph K4 has 16 spanning trees.
The complete graph K5 has 125 spanning trees.

A bit more data suggests a strange conjecture: Kn seems to have nn−2 span-
ning trees.

Next time we will see why.
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Lecture 12

Last time, we conjectured that for any positive integer n, the number of span-
ning trees of the complete graph Kn is nn−2.

Today, we will prove this. But more importantly, we will prove a formula
for the number of spanning trees of any graph, or, even more generally, for the
number of spanning arborescences of a digraph.

First some notation:

Definition 5.10.2. We will use the Iverson bracket notation: If A is any
logical statement, then

[A] =

{
1, if A is true;
0, if A is false.

For example, [K2 is a tree] = 1 but [K3 is a tree] = 0.

Definition 5.10.3. Let M be a matrix. Let i and j be two integers. Then,

Mi,j will mean the entry of M in row i and column j;

M∼i,∼j will mean the matrix M with row i and column j removed.

For example, a b c
d e f
g h i


2,3

= f and

 a b c
d e f
g h i


∼2,∼3

=

(
a b
g h

)
.

Now, we shall assign a matrix to any multidigraph:

Definition 5.10.4. Let D = (V, A, ψ) be a multidigraph. Assume that V =
{1, 2, . . . , n} for some n ∈ N.

For any i, j ∈ V, we let ai,j be the # of arcs of D that have source i and
target j. (As usual, # means “number”.)

The Laplacian of D is defined to be the n × n-matrix L ∈ Zn×n whose
entries are given by

Li,j =
(
deg+ i

)︸ ︷︷ ︸
outdegree of i

· [i = j]︸ ︷︷ ︸
This is also

known as δi,j

−ai,j for all i, j ∈ V.

In other words, it is the matrix

L =


deg+ 1 − a1,1 −a1,2 · · · −a1,n

−a2,1 deg+ 2 − a2,2 · · · −a2,n
...

... . . . ...
−an,1 −an,2 · · · deg+ n − an,n

 .
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Note that loops do not matter for L.

Proposition 5.10.5. Let D = (V, A, ψ) be a multidigraph. Assume that
V = {1, 2, . . . , n} for some positive integer n. Then, the Laplacian L of D
is singular, i.e., it satisfies det L = 0.

Proof. The sum of the columns (as vectors) is the zero vector, because for each
i ∈ V we have

n

∑
j=1

((
deg+ i

)
· [i = j]− ai,j

)
=

n

∑
j=1

(
deg+ i

)
· [i = j]︸ ︷︷ ︸

=deg+ i

−
n

∑
j=1

ai,j︸ ︷︷ ︸
=deg+ i

= deg+ i − deg+ i = 0.

This means that the vector (1, 1, . . . , 1)T lies in the nullspace of L. Thus, L has
a nontrivial nullspace, i.e., is singular.

Much more interesting is the following:

Theorem 5.10.6 (Matrix-Tree Theorem). Let D = (V, A, ψ) be a multidigraph.
Assume that V = {1, 2, . . . , n} for some positive integer n.

Let L be the Laplacian of D. Let r be a vertex of D. Then,

(# of spanning arborescences of D rooted to r) = det (L∼r,∼r) .

Before we prove this, some remarks:

• The determinant det (L∼r,∼r) is the (r, r)-th entry of the adjugate matrix
of L.

• The V = {1, 2, . . . , n} assumption is a typical WLOG assumption. You can
always ensure that it holds by renaming the vertices of D. You can even
avoid it altogether if you are fine with V × V-matrices.

Now, let us use the Matrix-Tree Theorem (short MTT) to count the spanning
trees of Kn.

We fix a positive integer n. Let L be the Laplacian of the multidigraph Kbidir
n

(where Kn, as we recall, is the complete graph on {1, 2, . . . , n}). Then, each
vertex of Kbidir

n has outdegree n − 1, and thus we have

L =


n − 1 −1 · · · −1
−1 n − 1 · · · −1

...
... . . . ...

−1 −1 · · · n − 1


n×n
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(all diagonal entries are n − 1, while all other entries are −1). By a proposition
from last time, there is a bijection between{

spanning arborescenes of Kbidir
n rooted to 1

}
and {spanning trees of Kn} .

Hence, by the bijection principle,

(# of spanning trees of Kn)

=
(

# of spanning arborescenes of Kbidir
n rooted to 1

)
= det (L∼1,∼1) (by the MTT)

= det


n − 1 −1 · · · −1
−1 n − 1 · · · −1

...
... . . . ...

−1 −1 · · · n − 1


(n−1)×(n−1)

.
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How do we compute this determinant?

det


n − 1 −1 · · · −1
−1 n − 1 · · · −1

...
... . . . ...

−1 −1 · · · n − 1


(n−1)×(n−1)

= det



n − 1 −1 −1 −1 · · · −1
−1 n − 1 −1 −1 · · · −1
−1 −1 n − 1 −1 · · · −1
−1 −1 −1 n − 1 · · · −1

...
...

...
... . . . ...

−1 −1 −1 −1 · · · n − 1


(n−1)×(n−1)

= det



n − 1 −1 −1 −1 · · · −1
−n n 0 0 · · · 0
−n 0 n 0 · · · 0
−n 0 0 n · · · 0

...
...

...
... . . . ...

−n 0 0 0 · · · n


(n−1)×(n−1)

= det


n 0 0 · · · 0
0 n 0 · · · 0
0 0 n · · · 0
...

...
... . . . ...

0 0 0 · · · n



·

(n − 1)−
(
−1 −1 −1 · · · −1

)


n 0 0 · · · 0
0 n 0 · · · 0
0 0 n · · · 0
...

...
... . . . ...

0 0 0 · · · n


−1

−n
−n
−n

...
−n




(

by the formula for the determinant
in terms of the Schur complement

)
= nn−2 ·

(
(n − 1)− n (n − 2)

n

)
= nn−2.

See the notes (Lecture 18 Spring 2022) for three other ways to compute it.
So, if we can prove the MTT, we obtain:

Theorem 5.10.7 (Cayley’s formula). Let n be a positive integer. Then, the #
of spanning trees of Kn is nn−2.

In other words, the # of simple graphs with vertex set {1, 2, . . . , n} that are
trees is nn−2.
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There are several beautiful combinatorial proofs of this formula as well. I
can particularly recommend the one of Joyal (e.g., Leinster’s AMM paper from
2019) and also the Prüfer code proof (in most textbooks). See the 2022 notes for
references.

We will however complete our algebraic proof by proving the MTT.
First, a bunch of lemmas.

Lemma 5.10.8. Let D = (V, A, ψ) be a multidigraph. Let r be a vertex of D.
Assume that D has no cycles and no arcs with source r. Assume furthermore
that each vertex v ∈ V \ {r} has outdegree 1. Then, D is an arborescence
rooted to r.

Proof. We need to show that r is a to-root. Once this is shown, the dual ar-
borescence equivalence theorem will give us the rest (since the outdegrees are
deg+ r = 0 and deg+ v = 1).

In other words, we need to show that there is a walk from u to r for each
u ∈ V.

Let u ∈ V. Start at u and keep walking. There is always an arc to follow until
you arrive at r. This walk cannot go on forever without revisiting a vertex. But
if it does revisit a vertex, you get a cycle, which is not allowed. So you will
arrive at r eventually, qed.

Now, here is our strategy for proving the MTT:

1. First, we will prove it in the case when each vertex v ∈ V \ {r} has outde-
gree 1. In this case, removing all the arcs with source r, we have essentially
two options (subcases): either D is itself an arborescence or D has a cycle.

2. Then, we will prove the MTT in the slightly more general case when each
v ∈ V \ {r} has outdegree ≤ 1. This is easy, since a vertex v ∈ V \ {r} of
outdegree 0 trivializes the theorem.

3. Finally, we will prove the MTT in the general case. This is done by strong
induction on the number of arcs of D. Every time you have a vertex
v ∈ V \ {r} with outdegree > 1, you can pick such a vertex and color
the outgoing arcs from it red and blue such that each color is used at
least once. Then, you can consider the subdigraph Dred of D which has
only the red arcs (and the uncolored ones), and the subdigraph Dblue of D
which has only the blue arcs (and the uncolored ones). By the induction
hypothesis, the MTT holds for Dred and for Dblue. Adding these equalities
together, you get it for D as well.

Step 1 is the hard one. We first study a very special case:
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Lemma 5.10.9. Let D = (V, A, ψ) be a multidigraph. Let r be a vertex of D.
Assume that D has no cycles and has no arcs with source r. Assume that
each vertex v ∈ V \ {r} has outdegree 1. Then:

(a) The digraph D has a unique spanning arborescence rooted to r.

(b) Assume that V = {1, 2, . . . , n} for some n ∈ N. Let L be the Laplacian
of D. Then, det (L∼r,∼r) = 1.

Proof. (a) The previous lemma tells us that D itself is an arborescence rooted to
r. Hence, it is a sparb (= spanning arborescence rooted) to r. If you remove an
arc, you lose this, so it is the only sparb.

(b) This can be derived from the existence of a toposort for D (see Exercise
5 (a) on homework set #6). Permuting the rows and the columns of L∼r,∼r
to ensure that they appear in the same order in this matrix as they appear
in this toposort, we can make this matrix upper-triangular, and therefore its
determinant is 1 · 1 · · · · · 1 = 1 (since the diagonal entries are 1).

Another proof: We recall how determinants are defined.
Let r = n WLOG. (Otherwise, permute the vertices.)
Let Sn−1 denote the group of permutations of the set {1, 2, . . . , n − 1} = V \

{r}.
Then, the Leibniz formula (= the definition) for the determinant yields

det (L∼r,∼r) = det (L∼n,∼n) = ∑
σ∈Sn−1

sign σ ·
n−1

∏
i=1

Li,σ(i).

Now we claim that the product
n−1
∏
i=1

Li,σ(i) is 0 for any σ ∈ Sn−1 that is distinct

from id.
To do so, we assume the contrary. Thus, there exists a permutation σ ̸= id

such that
n−1
∏
i=1

Li,σ(i) ̸= 0. Consider this σ.

Thus, for each i ∈ {1, 2, . . . , n − 1}, we have Li,σ(i) ̸= 0, which means that
σ (i) either equals i or has an incoming arc from i.

However, not being the identity, the permutation σ must have a nontrivial
cycle (

j, σ (j) , σ2 (j) , σ3 (j) , . . . , σk−1 (j) , σk (j) = j
)

with k > 1.

Since it is nontrivial, its consecutive entries are never equal. Thus, the digraph
D has an arc from j to σ (j), an arc from σ (j) to σ2 (j), an arc from σ2 (j) to
σ3 (j), and so on. But this means that D has a cycle, which contradicts our
assumption.
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So we have shown that
n−1
∏
i=1

Li,σ(i) = 0 for all σ ̸= id.

Hence,

det (L∼r,∼r) = ∑
σ∈Sn−1

sign σ ·
n−1

∏
i=1

Li,σ(i)

= sign id︸ ︷︷ ︸
=1

·
n−1

∏
i=1

Li,id(i)︸ ︷︷ ︸
=Li,i

=deg+ i−ai,i
=deg+ i

=1 (by assumption)

= 1.

Next, we drop the “no cycles” condition:

Lemma 5.10.10. Let D = (V, A, ψ) be a multidigraph. Let r be a vertex of D.
Assume that each vertex v ∈ V \ {r} has outdegree 1. Then, the MTT holds
for D and r.

Proof. First of all, we WLOG assume that D has no arcs with source r, since
such arcs can be removed without modifying anything in the MTT.

Next, we WLOG assume that r = n.
Now, we are in one of the following two cases:
Case 1: The digraph D has a cycle.
Case 2: The digraph D has no cycles.
Consider Case 1. Here, D has a cycle v = (v1, ∗, v2, ∗, . . . , ∗, vm). This cycle

v cannot contain r (since D has no arcs with source r). We WLOG assume that
v = (1, ∗, 2, ∗, 3, ∗, . . . , ∗, m − 1, ∗, 1) (by renaming the vertices).

The first m − 1 rows of L thus look as follows:

1 −1 0 · · · 0 0 0 0 · · · 0
0 1 −1 · · · 0 0 0 0 · · · 0
0 0 1 · · · 0 0 0 0 · · · 0
...

...
... . . . ...

...
...

... . . . ...
0 0 0 · · · 1 −1 0 0 · · · 0
−1 0 0 · · · 0 1 0 0 · · · 0

.

The sum of these rows (as vectors) is the zero vector. Hence, det (L∼r,∼r) = 0
(since these rows are also rows of L∼r,∼r, at least if you remove the r-th column).

Now, to prove that the MTT holds, we have to show that the # of sparbs to
r is also 0. But this is clear, since r is not accessible from any of the vertices
1, 2, . . . , m − 1.
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So the MTT boils down to 0 = 0 in this case.
Now let us consider Case 2. In this case, D has no cycles. Hence, the previous

lemma tells us that the MTT boils down to 1 = 1.
In either case, we have proved the MTT for our D and r.

For Step 2, we extend our level of generality a bit higher:

Lemma 5.10.11. Let D = (V, A, ψ) be a multidigraph. Let r be a vertex of
D. Assume that each vertex v ∈ V \ {r} has outdegree ≤ 1. Then, the MTT
holds for D and r.

Proof. If each vertex v ∈ V \ {r} has outdegree 1, then this follows from the
previous lemma.

So assume not. Then, some vertex v ∈ V \ {r} has outdegree 0. Therefore,
the (essentially) v-th row of L∼r,∼r is 0. So det (L∼r,∼r) = 0.

Furthermore, D has no sparbs to r (since you cannot get from v to r).
So the MTT says that 0 = 0, which we agree with.

Finally, Step 3:

Proof of the MTT in the general case. We introduce a notation:

Let M and N be two n × n-matrices that agree in all but one row.
That is, there exists some j ∈ {1, 2, . . . , n} such that for each i ̸= j,
we have

(the i-th row of M) = (the i-th row of N) .

Then, we write M
j
≡ N. Furthermore, we let M

j
+ N be the n × n-

matrix that is obtained from M by adding the j-th row of N to the
j-th row of M (while leaving all remaining rows unchanged).

For instance, if M =

 a b c
d e f
g h i

 and N =

 a b c
d′ e′ f ′

g h i

, then M
2≡ N

and

M
2
+ N =

 a b c
d + d′ e + e′ f + f ′

g h i

 .

A well-known property of determinants (the multilinearity of the determi-

nant) says that if M and N are two n × n-matrices that satisfy M
j
≡ N for some

j, then

det
(

M
j
+ N

)
= det M + det N.
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Now, let us prove the MTT. We proceed by strong induction on the # of arcs
of D.

Induction step: Let m ∈ N. Assume (as the induction hypothesis, short IH)
that the MTT holds for all digraphs D that have < m arcs. We must now prove
it for our digraph D with m arcs.

WLOG assume that r = n.
If each vertex v ∈ V \ {r} has outdegree ≤ 1, then the MTT holds by the

previous lemma.
Thus, we WLOG assume that some v ∈ V \ {r} has outdegree > 1. Fix such

a v, and color each arc with source v either red or blue, making sure that at
least one arc is red and at least one arc is blue. All arcs whose source is not v
remain uncolored.

Let Dred be the digraph obtained from D by removing the blue arcs. By the
IH, the MTT holds for Dred, so we have(

# of sparbs of Dred to r
)
= det

(
Lred
∼r,∼r

)
,

where Lred is the Laplacian of Dred.
Let Dblue be the digraph obtained from D by removing the redcs. By the IH,

the MTT holds for Dblue, so we have(
# of sparbs of Dblue to r

)
= det

(
Lblue
∼r,∼r

)
,

where Lblue is the Laplacian of Dblue.
Now, I claim that Lred

∼r,∼r
v≡ Lblue

∼r,∼r (indeed, Lred v≡ Lblue) and

Lred
∼r,∼r

v
+ Lblue

∼r,∼r = L∼r,∼r

(indeed, Lred v
+ Lblue = L). Hence, the multilinearity of the determinant yields

det
(

Lred
∼r,∼r

v
+ Lblue

∼r,∼r

)
= det

(
Lred
∼r,∼r

)
+ det

(
Lblue
∼r,∼r

)
.

Thus,

det (L∼r,∼r)

= det
(

Lred
∼r,∼r

v
+ Lblue

∼r,∼r

)
= det

(
Lred
∼r,∼r

)
+ det

(
Lblue
∼r,∼r

)
=
(

# of sparbs of Dred to r
)
+
(

# of sparbs of Dblue to r
)

= (# of sparbs of D to r) .

This completes the induction step. Thus, the MTT is proved.
(See Spring 2022 Lecture 19 for details.)
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Next time, we will combine the MTT and the BEST theorem. In particular:

Proposition 5.10.12. Let n be a positive integer. Pick any arc a of the mul-
tidigraph Kbidir

n . Then, the # of Eulerian circuits of Kbidir
n that start with a is

nn−2 · (n − 2)!n.

Proof. Think about it.
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Lecture 13

Last time, we showed:

Definition 5.10.13. Let D = (V, A, ψ) be a multidigraph. Assume that V =
{1, 2, . . . , n} for some n ∈ N.

For any i, j ∈ V, we let ai,j be the # of arcs of D that have source i and
target j.

The Laplacian of D is defined to be the n × n-matrix L ∈ Zn×n whose
entries are given by

Li,j =
(
deg+ i

)︸ ︷︷ ︸
outdegree of i

· [i = j]︸ ︷︷ ︸
This is also

known as δi,j

−ai,j for all i, j ∈ V.

In other words, it is the matrix

L =


deg+ 1 − a1,1 −a1,2 · · · −a1,n

−a2,1 deg+ 2 − a2,2 · · · −a2,n
...

... . . . ...
−an,1 −an,2 · · · deg+ n − an,n

 .

Theorem 5.10.14 (Matrix-Tree Theorem). Let D = (V, A, ψ) be a multidi-
graph. Assume that V = {1, 2, . . . , n} for some positive integer n.

Let L be the Laplacian of D. Let r be a vertex of D. Then,

(# of spanning arborescences of D rooted to r) = det (L∼r,∼r) .

Meanwhile, det L = 0 (if D has at least 1 vertex).
We applied this to D = Kbidir

n , and this gave us

(# of spanning trees of Kn)

= (# of spanning arborescences of Kn rooted to 1)

= nn−2

(Cayley’s theorem).
I stated but did not the prove:

Proposition 5.10.15. Let n be a positive integer. Pick any arc a of the multi-
digraph Kbidir

n . Then, the # of Eulerian circuits of Kbidir
n whose first arc is a is

nn−2 · (n − 2)!n.



Lecture diary Spring 2023, version June 10, 2023 page 96

Proof. Let r be the source of a. The WORST theorem then yields(
# of Eulerian circuits of Kbidir

n whose first arc is a
)

=
(

# of spanning arborescences of Kbidir
n rooted to r

)
︸ ︷︷ ︸

=(# of spanning trees of Kn)
=nn−2

·
n

∏
u=1

deg+ u︸ ︷︷ ︸
=n−1

−1

!

= nn−2 ·
n

∏
u=1

(n − 2)! = nn−2 · (n − 2)!n.

In comparison, very little is known about the # of Eulerian circuits in the
undirected Kn. See a homework exercise for one thing you can say about this
number. (A135388 in the OEIS)

Remark 5.10.16. Cayley’s theorem tells us how many n-vertex trees there are
where the vertices are 1, 2, . . . , n. These are called labelled trees.

In contrast, unlabelled trees are equivalence classes of labelled trees under
isomorphism.

How many unlabelled trees are there with n vertices?
The closest we can get to an answer to this question is an approximate

formula (Otter 1948):

≈ β
αn

n5/2 with α ≈ 2.955 and β ≈ 0.5349.

5.11. The undirected MTT

The Matrix-Tree Theorem (MTT) can be applied to Gbidir for any undirected
graph G:

Theorem 5.11.1 (undirected MTT). Let G = (V, E, φ) be a multigraph. As-
sume that V = {1, 2, . . . , n} for some positive integer n.

Let L be the Laplacian of the digraph Gbidir. Explicitly, this is the n × n-
matrix L ∈ Zn×n whose entries are given by

Li,j = (deg i) · [i = j]− ai,j,

where ai,j is the # of edges of G that have endpoints i and j (with loops
counting twice). Then:

(a) For any vertex r of G, we have

(# of spanning trees of G) = det (L∼r,∼r) .
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(b) Let t be an indeterminate. Expand the determinant det (tIn + L) (where
In is the n × n identity matrix) as a polynomial in t:

det (tIn + L) = cntn + cn−1tn−1 + · · ·+ c1t1 + c0t0,

where c0, c1, . . . , cn are numbers. (Note that this is the characteristic
polynomial of L up to substituting −t for t and multiplying by a num-
ber of −1. Some of its coefficients are cn = 1 and cn−1 = Tr L and
c0 = det L.) Then,

(# of spanning trees of G) =
1
n

c1.

(c) Let λ1, λ2, . . . , λn be the eigenvalues of L, listed in such a way that
λn = 0 (we know that 0 is an eigenvalue of L, since L is singular).
Then,

(# of spanning trees of G) =
1
n

λ1λ2 · · · λn−1.

Proof. (a) Let r be a vertex of G. As we saw a lecture or two ago, there is a
bijection {

spanning arborescences of Gbidir rooted to r
}

→ {spanning trees of G} .

Thus,

(# of spanning trees of G)

=
(

# of spanning arborescences of Gbidir rooted to r
)

= det (L∼r,∼r) (by the MTT) .

Thus part (a).
(b) We claim that

c1 =
n

∑
r=1

det (L∼r,∼r) .

Note that this is a general linear-algebraic result that holds for any matrix L,
not just for a Laplacian of a digraph.

Here is an outline of the proof, on the example where n = 3: Let L =
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 a b c
a′ b′ c′

a′′ b′′ c′′

. Then,

det (tIn + L) = det

 t + a b c
a′ t + b′ c′

a′′ b′′ t + c′′


= (t + a)

(
t + b′

) (
t + c′′

)
+ bc′a′′ + ca′b′′

− (t + a) c′b′′ − c
(
t + b′

)
a′′ − ba′

(
t + c′′

)
.

The t-coefficient of this will be(
b′c′′ + ab′ + ac′′

)
+ 0 + 0 − c′b′′ − ca′′ − ba′

=
(
b′c′′ − c′b′′

)
+
(
ab′ − ba′

)
+
(
ac′′ − ca′′

)
= det

(
b′ c′

b′′ c′′

)
+ det

(
a c

a′′ c′′

)
+ det

(
a b
a′ b′

)
=

n

∑
r=1

det (L∼r,∼r) .

I showed a handwavy proof on the screen. More rigorous proofs can be
found in references that are in the notes (2022 Lecture 19). A slicker proof can
be given using exterior powers.

Either way, it follows that

c1 =
n

∑
r=1

det (L∼r,∼r)︸ ︷︷ ︸
=(# of spanning trees of G)

=
n

∑
r=1

(# of spanning trees of G)

= n · (# of spanning trees of G) .

Hence,

(# of spanning trees of G) =
1
n

c1.

Part (b) follows.
(c) This will follow from part (b) if we can show that

c1 = λ1λ2 · · · λn−1.

The roots of the characteristic polynomial of a matrix are its eigenvalues.
That is,

det (tIn − L) = (t − λ1) (t − λ2) · · · (t − λn) .
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Substituting −t for t here, we obtain

det (−tIn − L) = (−t − λ1) (−t − λ2) · · · (−t − λn) .

Multiplying by (−1)n, this simplifies to

det (tIn + L) = (t + λ1) (t + λ2) · · · (t + λn)

= (t + λ1) (t + λ2) · · · (t + λn−1) t (since λn = 0) .

Hence, the t-coefficient of det (tIn + L) is λ1λ2 · · · λn−1 (since this is the t-
coefficient of the RHS). In other words,

c1 = λ1λ2 · · · λn−1,

qed.

Laplacians of digraphs often have computable eigenvalues, so the restate-
ments in parts (b) and (c) can actually come quite handy. A striking example is
the n-hypercube graph Qn, whose # of spanning trees you will compute on the
HW.

Here is a simpler example, in which part (a) suffices:

Exercise 2. Let n and m be two positive integers. Let Kn,m be the simple
graph with n + m vertices

1, 2, . . . , n and − 1,−2, . . . ,−m,

where two vertices i and j are adjacent if and only if they have opposite signs
(i.e., each positive vertex is adjacent to each negative vertex, but there are no
other adjacencies).

How many spanning trees does Kn,m have?

Solution. Rename the vertices −1,−2, . . . ,−m as n+ 1, n+ 2, . . . , n+m. Then,
the Laplacian L of the digraph Kbidir

n,m can be written in block-matrix notation as
follows:

L =

(
A B
C D

)
,

where

• A is a diagonal n × n-matrix whose all diagonal entries are m.

• B is an n × m-matrix whose all entries are −1.

• C is an m × n-matrix whose all entries are −1.

• D is a diagonal m × m-matrix whose all diagonal entries are n.
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For example, if n = 3 and m = 2, then

L =


2 0 0 −1 −1
0 2 0 −1 −1
0 0 2 −1 −1
−1 −1 −1 3 0
−1 −1 −1 0 3

 .

Part (a) of the undirected MTT yields

(# of spanning trees of Kn,m) = det (L∼r,∼r) for any vertex r.

Let us apply this to r = 1. Thus we get

(# of spanning trees of Kn,m) = det (L∼1,∼1) .

Note that

L∼1,∼1 =

(
Ã B̃
C̃ D

)
,

where

• Ã is a diagonal (n − 1)× (n − 1)-matrix whose all diagonal entries are m.

• B̃ is an (n − 1)× m-matrix whose all entries are −1.

• C̃ is an m × (n − 1)-matrix whose all entries are −1.

• D is a diagonal m × m-matrix whose all diagonal entries are n.

We can thus compute det (L∼1,∼1) using the Schur complement:

det (L∼1,∼1) = det

(
Ã B̃
C̃ D

)
= det Ã · det

(
D − C̃Ã−1B̃

)

= mn−1 · det


the m × m-matrix whose all

diagonal entries are n − m−1 (n − 1)
and whose off-diagonal entries

are − m−1 (n − 1)

 .

How do we compute the determinant on the LHS?

Proposition 5.11.2. Let n ∈ N. Let x and a be two numbers. Then,

det



x a a · · · a a
a x a · · · a a
a a x · · · a a
...

...
... . . . ...

...
a a a · · · x a
a a a · · · a x


n×n︸ ︷︷ ︸

the n×n-matrix whose
diagonal entries are x and

whose off-diagonal entries are a

= (x + (n − 1) a) (x − a)n−1 .



Lecture diary Spring 2023, version June 10, 2023 page 101

Proof. The simplest approach is to subtract row 1 from all other rows, then
factor out x − a from all other rows, then add them back to row 1 with the
appropriate multiple, etc.

Using this proposition, we can finish our calculation of det (L∼1,∼1), and
obtain mn−1 · nm−1. Thus:

Theorem 5.11.3. Let n and m be two positive integers. Let Kn,m be the simple
graph with n + m vertices

1, 2, . . . , n and − 1,−2, . . . ,−m,

where two vertices i and j are adjacent if and only if they have opposite signs
(i.e., each positive vertex is adjacent to each negative vertex, but there are no
other adjacencies). Then,

(# of spanning trees of Kn,m) = mn−1 · nm−1.

This can also be proved combinatorially (Abu-Sbeih 1990).

On a sidenote, the above proposition can be generalized in two ways:

Proposition 5.11.4. Let n ∈ N. Let a1, a2, . . . , an be n numbers, and let x be a
further number. Then,

det



x a1 a2 · · · an−1 an
a1 x a2 · · · an−1 an
a1 a2 x · · · an−1 an
...

...
... . . . ...

...
a1 a2 a3 · · · x an
a1 a2 a3 · · · an x


(n+1)×(n+1)

=

(
x +

n

∑
i=1

ai

)
·

n

∏
i=1

(x − ai) .

Proposition 5.11.5. Let n ∈ N. Let x1, x2, . . . , xn be n numbers, and let a be a
further number. Then,

det



x1 a a · · · a a
a x2 a · · · a a
a a x3 · · · a a
...

...
... . . . ...

...
a a a · · · xn−1 a
a a a · · · a xn


n×n

=
n

∏
i=1

(xi − a) + a
n

∑
i=1

bi,

where we set

bi := ∏
k∈{1,2,...,n};

k ̸=i

(xk − a) for each i ∈ {1, 2, . . . , n} .
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Can you merge these two generalizations, allowing both x1, x2, . . . , xn+1 on
the diagonal and a1, a2, . . . , an outside of it? I don’t know, and I would like to!

5.12. de Bruijn sequences

Here is a puzzle: What is special about the periodic sequence

|| : 0000 1111 0110 0101 : || ?

(This is an infinite sequence of 0’s and 1’s. The spaces between some of them are
purely for readability. The || : and : || symbols are “repeat signs”, signifying
that everything between them is to be repeated over and over. For example,
|| : abc : || means abcabcabc · · · . So this sequence is

0000 1111 0110 0101 0000 1111 0110 0101 0000 1111 0110 0101 · · ·

)
Let us slide a length-4 window along this sequence:

0000 1111 0110 0101 0000 1111 0110 0101 · · ·
0 000 1 111 0110 0101 0000 1111 0110 0101 · · ·
00 00 11 11 0110 0101 0000 1111 0110 0101 · · ·
000 0 111 1 0110 0101 0000 1111 0110 0101 · · ·
0000 1111 0110 0101 0000 1111 0110 0101 · · ·
0000 1 111 0 110 0101 0000 1111 0110 0101 · · ·
0000 11 11 01 10 0101 0000 1111 0110 0101 · · ·
0000 111 1 011 0 0101 0000 1111 0110 0101 · · ·
0000 1111 0110 0101 0000 1111 0110 0101 · · ·
0000 1111 0 110 0 101 0000 1111 0110 0101 · · ·
0000 1111 01 10 01 01 0000 1111 0110 0101 · · ·
0000 1111 011 0 010 1 0000 1111 0110 0101 · · ·
0000 1111 0110 0101 0000 1111 0110 0101 · · ·
0000 1111 0110 0 101 0 000 1111 0110 0101 · · ·
0000 1111 0110 01 01 00 00 1111 0110 0101 · · ·
0000 1111 0110 010 1 000 0 1111 0110 0101 · · ·

We notice that every possible length-4 bitstring can be obtained by placing
the window somewhere on our string. In other words, as we slide the window
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to the right, the bitstrings we get do not repeat until a full period (i.e., until 16
steps).

This is similar to Gray codes. In a Gray code, you run through all bitstrings
of a given size in such a way that only a single bit is changed at each step. Here,
on the other hand, as you slide the window along the infinite sequence, at each
step, the first bit is removed and a new bit is inserted at the end.

Can we find such nice sequences for any window length, not just 4 ?
Here is an answer for window length 2:

|| : 00 11 : ||

Here is an answer for window length 3:

|| : 000 101 11 : ||

What about window length 5 ?
What about replacing bits by trits (0, 1, 2) or, more generally, elements of any

finite set K ?
Let’s give these things a name:

Definition 5.12.1. Let n and k be two positive integers, and let K be a k-
element set.

A de Bruijn sequence of order n on K means a kn-tuple (c0, c1, . . . , ckn−1)
of elements of K such that

(A) for each n-tuple (a1, a2, . . . , an) ∈ Kn of elements of K, there is a unique
r ∈ {0, 1, . . . , kn − 1} such that

(a1, a2, . . . , an) = (cr, cr+1, . . . , cr+n−1) .

Here, the indices under the letter “c” are understood to be periodic modulo
kn; that is, we set cq+kn = cq for each q ∈ Z (so that ckn = c0 and ckn+1 = c1
and so on).

We saw some examples above with K = {0, 1} (so our sequences were bit-
strings). Let us give an example with K = {0, 1, 2} and k = 3 and n = 2. Then,
the 9-tuple

(0, 0, 1, 1, 2, 2, 0, 2, 1)

is a de Bruijn sequence of order n on K, because if we label its entries as
c0, c1, . . . , c8, then

(0, 0) = (c0, c1) , (0, 1) = (c1, c2) , (0, 2) = (c6, c7) ,
(1, 0) = (c8, c9) , (1, 1) = (c2, c3) , (1, 2) = (c3, c4) ,
(2, 0) = (c5, c6) , (2, 1) = (c7, c8) , (2, 2) = (c4, c5) .
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Theorem 5.12.2 (de Bruijn, Sainte-Marie). Let n and k be positive integers.
Let K be a k-element set. Then, a de Bruijn sequence of order n on K exists.

How would you prove such a theorem? It sounds natural to encode it as a
Hamiltonian path problem, similarly to Gray codes. Gray codes were hamcs
(Hamiltonian cycles) on a graph where a change in a single bit was encoded as
an edge. Here, we can consider the digraph where a “shift” (i.e., removing the
first entry and inserting a new entry at the end) is encoded as an arc. So the
theorem claims that this digraph has a hamc.

What is the problem with this approach? Basically nothing is known about
hamcs. Just knowing that we need a hamc doesn’t help us find it.

Next time, we will see how to get around this. And not only will we prove
that a de Bruijn sequence exists, but we will even prove an exact formula for
how many such sequences there are!

Theorem 5.12.3. Let n and k be positive integers. Let K be a k-element set.
Then,

(# of de Bruijn sequences of order n on K) = k!kn−1
.

We will prove this, too!
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Lecture 14

Last time, we said:

Definition 5.12.4. Let n and k be two positive integers, and let K be a k-
element set.

A de Bruijn sequence of order n on K means a kn-tuple (c0, c1, . . . , ckn−1)
of elements of K such that

(A) for each n-tuple (a1, a2, . . . , an) ∈ Kn of elements of K, there is a unique
r ∈ {0, 1, . . . , kn − 1} such that

(a1, a2, . . . , an) = (cr, cr+1, . . . , cr+n−1) .

Here, the indices under the letter “c” are understood to be periodic modulo
kn; that is, we set cq+kn = cq for each q ∈ Z (so that ckn = c0 and ckn+1 = c1
and so on).

Theorem 5.12.5 (de Bruijn, Sainte-Marie). Let n and k be positive integers.
Let K be a k-element set. Then, a de Bruijn sequence of order n on K exists.

Theorem 5.12.6. Let n and k be positive integers. Let K be a k-element set.
Then,

(# of de Bruijn sequences of order n on K) = k!kn−1
.

Today, we shall prove these two theorems.

Proof of the first theorem. Let us reinterpret de Bruijn cycles as Eulerian circuits
of a certain digraph. Let D be the multidigraph

(
Kn−1, Kn, ψ

)
, where ψ : Kn →

Kn−1 × Kn−1 is the map given by

ψ (a1, a2, . . . , an) = ((a1, a2, . . . , an−1) , (a2, a3, . . . , an)) .

Thus, the vertices of D are the (n − 1)-tuples (not the n-tuples!) of elements of
K, and there is an arc from each (n − 1)-tuple i to each (n − 1)-tuple j if j can
be obtained from i by dropping the first entry and inserting a new entry at the
end. (NB: If n = 1, then D has only one vertex but n arcs. Anyway, the n = 1
case is trivial.)

Let us make some observations about D:

1. The multidigraph D is strongly connected.
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[Proof: If i = (i1, i2, . . . , in−1) and j = (j1, j2, . . . , jn−1) are any two vertices
of D, then there is a walk from i to j going as follows:

i = (i1, i2, . . . , in−1)

→ (i2, i3, . . . , in−1, j1)
→ (i3, i4, . . . , in−1, j1, j2)
→ · · ·
→ (j1, j2, . . . , jn−1) = j.

Note that this walk has length n − 1, and is the unique walk from i to j
that has length n − 1. This will come useful further below.]

2. Thus, the multidigraph D is weakly connected.

3. The multidigraph D is balanced, and in fact each vertex of D has outde-
gree k and indegree k.

[Proof: Just remember what the arcs of D are.]

4. The digraph D has a Eulerian circuit.

[Proof: The digraph D is balanced and weakly connected, so diEuler–
diHierholtzer yields the claim.

Alternatively, we can derive this from the BEST theorem: Pick an arbitrary
arc a of D, and let r be its source. Then, r is a from-root of D (since D is
strongly connected), and thus D has a sparb from r. In other words, using
the notations of the BEST theorem, we have τ (D, r) ̸= 0. Moreover, each
vertex of D has outdegree k > 0. Thus, the BEST theorem yields

ε (D, a) = τ (D, r)︸ ︷︷ ︸
̸=0

· ∏
u∈V

(
deg− u − 1

)
!︸ ︷︷ ︸

̸=0

̸= 0.

In other words, D has an Eulerian circuit whose last arc is a.]

So we know that D has an Eulerian circuit c. This circuit leads to a de Bruijn
sequence as follows:

Let p0, p1, . . . , pkn−1 be the arcs of c (from first to last). Extend the subscripts
periodically modulo kn (that is, set pq+kn = pq for each q ∈ N). Thus, we obtain
an infinite periodic walk with arcs p0, p1, p2, . . ., which repeats itself every kn

steps.
Then, for each i ∈ N, the last n − 1 entries of pi are the first n − 1 entries of

pi+1 (since the target of pi is the source of pi+1). Hence, for each i ∈ N and
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each s ∈ {1, 2, . . . , n}, we have

(the s-th entry of pi)

= (the (s − 1) -st entry of pi+1)

= (the (s − 2) -nd entry of pi+2) (by the same reasoning)
= · · ·
= (the 1-st entry of pi+s−1) .

Consequently, for each i ∈ N, the n entries of pi (from first to last) are pre-
cisely the first entries of the n-tuples pi, pi+1, . . . , pi+n−1.

In other words, for each i ∈ N, the n-tuple formed of the first entries of the
n-tuples pi, pi+1, . . . , pi+n−1 is exactly pi.

Hence, as i ranges from 0 to kn − 1, this n-tuple takes each possible value in
Kn exactly once (since pi takes each possible value in Kn exactly once). This
means that the sequence of the first entries of p0, p1, . . . , pkn−1 is a de Bruijn
sequence of order n on K. Hence, we have shown that such a sequence exists.

Thus the first of our theorems is proved.
De Bruijn sequences have many variants and extensions. I give a few ref-

erences in Spring 2022 Lecture 20. There are also recent results on “universal
cycles”.

How do we prove the second theorem? I.e., how do we count the de Bruijn
cycles?

We could piggyback on our above proof, but we would need a way to com-
pute τ (D, r) for our digraph D. Since our D is not of the form Gbidir, we
cannot use the undirected MTT. However, fortunately, D is balanced, and there
is a generalization of the undirected MTT for balanced digraphs:

Theorem 5.12.7 (balanced MTT). Let D = (V, A, ψ) be a balanced multidi-
graph. Assume that V = {1, 2, . . . , n} for some positive integer n.

Let L be the Laplacian of D. Then:

(a) For any vertex r of D, we have

(# of sparbs of D to r) = det (L∼r,∼r) .

Moreover, this number does not depend on r.

(b) Let t be an indeterminate. Expand the determinant det (tIn + L) (here,
In denotes the n × n identity matrix) as a polynomial in t:

det (tIn + L) = cntn + cn−1tn−1 + · · ·+ c1t1 + c0t0,
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where c0, c1, . . . , cn are numbers. (Note that this is the characteristic
polynomial of L, up to substituting −t for t and possibly multiplying
by a power of −1.) Then, for any vertex r of D, we have

(# of sparbs of D to r) =
1
n

c1.

(c) Let λ1, λ2, . . . , λn be the eigenvalues of L, listed in such a way that
λn = 0. Then, for any vertex r of D, we have

(# of sparbs of D to r) =
1
n
· λ1λ2 · · · λn−1.

(d) Let λ1, λ2, . . . , λn be the eigenvalues of L, listed in such a way that
λn = 0. If all vertices of D have outdegree > 0, then

(# of Eulerian circuits of D)

= |A| · 1
n
· λ1λ2 · · · λn−1 · ∏

u∈V

(
deg+ u − 1

)
!.

Proof. (a) The equality comes from the MTT. The independence from r was a
corollary of the BEST theorem.

(b) follows from (a) just as in the undirected case.
(c) follows from (b) just as in the undirected case.
(d) Assume that all vertices of D have outdegree > 0. Then,

(# of Eulerian circuits of D)

= ∑
a∈A

(# of Eulerian circuits of D whose first arc is a) .

However, if a ∈ A is any arc, and if r is the source of A, then the WORST
theorem yields

(# of Eulerian circuits of D whose first arc is a)

= (# of sparbs of D to r) · ∏
u∈V

(
deg+ u − 1

)
!

=
1
n
· λ1λ2 · · · λn−1 · ∏

u∈V

(
deg+ u − 1

)
!.
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Hence,

(# of Eulerian circuits of D)

= ∑
a∈A

(# of Eulerian circuits of D whose first arc is a)︸ ︷︷ ︸
=

1
n
·λ1λ2···λn−1· ∏

u∈V
(deg+ u−1)!

= ∑
a∈A

1
n
· λ1λ2 · · · λn−1 · ∏

u∈V

(
deg+ u − 1

)
!

= |A| · 1
n
· λ1λ2 · · · λn−1 · ∏

u∈V

(
deg+ u − 1

)
!.

Now, let us come back to the proof of the second theorem about de Bruijn
circuits – namely, compute their number.

Recall the digraph D that we constructed in our proof of the first theorem.
We constructed a de Bruijn sequence of order n on K from an Eulerian circuit
of D. This actually works both ways. Thus, we get a bijection

{Eulerian circuits of D} → {de Bruijn sequences of order n on K} ,
c 7→ (the sequence of first entries of the arcs of c) .

Hence,

(# of de Bruijn sequences of order n on K)
= (# of Eulerian circuits of D)

= |Kn| · 1
kn−1 · λ1λ2 · · · λkn−1−1 · ∏

u∈Kn−1

(
deg+ u − 1

)
!

(by part (d) of the balanced MTT), where λ1, λ2, . . . , λkn−1 are the eigenvalues
of the Laplacian L of D, indexed such that λkn−1 = 0. (Note that kn−1 is the
number of vertices of D; this was called n in the balanced MTT).

Some parts of the above equality simplify easily:

|Kn| · 1
kn−1 = kn · 1

kn−1 = k

and

∏
u∈Kn−1

deg+ u︸ ︷︷ ︸
=k

−1

! = ∏
u∈Kn−1

(k − 1)! = (k − 1)!kn−1
.

It remains to find λ1λ2 · · · λkn−1−1. What are the eigenvalues of L ?
The Laplacian L of our digraph D is a kn−1 × kn−1-matrix whose rows and

columns are indexed by (n − 1)-tuples in Kn−1. Strictly speaking, we should
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relabel these tuples as 1, 2, . . . , kn−1, in order to make D a “proper matrix” with
a well-defined order on rows and columns. But let’s not do this, and keep it a
“matrix in the wider sense of this word”.

Let C be the adjacency matrix of the digraph D; this is the kn−1 × kn−1-matrix
(again with rows and columns indexed by the (n − 1)-tuples in Kn−1) whose
(i, j)-th entry is the # of arcs with source i and target j. Note that the loops of
D are precisely the arcs of the form (x, x, . . . , x) for x ∈ K; thus, D has exactly
k loops. Hence, the trace of C is k.

Recall the definition of the Laplacian L. We can restate it as follows:

L = ∆ − C,

where ∆ is the diagonal matrix whose diagonal entries are the outdegrees of
the vertices of D. Since each vertex of D has outdegree k, the latter diagonal
matrix ∆ is just k · I, where I is the identity matrix of size kn−1. So our above
equation rewrites as

L = k · I − C.

Hence, if γ1, γ2, . . . , γkn−1 are the eigenvalues of C, then k − γ1, k − γ2, . . . , k −
γkn−1 are the eigenvalues of L. Computing the former will therefore help us
find the latter.

Furthermore, let J be the kn−1 × kn−1-matrix whose all entries are 1. It is easy
to see that the eigenvalues of J are

0, 0, . . . , 0︸ ︷︷ ︸
kn−1−1 many zeroes

, kn−1

(easy linear algebra).
Now, we observe that

Cn−1 = J.

[Proof: Let i and j be two vertices of D. Then, the (i, j)-th entry of Cn−1 is the
# of length-(n − 1) walks from i to j (by homework set #4 exercise 4 (a)), and
thus equals 1 as we have seen above. In other words, the (i, j)-th entry of Cn−1

equals the (i, j)-th entry of J. Thus, Cn−1 = J.]
How does this help us compute the eigenvalues of C ?
Well, let γ1, γ2, . . . , γkn−1 be the eigenvalues of C. Then, for any ℓ ∈ N, the

eigenvalues of Cℓ are γℓ
1, γℓ

2, . . . , γℓ
kn−1 (this can be shown, e.g., using triangular-

ization or Jordan normal form). Applying this to ℓ = n − 1, we conclude that
the eigenvalues of J are γn−1

1 , γn−1
2 , . . . , γn−1

kn−1 (since Cn−1 = J). But we already
know that these eigenvalues are 0, 0, . . . , 0︸ ︷︷ ︸

kn−1−1 many zeroes

, kn−1.

Hence,

(
γn−1

1 , γn−1
2 , . . . , γn−1

kn−1

)
=

 0, 0, . . . , 0︸ ︷︷ ︸
kn−1−1 many zeroes

, kn−1

 up to rearrangement.
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By rearranging the γ’s, we thus obtain

(
γn−1

1 , γn−1
2 , . . . , γn−1

kn−1

)
=

 0, 0, . . . , 0︸ ︷︷ ︸
kn−1−1 many zeroes

, kn−1

 .

Hence, γ1 = γ2 = · · · = γkn−1−1 = 0. (We cannot get γkn−1 = k yet, since
there might be several (n − 1)-st roots of k.)

However, the sum of all eigenvalues of a matrix is its trace. Thus, γ1 + γ2 +
· · ·+ γkn−1 = Tr C = k (as we proved above). Hence, γ1 = γ2 = · · · = γkn−1−1 =
0 entails γkn−1 = k.

Thus, the eigenvalues of L are k, k, . . . , k, 0 (since k − 0 = k and k − k = 0).
Hence, in particular, λ1 = λ2 = · · · = λkn−1−1 = k and λkn−1 = 0. Therefore,
λ1λ2 · · · λkn−1−1 = kkn−1−1.

Now, our above equality becomes

(# of de Bruijn sequences of order n on K)

= |Kn| · 1
kn−1︸ ︷︷ ︸

=k

· λ1λ2 · · · λkn−1−1︸ ︷︷ ︸
=kkn−1−1

· ∏
u∈Kn−1

(
deg+ u − 1

)
!︸ ︷︷ ︸

=(k−1)!kn−1

= k · kkn−1−1︸ ︷︷ ︸
=kkn−1

· (k − 1)!kn−1
= kkn−1 · (k − 1)!kn−1

= (k · (k − 1)!)kn−1
= k!kn−1

.

So the second theorem is proved.
(There is a combinatorial proof in a paper by Bidkhori and Kishore 2011.)

5.13. On the left nullspace of the Laplacian

Much more can be said about the Laplacian of a digraph. The study of matri-
ces associated to a graph or digraph is known as spectral graph theory. The
original form of the MTT was found by Gustav Kirchhoff in his study of elec-
tric networks. Instead of counting spanning trees, he worked with “weighted
counts”, i.e., sums of weights. We will discuss this in the next section.

Another use of Laplacians is a “canonical” way to draw a graph, called “spec-
tral layout”.

Let me mention one more result about Laplacians of digraphs. Recall that the

Laplacian L of a digraph D always satisfies Le = 0, where e =


1
1
...
1

. Thus,

the vector e belongs to the right nullspace (= right kernel) of L. It is not hard
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to see that if D has a to-root and we are working over a characteristic-0 field,
then e spans this nullspace, i.e., there are no vectors in that nullspace other than
scalar multiples of e. (This is actually an “if and only if”.)

What about the left nullspace? Can we find an explicit nonzero vector f such
that f L = 0 ? Yes, we can:

Theorem 5.13.1 (harmonic vector theorem for Laplacians). Let D = (V, A, ψ)
be a multidigraph, where V = {1, 2, . . . , n} for some n ∈ N. For each r ∈ V,
let τ (D, r) be the # of sparbs of D to r. Let f be the row vector

(τ (D, 1) , τ (D, 2) , . . . , τ (D, n)) .

Then, f L = 0.

Proof. Homework set #7 exercise 1 (b).

Among the applications of this theorem is a way to compute the steady state
of a Markov chain.

5.14. A weighted Matrix-Tree Theorem

We have so far been counting arborescences. A natural generalization of count-
ing is weighted counting – i.e., you assign a certain number (a “weight”) to
each arborescence (or whatever else you’re counting), and then you sum these
numbers. In particular, if all the weights are 1, then you just get the number of
the objects you’re looking at.

If you pick the weights to be completely random, you usually get a result
that doesn’t simplify. Good results can often be obtained if the weights follow
certain patterns. In the case of sparbs of a given digraph D, we can find a nice
formula in the case when the weight of an arborescence is the product of the
weights of the arcs of this arborescence.

Next time, we will see this.
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Lecture 15

Last time, I promised to generalize the MTT (= Matrix-Tree Theorem) from
just an equality between numbers to a “weighted equality”.

Specifically, I will assign a weight to each edge (or arc), and then let the
weight of a spanning tree (or sparb) be the product of the weights of its edges
(or arcs).

Definition 5.14.1. Let D = (V, A, ψ) be multidigraph.
Let K be a commutative ring. (Feel free to assume that K is a polynomial

ring over Z, or the ring R, or even Z itself.)
Assume that an element wa ∈ K is assigned to each arc a ∈ A. We call this

wa the weight of a. (If K = R, then these weights are real numbers.)

(a) For any two vertices i, j ∈ V, we let aw
i,j be the sum of the weights of all

arcs of D that have source i and target j.

(b) For any vertex i ∈ V, we define the weighted outdegree deg+w i of i to
be the sum

∑
a∈A;

the source of a is i

wa.

(c) If B is a subdigraph of D, then the weight w (B) of B is defined to be
the product ∏

a is an arc of B
wa. This is the product of the weights of all arcs

of B.

(d) Assume that V = {1, 2, . . . , n} for some n ∈ N. The weighted Lapla-
cian Lw of D (with respect to the weights wa) is defined to be the n × n-
matrix Lw ∈ Kn×n whose entries are given by

Lw
i,j =

(
deg+w i

)
· [i = j]− aw

i,j for all i, j ∈ V.

If we set all weights wa equal to 1, then these notions specialize back to the
original notions of ai,j, outdegree and Laplacian.

We can now generalize the MTT as follows:

Theorem 5.14.2 (weighted MTT). Let D = (V, A, ψ) be a multidigraph.
Let K be a commutative ring. Assume that a weight wa ∈ K is assigned to

each arc a ∈ A.
Assume that V = {1, 2, . . . , n} for some n ∈ N. Let Lw be the weighted

Laplacian of D.
Let r be a vertex of D. Then,

∑
B is a sparb

of D to r

w (B) = det
(

Lw
∼r,∼r

)
.



Lecture diary Spring 2023, version June 10, 2023 page 114

Example 5.14.3. Let D be as on the blackboard (a digraph with 3 vertices
1, 2, 3 and 4 arcs α, β, γ, δ with ψ (α) = (1, 2) and ψ (β) = (2, 3) and ψ (γ) =
ψ (δ) = (1, 3)). Then, the weighted Laplacian Lw is

Lw =

 wα + wγ + wδ −wα −wγ − wδ

0 wβ −wβ

0 0 0

 .

Also, for r = 3, we have

∑
B is a sparb

of D to r

w (B) = wαwβ + wβwγ + wβwδ.

The weighted MTT theorem says that this equals

det
(

Lw
∼3,∼3

)
= det

(
wα + wγ + wδ −wα

0 wβ

)
\

= (wα + wγ + wδ)wβ − (−wα) 0.

So it says that

wαwβ + wβwγ + wβwδ

= (wα + wγ + wδ)wβ − (−wα) 0.

This is a polynomial identity in wα, wβ, wγ, wδ.

As we already said, the weighted MTT becomes the original MTT if we set
all wa equal to 1.

However, we shall now go backwards: We will derive the weighted MTT
from the original MTT.

First, we recall a standard result in algebra, known as the principle of perma-
nence of polynomial identities or as the polynomial identity trick (or under
several other names). Here is one incarnation of this principle:

Theorem 5.14.4 (principle of permanence of polynomial identities). Let
P (x1, x2, . . . , xm) and Q (x1, x2, . . . , xm) be two polynomials with integer co-
efficients in several indeterminates x1, x2, . . . , xm. Assume that the equality

P (k1, k2, . . . , km) = Q (k1, k2, . . . , km)

holds for every m-tuple (k1, k2, . . . , km) ∈ Nm of nonnegative integers. Then,
P (x1, x2, . . . , xm) and Q (x1, x2, . . . , xm) are identical as polynomials (so that,
in particular, the equality

P (k1, k2, . . . , km) = Q (k1, k2, . . . , km)
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holds not only for every (k1, k2, . . . , km) ∈ Nm but also for every
(k1, k2, . . . , km) ∈ Zm and for every (k1, k2, . . . , km) ∈ Cm and more gener-
ally for every (k1, k2, . . . , km) ∈ Km for any commutative ring K).

In other words, this is saying that if you want to prove that two polynomials
(with integer coefficients) are equal, it suffices to prove that they are equal on
all nonnegative integer inputs. For example, if you can prove the equality

(x + y)4 + (x − y)4 = 2x4 + 12x2y2 + 2y4

for all x, y ∈ N, then you automatically can conclude (by the above theorem)
that it holds for all x, y ∈ K for any commutative ring K.

The theorem is often used in combinatorics to prove equalities between bino-
mial coefficients. For instance, the Chu–Vandermonde identity(

x + y
n

)
=

n

∑
k=0

(
x
k

)(
y

n − k

)
(where n ∈ N) is not hard to verify for all x, y ∈ N (do it if you haven’t seen
it before!), but both of its sides are polynomials in x and y with rational coeffi-

cients (for example,
(

x + y
n

)
=

(x + y) (x + y − 1) · · · (x + y − n + 1)
n!

), so you

can apply the above theorem to it after multiplying by the common denomina-
tor (which is n!), and conclude that the identity holds for any x, y ∈ R. Many
other identities are proved in this way.

Proofs of the theorem can be found in various places, in particular in most
good texts on abstract algebra (I give a couple references in Spring 2022 Lecture
21).

Now, let us apply the theorem to prove the weighted MTT.

Proof of the weighted MTT.. Both sides of the claim are polynomials (with integer
coefficients) in the weights wa. Thus, by the principle of permanence, we can
prove it by showing that it holds when all arc weights wa are nonnegative
integers.

So let us WLOG assume that wa are nonnegative integers.
Let us now replace each arc a of D by wa many copies of a (having the same

source as a and the same target as a). The result is a new digraph D′.
This digraph D′ has the same vertices as D, but each arc a of D has turned

into wa arcs of D′. Thus, the weighted outdegree deg+w i of a vertex i of D
equals its usual (i.e., non-weighted) outdegree deg+ i in D′. Moreover, each
subdigraph B of D gives rise to w (B) many subdigraphs of D′ (because each
arc a of B can be replaced by any of its wa many copies in D′). Hence,

∑
B is a sparb

of D to r

w (B) =
(
# of sparbs of D′ rooted to r

)
.
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Moreover, the weighted Laplacian Lw of D is the usual (i.e., non-weighted)
Laplacian of D′. Altogether, this shows that applying the original MTT to D′

yields the weighted MTT for D. And this completes the proof.
[Remark: Alternatively, you can adapt our proof of the original MTT to the

weighted case.]

The weighted MTT has some applications that wouldn’t be obvious from the
original MTT. Here is one:

Exercise 3. Let n ≥ 2 be an integers, and let d1, d2, . . . , dn be n positive inte-
gers.

An n-tree shall mean a simple graph with vertex set {1, 2, . . . , n} that is a
tree.

We know from Cayley’s theorem that there are nn−2 many n-trees.
How many of these n-trees have the property that

deg i = di for each vertex i ?

Solution. The n-trees are just the spanning trees of the complete graph Kn.
To incorporate the deg i = di condition into our count, we use a generating

function. So let us not fix the numbers d1, d2, . . . , dn, but rather consider the
polynomial

P (x1, x2, . . . , xn) = ∑
T is an n-tree

xdeg 1
1 xdeg 2

2 · · · xdeg n
n ,

where deg i means the degree of i in T. Then, the xd1
1 xd2

2 · · · xdn
n -coefficient of

this polynomial P (x1, x2, . . . , xn) is the # of n-trees T satisfying

deg i = di for each vertex i.

Thus, to solve our problem, we need to compute the xd1
1 xd2

2 · · · xdn
n -coefficient of

this polynomial P (x1, x2, . . . , xn).
Let us assign to each edge ij of Kn the weight wij := xixj. Then, the definition

of P (x1, x2, . . . , xn) rewrites as follows:

P (x1, x2, . . . , xn) = ∑
T is an n-tree

w (T) ,

where w (T) denotes the product of the weights of all edges of T. (Indeed, for
any subgraph T of Kn, the weight w (T) equals xdeg 1

1 xdeg 2
2 · · · xdeg n

n .)
We have assigned weights to the edges of the graph Kn; let us now assign the

same weights to the arcs of the digraph Kbidir
n by setting

w(ij,1) = w(ij,2) = wij = xixj.
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As we already have seen a few times, we can replace spanning trees of Kn by
sparbs of Kbidir

n rooted to 1, since the former are in bijection to the latter. Thus,

(# of spanning trees of Kn)

=
(

# of sparbs of Kbidir
n rooted to 1

)
.

Moreover, since this bijection preserves weights, we also have

∑
T is a spanning

tree of Kn

w (T) = ∑
B is a sparb
of Kbidir

n to 1

w (B) .

In other words,
∑

T is an n-tree
w (T) = ∑

B is a sparb
of Kbidir

n to 1

w (B) .

We shall now compute the RHS using the weighted MTT. To do so, we need
the weighted Laplacian Lw of Kbidir

n . Its entries are

Lw
i,j =

(
deg+w i

)
· [i = j]− aw

i,j

=

{
−xixj, if i ̸= j;
xix1 + xix2 + · · ·+ xixi−1 + xixi+1 + · · ·+ xixn, if i = j

=

{
−xixj, if i ̸= j;
xi (x1 + x2 + · · ·+ xi−1 + xi+1 + · · ·+ xn) if i = j

= xi (x1 + x2 + · · ·+ xn) · [i = j]− xixj.

We can find its minor det
(

Lw
∼1,∼1

)
without too much trouble (e.g., using row

transformations similar to the ones we used in the proof of Cayley’s theorem).
The result is

det
(

Lw
∼1,∼1

)
= x1x2 · · · xn (x1 + x2 + · · ·+ xn)

n−2 .

Summarizing, we see that

P (x1, x2, . . . , xn) = ∑
T is an n-tree

w (T)

= ∑
B is a sparb
of Kbidir

n to 1

w (B)

= det
(

Lw
∼1,∼1

)
(by the weighted MTT)

= x1x2 · · · xn (x1 + x2 + · · ·+ xn)
n−2 .
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Thus,(
the xd1

1 xd2
2 · · · xdn

n -coefficient of P (x1, x2, . . . , xn)
)

=
(

the xd1
1 xd2

2 · · · xdn
n -coefficient of x1x2 · · · xn (x1 + x2 + · · ·+ xn)

n−2
)

=
(

the xd1−1
1 xd2−1

2 · · · xdn−1
n -coefficient of (x1 + x2 + · · ·+ xn)

n−2
)

.

Now we are looking for the latter coefficient. More generally, what are the
coefficients of a power (x1 + x2 + · · ·+ xn)

m ?
These are the multinomial coefficients (named in analogy to the binomial co-

efficients, which are the n = 2 case). They are defined as follows: If p1, p2, . . . , pn, q
are nonnegative integers with q = p1 + p2 + · · · + pn, then the multinomial

coefficient
(

q
p1, p2, . . . , pn

)
is defined to be

q!
p1!p2! · · · pn!

. The multinomial

formula/theorem says that

(x1 + x2 + · · ·+ xn)
m = ∑

i1,i2,...,in∈N;
i1+i2+···+in=m

(
m

i1, i2, . . . , in

)
xi1

1 xi2
2 · · · xin

n .

(Compare: How many anagrams does the word “anagram” have? These are
the words with 3 a’s, 1 g, 1 m, 1 n and 1 r, so they correspond to the terms

a3g1m1n1r1 in (a + g + m + n + r)7, and thus their number is
(

7
3, 1, 1, 1, 1

)
=

7!
3! · 1! · 1! · 1! · 1!

= 840. Of course, most of these anagrams are meaningless.)
Now back to our problem:(

the xd1
1 xd2

2 · · · xdn
n -coefficient of P (x1, x2, . . . , xn)

)
=
(

the xd1−1
1 xd2−1

2 · · · xdn−1
n -coefficient of (x1 + x2 + · · ·+ xn)

n−2
)

=

(
n − 2

d1 − 1, d2 − 1, . . . , dn − 1

)
.

But as we recall, the xd1
1 xd2

2 · · · xdn
n -coefficient of P (x1, x2, . . . , xn) is the # of n-

trees T satisfying
deg i = di for each vertex i.

Thus, we have proved:

Theorem 5.14.5 (refined Cayley’s formula). Let n ≥ 2 be an integers. Let
d1, d2, . . . , dn be n positive integers. Then, the # of n-trees T satisfying

deg i = di for each vertex i

is the multinomial coefficient(
n − 2

d1 − 1, d2 − 1, . . . , dn − 1

)
.
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Note that this theorem is not very hard to prove by induction on n. (Think
about it!)

The harmonic vector theorem for Laplacians also has a weighted version (see
Theorem 1.1.7 in Spring 2022 Lecture 21).

6. Colorings

Now to something completely different: Let’s color the vertices of a graph!

6.1. Definitions

Our colors will be positive integers. Coloring the vertices thus means assigning
a positive integer to each vertex (called the color of this vertex). Here are the
details:

Definition 6.1.1. Let G = (V, E, φ) be a multigraph. Let k ∈ N.

(a) A k-coloring of G means a map f : V → {1, 2, . . . , k}. Given such a
k-coloring f , we refer to the numbers 1, 2, . . . , k as the colors, and we
refer to each value f (v) as the color of the vertex v in the k-coloring f .

(b) A k-coloring f of G is said to be proper if no two adjacent vertices of
G have the same color. (In other words, it is proper if and only if there
exists no edge of G whose endpoints u and v satisfy f (u) = f (v)).

See Spring 2022 Lecture 21 for examples.
As we see, some graphs have proper 3-colorings, but others don’t. Clearly,

having 4 mutually adjacent vertices makes a proper 3-coloring impossible (by
the pigeonhole principle), but this is not an “if and only if”. The question of
determining whether a graph has a proper 3-coloring is NP-complete.

6.2. 2-colorings

The situation for proper 2-colorings is much nicer:

Theorem 6.2.1 (2-coloring equivalence theorem). Let G = (V, E, φ) be a
multigraph. Then, the following three statements are equivalent:

• B1: The graph G has a proper 2-coloring.

• B2: The graph G has no cycles of odd length.

• B3: The graph G has no circuits of odd length.
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Let us prove this theorem. First, we recall/introduce some notation:

• A walk is said to be odd-length if it has odd length.

• A walk w is said to contain a walk v if each edge of v is an edge of w.

• A circuit means a closed walk.

Now, we prove an auxiliary result:

Proposition 6.2.2. Let G be a multigraph. Let u and v be two vertices of
G. Let w be an odd-length walk from u to v. Then, w contains either an
odd-length path from u to v or an odd-length cycle (or both).

Proof. Suppose that w is not a path. Then, writing w as w = (w0, ∗, w1, ∗, w2, . . . , ∗, wk),
there must be i < j satisfying wi = wj. Pick such a pair (i, j) with j − i mini-
mum. If j − i is odd, then

(
wi, ∗, wi+1, ∗, . . . , ∗, wj

)
is an odd-length cycle con-

tained in w (indeed, it is backtrack-free since j − i ̸= 2), and this immediately
proves the claim. So let us assume WLOG that j − i is even. Thus, cutting
the cycle

(
wi, ∗, wi+1, ∗, . . . , ∗, wj

)
out of w, we obtain another odd-length walk

from u to v, which has smaller length than w but is contained in w. So we can
apply the induction hypothesis if we induct on the length of w.
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Lecture 16

Last time, we stated but did not prove the following:

Theorem 6.2.3 (2-coloring equivalence theorem). Let G = (V, E, φ) be a
multigraph. Then, the following three statements are equivalent:

• B1: The graph G has a proper 2-coloring.

• B2: The graph G has no cycles of odd length.

• B3: The graph G has no circuits of odd length.

But we proved the following:

Proposition 6.2.4. Let G be a multigraph. Let u and v be two vertices of
G. Let w be an odd-length walk from u to v. Then, w contains either an
odd-length path from u to v or an odd-length cycle (or both).

Let us prove one more simple lemma:

Lemma 6.2.5. Let G be a multigraph with a proper 2-coloring f . Let u and v
be two vertices of G. Let w be a walk from u to v that has length k. Then,

f (u)− f (v) ≡ k mod 2.

Proof. Let w0, w1, . . . , wk be the vertices of w, from first to last. Since f is a
proper 2-coloring, we have

f (w0) ̸= f (w1) ̸= · · · ̸= f (wk) .

But since f is a 2-coloring, there are only 2 possible values for each f (wi): the
colors 1 and 2. So two distinct colors must be 1 and 2 in some order. Hence,
if f (w0) = 1, then f (w1) = 2 and f (w2) = 1 and f (w3) = 2 and so on
(alternating between 1 and 2). Likewise, if f (w0) = 2, then f (w1) = 1 and
f (w2) = 2 and f (w3) = 1 and so on. In either case, we see (by induction on i)
that

f (wi) ≡ f (w0) + i mod 2 for each i ∈ {0, 1, . . . , k} .

Applying this to i = k, we find f (wk) ≡ f (w0) + k mod 2. In other words,
f (v) ≡ f (u) + k mod 2 (since w0 = u and wk = v). In other words, f (u) −
f (v) ≡ −k ≡ k mod 2. This proves the lemma.

Now we are ready to prove the theorem:
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Proof of the theorem. We shall prove the implications B1 =⇒ B2 =⇒ B3 =⇒ B1.
Proof of B1 =⇒ B2: Assume that B1 holds. Thus, G has a proper 2-coloring f .
Now, assume (for contradiction) that G has a cycle w of odd length. Let u be

the starting and ending point of w. Then, w is a walk from u to u of length k,
where k is odd. So the previous lemma yields f (u)− f (u) ≡ k mod 2. In other
words, 0 ≡ k mod 2. But k is odd, so this cannot be.

So we got a contradiction, and conclude that G has no cycle of odd length.
This proves B1 =⇒ B2.

Proof of B2 =⇒ B3: Assume that B2 holds, i.e., that G has no cycles of odd
length.

We must prove that B3 holds, i.e., that G has no circuits of odd length. As-
sume the contrary. Thus, G has a circuit w of odd length. Let u be the starting
and ending point of this circuit w. Then, w is an odd-length walk from u to
u. Hence, by today’s first (or last time’s last) proposition, we conclude that w
contains either an odd-length path from u to u or an odd-length cycle (or both).
Since G has no odd-length cycles, we conclude that w contains an odd-length
path from u to u. But the only path from u to u is (u), which has even length.
Contradiction. Thus, B2 =⇒ B3 holds.

Proof of B3 =⇒ B1: Assume that B3 holds, i.e., that G has no circuits of odd
length. We must show that G has a proper 2-coloring.

Algorithmically, it is clear how to construct such a proper 2-coloring: We
start by choosing some vertex and assigning a color to it arbitrarily, and then
spreading the colors recursively to its neighbors (using the fact that if u and
v are adjacent, then the color of v must be distinct from the color of u, which
determines it uniquely because there are only two possible colors). This has to
be done once for each component of G. But does this actually produce a proper
2-coloring?

This can be proved rigorously if we rigorously define how nondeterministic
algorithms work. For us, it is easier to rephrase this algorithmic construction
as a more direct definition:

We WLOG assume that G is connected (otherwise, let C1, C2, . . . , Ck be the
components of G, and color the graphs G [C1] , G [C2] , . . . , G [Ck] separately).
Thus, any two vertices u and v of G have a (finite) distance d (u, v), which is the
smallest length of a path from u to v.

Let G = (V, E, φ). Fix any vertex r of G. Define a map f : V → {1, 2} by

f (v) =

{
1, if d (v, r) is even;
2, if d (v, r) is odd

for each v ∈ V.

Now I claim that f is a proper 2-coloring. To prove this, we pick two adjacent
vertices u and v.

Now, consider the walk from r to r obtained by

• first going from r to u in d (r, u) = d (u, r) steps;
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• then going from u to v in 1 step;

• then going from v to r in d (v, r) steps.

This walk is a circuit, so its length is even (since G has no odd-length circuits).
But its length is d (u, r) + 1 + d (v, r). So we conclude that d (u, r) + 1 + d (v, r)
is even. In other words, d (u, r) + d (v, r) is odd. In other words, the numbers
d (u, r) and d (v, r) have different parities. Therefore, f (u) ̸= f (v).

So we have shown that f (u) ̸= f (v) whenever u and v are two adjacent
vertices of G. In other words, the 2-coloring f is proper. This proves B3 =⇒ B1,
and completes the proof of the theorem.

[See Lecture 22 in the 2022 notes for an alternative proof.]

Remark 6.2.6. A graph G that satisfies the three equivalent statements B1, B2
and B3 is sometimes called a “bipartite graph”. For us, a bipartite graph will
be a graph G equipped with a proper 2-coloring, which is not the same as
a graph G that has a proper 2-coloring. The same graph G can have many
proper 2-colorings.

How many?

Proposition 6.2.7. Let G be a multigraph that has a proper 2-coloring. Then,
G has exactly 2conn G many proper 2-colorings.

Proof. Each component of G has exactly 2 proper 2-colorings (as we can freely
choose the color of some arbitrarily preselected vertex, but then our algorithm
decides the colors of all the other vertices).

6.3. The Brooks theorems

Here is a sufficient criterion for the existence of a proper coloring:

Theorem 6.3.1 (Little Brooks theorem). Let G = (V, E, φ) be a loopless multi-
graph with at least one vertex. Let

α := max {deg v | v ∈ V} .

Then, G has a proper (α + 1)-coloring.

Proof. Let v1, v2, . . . , vn be the vertices of V, listed in some order (with no rep-
etitions). We construct a proper (α + 1)-coloring f : V → {1, 2, . . . , α + 1} of G
as follows:

• First, we choose f (v1) arbitrarily.

• Then, we choose f (v2) to be distinct from the colors of all already-colored
neighbors of v2.
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• Then, we choose f (v3) to be distinct from the colors of all already-colored
neighbors of v3.

• . . .

• And so on, until all n values f (v1) , f (v2) , . . . , f (vn) have been chosen.

I claim that we never run out of colors in this process. Indeed, at every
step, we have α + 1 colors to choose from, but only ≤ α many already-colored
neighbors, so there is at least one color that we can choose without clashing
with a neighbor. So the algorithm works, and we get a proper (α + 1)-coloring,
so the theorem is proved.

This is an example of a greedy algorithm: an algorithm which doesn’t “think
ahead” but only cares about the current step. Greedy algorithm don’t work for
all problems; for hard problems they will get you stuck. But the above is a case
where it works.

As the name suggests, the Little Brooks theorem can be improved. You might
wonder how, seeing that the α + 1 is optimal in at least two cases:

• If n ≥ 2, then the cycle graph Cn has maximum degree α = max {deg v | v ∈ V} =
2. Thus, the theorem shows that it has a proper 3-colorings. When n is
odd, it has no proper 2-coloring, so the α + 1 cannot be improved in this
case.

• If n ≥ 1, then the complete graph Kn has maximum degree α = max {deg v | v ∈ V} =
n − 1, and thus (by the theorem) has a proper n-coloring. Again, this can-
not be improved.

It turns out that these two examples are the only cases where α + 1 cannot be
improved, at least for a connected loopless multigraph! In all other cases, we
can improve the α + 1 to α:

Theorem 6.3.2 (Brooks theorem). Let G = (V, E, φ) be a connected loopless
multigraph that is neither a complete graph nor an odd-length cycle. Let

α := max {deg v | v ∈ V} .

Then, G has a proper α-coloring.

Proof. This is significantly harder to prove than the Little Brooks theorem. See
the 2022 notes for a reference.



Lecture diary Spring 2023, version June 10, 2023 page 125

6.4. The chromatic polynomial

Surprisingly, the number of proper k-colorings of a given graph G turns out to
be a polynomial in k (with integer coefficients). More precisely:

Theorem 6.4.1 (Whitney’s chromatic polynomial theorem). Let G = (V, E, φ)
be a multigraph. Let χG be the polynomial in the single indeterminate x with
coefficients in Z defined as follows:

χG = ∑
F⊆E

(−1)|F| xconn(V,F,φ|F) = ∑
H is a spanning
subgraph of G

(−1)|E(H)| xconn H.

Then, for any k ∈ N, we have

(# of proper k-colorings of G) = χG (k) .

This is completely useless for finding proper k-colorings, except for some
small families of graphs. Yet the polynomial χG (called the chromatic polyno-
mial of G) has many interesting properties and appears in various places. Let
me sketch a proof of the theorem.

Again, we will use Iverson brackets: [A] is the truth value of A. We will use
the following fact:

Lemma 6.4.2 (cancellation lemma). Let P be a finite set. Then,

∑
A⊆P

(−1)|A| = [P = ∅] .

Proof. If P = ∅, then the LHS is (−1)|∅| = 1, as is the RHS.
Now consider the case when P ̸= ∅. Pick an arbitrary element p ∈ P. Now,

the subsets A of P come in two forms: the ones that contain p, and the ones that
don’t. I claim that the corresponding addends in the sum ∑

A⊆P
(−1)|A| cancel

out: If A is a subset of P that contains p, then A \ {p} is a subset that doesn’t,
and conversely, if A is a subset of P that doesn’t contain p, then A ∪ {p} is a
subset that does. Thus, we obtain a bijection

{subsets of P that contain p} → {subsets of P that don’t contain p} ,
A 7→ A \ {p}
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(with inverse map A 7→ A ∪ {p}). This bijection shows that

∑
A⊆P

doesn’t contain p

(−1)|A| = ∑
A⊆P

contains p

(−1)|A\{p}|︸ ︷︷ ︸
=(−1)|A|−1

=−(−1)|A|

= − ∑
A⊆P

contains p

(−1)|A| .

Hence,
∑

A⊆P
doesn’t contain p

(−1)|A| + ∑
A⊆P

contains p

(−1)|A| = 0.

In other words,
∑

A⊆P
(−1)|A| = 0.

But [P = ∅] is also 0, so we are done with the lemma.

Now, a notation:

Definition 6.4.3. Let G = (V, E, φ) be a multigraph. Let k ∈ N. Let f : V →
{1, 2, . . . , k} be a k-coloring. We then define a subset E f of E by

E f := {e ∈ E | the two endpoints of e have the same color in f } .

The elements of E f are called the f -monochromatic edges of G.

Proposition 6.4.4. Let G = (V, E, φ) be a multigraph. Let k ∈ N. Let f : V →
{1, 2, . . . , k} be a k-coloring. Then, the k-coloring f is proper if and only if
E f = ∅.

Proof. Obvious.

Lemma 6.4.5. Let G = (V, E, φ) be a multigraph. Let B be a subset of E. Let
k ∈ N. Then, the number of all k-colorings f : V → {1, 2, . . . , k} satisfying
B ⊆ E f is kconn(V,B,φ|B).

Proof. This is a sketch; see the 2022 notes (Lecture 22) for details.
Let H = (V, B, φ |B) be the spanning subgraph of G with edge set B. Then,

a k-coloring f : V → {1, 2, . . . , k} satisfying B ⊆ E f is the same as a k-coloring
of H where any two adjacent vertices have equal colors. Clearly, such a k-
coloring must be constant on each component of H. Since H has conn H many
components, the number of such k-colorings is therefore kconn H = kconn(V,B,φ|B).
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Proof of Whitney’s theorem. Fix k ∈ N. We must prove that

(# of proper k-colorings of G) = χG (k) .

Well: The definition of χG yields

χG = ∑
F⊆E

(−1)|F| xconn(V,F,φ|F) = ∑
B⊆E

(−1)|B| xconn(V,B,φ|B).

Hence,

χG (k) = ∑
B⊆E

(−1)|B| kconn(V,B,φ|B)︸ ︷︷ ︸
=(# of k-colorings f of G such that B⊆E f )

(by the lemma)

= ∑
B⊆E

(−1)|B|
(
# of k-colorings f of G such that B ⊆ E f

)︸ ︷︷ ︸
= ∑

f :V→{1,2,...,k};
B⊆E f

1

(because a sum of a bunch of 1’s
is just the number of these 1’s)

= ∑
B⊆E

(−1)|B| ∑
f :V→{1,2,...,k};

B⊆E f

1 = ∑
B⊆E

∑
f :V→{1,2,...,k};

B⊆E f

(−1)|B|

= ∑
f :V→{1,2,...,k}

∑
B⊆E;
B⊆E f

(−1)|B| = ∑
f :V→{1,2,...,k}

∑
B⊆E f

(−1)|B|︸ ︷︷ ︸
=[E f =∅]

(by the cancellation lemma)(
since any subset of E f is automatically a subset of E

)
= ∑

f :V→{1,2,...,k}

[
E f = ∅

]
=
(
# of k-colorings f of G such that E f = ∅

)
= (# of proper k-colorings f of G) ,

qed.

Definition 6.4.6. The polynomial χG in the above theorem is known as the
chromatic polynomial of G.

Here are the chromatic polynomials of some graphs:

Proposition 6.4.7. Let n ≥ 1 be an integer. Then:
(a) For the path graph Pn with n vertices, we have

χPn = x (x − 1)n−1 .
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(b) More generally: For any tree T with n vertices, we have

χT = x (x − 1)n−1 .

(c) For the complete graph Kn with n vertices, we have

χKn = x (x − 1) (x − 2) · · · (x − n + 1) .

(d) For the empty graph En with n vertices, we have

χEn = xn.

(e) Assume that n ≥ 2. For the cycle graph Cn with n vertices, we have

χCn = (x − 1)n + (−1)n (x − 1) .

Proof. See 2022 notes or figure it out.

6.5. Vizing’s theorem

So far we have been coloring the vertices of a graph. What about coloring the
edges instead?

Definition 6.5.1. Let G = (V, E, φ) be a multigraph. Let k ∈ N.
A k-edge-coloring of G means a map f : E → {1, 2, . . . , k}.
Such a k-edge-coloring f is said to be proper if no two distinct edges that

have a common endpoint have the same color.

The most prominent fact about edge-colorings is the following theorem:

Theorem 6.5.2 (Vizing’s theorem). Let G be a simple graph with at least one
vertex. Let

α := max {deg v | v ∈ V} .

Then, G has a proper (α + 1)-edge-coloring.

Proof. See a reference in the notes.

Note that G really needs to be a simple graph here.
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Lecture 17

7. Independent sets

7.1. Definition and lower bound

Next, we define one of the most fundamental notions in graph theory:

Definition 7.1.1. An independent set of a multigraph G means a subset S of
V (G) such that no two elements of S are adjacent.

In other words, an independent set of G means an induced subgraph of G
that has no edges. Note that I didn’t say “no two distinct elements”; I said “no
two elements”.

Thus, for example, what we called an “anti-triangle” in Lecture 1 is an inde-
pendent set of size 3.

Remark 7.1.2. Independent sets are closely related to proper colorings.
Indeed, let G be a graph, and k ∈ N. Let f : V → {1, 2, . . . , k} be some

k-coloring of G. For each i ∈ {1, 2, . . . , k}, we set

Vi := {vertices having color i} = f−1 (i) .

Then, the k-coloring f is proper if and only if the k sets V1, V2, . . . , Vk are
independent sets of G.

One classical computational problem is to find a maximum-size independent
set of a given graph. This problem is NP-hard, so don’t expect a good algo-
rithm. However, there are some lower bounds for this maximum size. Here is
one:

Theorem 7.1.3. Let G = (V, E, φ) be a loopless multigraph. Then, G has an
independent set of size

≥ ∑
v∈V

1
1 + deg v

.

We will give two proofs of this theorem, both illustrating important ideas.

First proof. Assume the contrary. Thus, each independent set S of G has size

|S| < ∑
v∈V

1
1 + deg v

.

A V-listing shall mean a list of all vertices of V, with each vertex appearing
exactly once. (So there are |V|! many V-listings.)
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If σ is a V-listing, then we define a subset Jσ of V by

Jσ := {v ∈ V | v occurs before all neighbors of v in σ} .

This Jσ is an independent set of G (because if u and v are two adjacent vertices
in Jσ, then u appears before v, but v appears before u, which is a contradiction).
Thus, by our assumption,

|Jσ| < ∑
v∈V

1
1 + deg v

.

This inequality holds for every V-listing σ. Thus, summing it over all σ, we
obtain

∑
σ is a V-listing

|Jσ| < ∑
σ is a V-listing

∑
v∈V

1
1 + deg v

= (# of all V-listings) · ∑
v∈V

1
1 + deg v

.

On the other hand, I claim the following:

Claim 1: For each v ∈ V, we have

(# of all V-listings σ satisfying v ∈ Jσ) ≥
(# of all V-listings)

1 + deg v
.

[Proof of Claim 1: Fix a vertex v ∈ V. Define deg′ v to be the # of all neighbors
of v. Clearly, deg′ v ≤ deg v.

We call a V-listing σ good if the vertex v occurs in it before all its neighbors
(i.e., it v ∈ Jσ). Thus, we must prove that

(# of all good V-listings σ) ≥ (# of all V-listings)
1 + deg v

.

We shall actually show that

(# of all good V-listings σ) =
(# of all V-listings)

1 + deg′ v

(which suffices since deg′ v ≤ deg v). In other words, we shall prove that a

(uniformly) random V-listing is good with probability
1

1 + deg′ v
.

Why is this the case? You can argue probabilistically, e.g., as follows: We
consider only the set M := {v} ∪ N (v), where N (v) is the set of all neighbors
of v. If we restrict a V-listing to this set, then all orderings of this set will be
equally likely. Among all the |M|! many orderings of this set, the good ones
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(i.e., the ones that lead to good V-listings) are the ones that begin with v, and
there are (|M| − 1)! many of those (since we only need to choose the order of
the remaining |M| − 1 many elements). Hence, the probability for a V-listing

to be good is
(|M| − 1)!

|M|! =
1

|M| =
1

|{v} ∪ N (v)| =
1

1 + deg′ v
.

Alternatively, you can argue bijectively as follows: We define a map

Γ : {all V-listings} → {all good V-listings}

as follows: Whenever τ is a V-listing, we let Γ (τ) be the V-listing obtained
from τ by swapping v with the first neighbor of v that occurs in τ (or, if τ is
already good, then we just do nothing, i.e., we set Γ (τ) = τ). This map Γ is
a
(
1 + deg′ v

)
-to-1 correspondence – i.e., for each good V-listing σ, there are

exactly 1 + deg′ v many V-listings τ that satisfy Γ (τ) = σ (indeed, one of these
τ’s is σ itself, and the others are obtained by swapping v with a neighbor of v).
Hence, by the multijection principle, we conclude that

(# of all V-listings) =
(
1 + deg′ v

)
· (# of all good V-listings) .

Hence,

(# of all good V-listings) =
(# of all V-listings)

1 + deg′ v
.

As we said, this completes the proof of Claim 1.]
Now, recall that

∑
σ is a V-listing

|Jσ| < (# of all V-listings) · ∑
v∈V

1
1 + deg v

.
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Hence,

(# of all V-listings) · ∑
v∈V

1
1 + deg v

> ∑
σ is a V-listing

|Jσ|︸︷︷︸
= ∑

v∈V
[v∈Jσ]

(since the Iverson bracket [v∈Jσ] is 1
for each v∈Jσ, and is 0 for all the other v’s)

= ∑
σ is a V-listing

∑
v∈V

[v ∈ Jσ]

= ∑
v∈V

∑
σ is a V-listing

[v ∈ Jσ]︸ ︷︷ ︸
=(# of V-listings σ such that v∈Jσ)

= ∑
v∈V

(# of V-listings σ such that v ∈ Jσ)︸ ︷︷ ︸
≥
(# of all V-listings)

1 + deg v

≥ ∑
v∈V

(# of all V-listings)
1 + deg v

= (# of all V-listings) · ∑
v∈V

1
1 + deg v

.

But this is absurd, since no x ∈ R satisfies x > x. Contradiction, and we’re
done.

Remark 7.1.4. This proof is an example of a probabilistic proof. In fact, we
have been manipulating sums, but we could easily replace these sums by
averages. Claim 1 would then say that for a given vertex v, the probability

that a (uniformly random) V-listing σ satisfies v ∈ Jσ is ≥ 1
1 + deg v

. Thus,

the expectation of |Jσ| is ≥ ∑
v∈V

1
1 + deg v

. Therefore, at least one V-listing σ

actually satisfies |Jσ| ≥ ∑
v∈V

1
1 + deg v

. The proof does not tell you how to find

σ; it just guarantees that such a σ exists and in fact this is true “on average”.

This does not mean that at least half the σ’s satisfy |Jσ| ≥ ∑
v∈V

1
1 + deg v

(since

the median is not the mean).

However, there is a second proof that actually lets you construct a good J in
polynomial time. Moreover, this second proof is motivated by the first. Indeed,
we try to gradually narrow down our space of choices (= the V-listings σ) in
a strategically reasonable way (each time making sure that we are narrowing
it down as little as we can). One such way is to begin by choosing σ (1) to be
a vertex v ∈ V with minimum deg v. Thus we get a recursive algorithm for
computing σ:
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Second proof. We proceed by strong induction on |V|. Thus, we fix p ∈ N, and
we assume that the theorem is proved for all loopless multigraphs G with < p
vertices. We shall now prove it for a loopless multigraph G = (V, E, φ) with p
vertices.

If |V| = 0, then this is clear. So we WLOG assume that |V| ̸= 0. We also
WLOG assume that G is a simple graph (otherwise, replace G by Gsimp, and
the bound only gets better).

Since |V| ̸= 0, there exists a vertex u ∈ V with degG u minimum (note:
we write degG u for the degree of u in G, since we will soon have degG′ u for
another graph G′). Pick such a u. Thus,

degG v ≥ degG u for each v ∈ V.

Let U := {u} ∪ N (u), where N (u) is the set of all neighbors of u. Then,
U ⊆ V and |U| = 1 + degG u (an honest equality, since G is a simple graph).

Let G′ be the induced subgraph of G on the set V \U. This graph G′ has fewer
vertices than G, and thus (by the induction hypothesis) contains an independent
set T of size

|T| ≥ ∑
v∈V\U

1
1 + degG′ v

.

Consider this T, and set S := {u} ∪ T. Then, S is an independent set of G. Now

I claim that |S| ≥ ∑
v∈V

1
1 + degG v

. Indeed,

∑
v∈V

1
1 + degG v

= ∑
v∈U

1
1 + degG v︸ ︷︷ ︸

≤
1

1 + degG u
(since degG v≥degG u)

+ ∑
v∈V\U

1
1 + degG v︸ ︷︷ ︸

≤
1

1 + degG′ v
(since degG v≥degG′ v)

≤ ∑
v∈U

1
1 + degG u︸ ︷︷ ︸

=|U|·
1

1 + degG u
=1

(since |U|=1+degG u)

+ ∑
v∈V\U

1
1 + degG′ v︸ ︷︷ ︸
≤|T|

≤ 1 + |T| = |S| .

Thus we have found an independent set of G having size ≥ ∑
v∈V

1
1 + degG v

(namely, S). Thus, our theorem holds for G, and we are done.

Remark 7.1.5. This second proof (unlike the first) gives a very efficient al-

gorithm for finding an independent set of size ≥ ∑
v∈V

1
1 + degG v

. The way
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we obtained it from the first proof is sometimes called the method of condi-
tional probabilities.

7.2. A weaker lower bound

Let us now weaken the theorem a bit:

Corollary 7.2.1. Let G be a loopless multigraph with n vertices and m edges.
Then, G has an independent set of size

≥ n2

n + 2m
.

To prove this, we will need the following inequality:

Lemma 7.2.2. Let a1, a2, . . . , an be n positive reals. Then,

1
a1

+
1
a2

+ · · ·+ 1
an

≥ n2

a1 + a2 + · · ·+ an
.

Proof. Pick any of the following approaches:

• Apply Jensen’s inequality to the convex function x 7→ 1
x

(on R+).

• Apply Cauchy–Schwarz to get

(a1 + a2 + · · ·+ an)

(
1
a1

+
1
a2

+ · · ·+ 1
an

)

≥
(√

a1
1
a1

+

√
a2

1
a2

+ · · ·+

√
an

1
an

)2

= n2.

• Apply the AM-HM inequality.

• Apply the AM-GM inequality twice.

• There is a direct proof using the inequality
u
v
+

v
u

≥ 2 for any positive
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reals u and v. Indeed,

(a1 + a2 + · · ·+ an)

(
1
a1

+
1
a2

+ · · ·+ 1
an

)
=

n

∑
i=1

n

∑
j=1

ai
1
aj

=
n

∑
i=1

n

∑
j=1

ai

aj

=
1
2

n

∑
i=1

n

∑
j=1

(
ai

aj
+

aj

ai

)
︸ ︷︷ ︸

≥2

(by symmetrization)

≥ 1
2

n

∑
i=1

n

∑
j=1

2 =
n

∑
i=1

n

∑
j=1

1 = n2.

Proof of the corollary. Write the multigraph G as G = (V, E, φ). Then, |V| = n
and |E| = m. WLOG assume that V = {1, 2, . . . , n}. Hence,

n

∑
v=1

deg v = ∑
v∈V

deg v = 2 · |E| = 2m.

However, the theorem yields that G has an independent set of size

≥ ∑
v∈V

1
1 + deg v

=
n

∑
v=1

1
1 + deg v

≥ n2

n
∑

v=1
(1 + deg v)

(by the lemma, applied to av = 1 + deg v)

=
n2

n +
n
∑

v=1
deg v

=
n2

n + 2m
,

qed.

7.3. A proof of Turan’s theorem

Recall Turan’s theorem, which we can now easily prove:

Theorem 7.3.1 (Turan’s theorem). Let r be a positive integer. Let G be a
simple graph with n vertices and e edges. Assume that

e >
r − 1

r
· n2

2
.

Then, there exist r + 1 distinct vertices of G that are mutually adjacent (i.e.,
any two of them are adjacent if they are distinct).
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Proof. Write the simple graph G as G = (V, E). Thus, |V| = n and |E| = e and
E ⊆ P2 (V).

Let E′ := P2 (V) \ E. Thus, the set E′ consists of all “non-edges” of G – that is,

of all 2-element subsets of V that are not edges of G. Therefore, |E′| =
(

n
2

)
− e

(since |P2 (V)| =
(

n
2

)
).

Now, let G′ be the simple graph (V, E′). This graph G′ is called the comple-

mentary graph of G; it has n vertices and |E′| =
(

n
2

)
− e edges. Hence, the last

corollary yields that it has an independent set of size

≥ n2

n + 2 ·
((

n
2

)
− e
) =

n2

n + n (n − 1)− 2e
=

n2

n2 − 2e
.

Let S be this independent set. Then, |S| ≥ n2

n2 − 2e
> r (this follows by high-

school algebra from e >
r − 1

r
· n2

2
). So S has at least r + 1 many elements.

Now, the elements of S are vertices of G, and every two of them are adjacent
in G (since they are non-adjacent in G′ (because S is an independent set of G′)).
Thus, we have found r + 1 mutually adjacent vertices of G, qed.

This is only one of many proofs of Turan’s theorem. See Aigner/Ziegler
Proofs from the Book for a few more proofs.

8. Matchings

8.1. Introduction

Independent sets of a graph are sets of vertices that “have no edges in common”
(i.e., no two belong to the same edge).

In a sense, matchings are the dual notion: they are sets of edges that “have no
vertices in common” (i.e., no two contain the same vertex). Here is the formal
definition:

Definition 8.1.1. Let G = (V, E, φ) be a loopless multigraph.

(a) A matching of G means a subset M of E such that no two distinct edges
in M have a common endpoint.

(b) If M is a matching of G, then an M-edge means an edge in M.
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(c) If M is a matching of G, and if v ∈ V is any vertex, then we say that
v is matched in M if v is an endpoint of an M-edge. In this case, this
latter M-edge is necessarily unique, and will be called the M-edge of
v. The other endpoint of this M-edge (i.e., the endpoint ̸= v) is called
the M-partner of v.

(d) A matching M of G is said to be perfect if each vertex of G is matched
in M.

(e) Let A be a subset of V. A matching M of G is said to be A-complete if
each vertex in A is matched in M.

Hence, a matching M of a multigraph G = (V, E, φ) is perfect if and only if
it is V-complete.

One algorithmic problem is to find a maximum-size matching of a given
multigraph G = (V, E, φ). This is far from trivial, since the greedy algorithm
(adding new edges until this is no longer possible) does not work (in general,
it gets stuck without getting a maximum-size matching). Nevertheless, there is
a good algorithm of running time O

(
|E| · |V|2

)
, called the Edmonds blossom

algorithm. (It is typically described in courses on combinatorial optimization,
or advanced graph theory courses.)

We will consider a particular case of the matching problem: that of bipartite
matching (i.e., finding matchings in bipartite graphs).

8.2. Bipartite graphs

Definition 8.2.1. A bipartite graph is a triple (G, X, Y), where

• G = (V, E, φ) is a multigraph, and

• X and Y are two disjoint subsets of V such that X ∪ Y = V and such
that each edge of G has one endpoint in X and one endpoint in Y.

Example 8.2.2. The 6-cycle graph C6 can be made into a bipartite graph in
two ways: Both triples

(C6, {1, 3, 5} , {2, 4, 6}) and
(C6, {2, 4, 6} , {1, 3, 5})

are bipartite graphs.
We tend to draw a bipartite graph (G, X, Y) in such a way that the vertices

in X are aligned on a single vertical line, and the vertices in Y are also aligned
on a single vertical line. The X-line should be left of the Y-line.

(See Spring 2022 Lecture 24 for examples.)
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This example suggests the following terminology:

Definition 8.2.3. Let (G, X, Y) be a bipartite graph. We shall refer to the
vertices in X as the left vertices, and to the vertices in Y as the right vertices.
The edges of G will be called the edges of this bipartite graph (G, X, Y).

Thus, each edge of a bipartite graph joins a left vertex with a right vertex.
Bipartite graphs are “the same as” multigraphs with a proper 2-coloring:

Proposition 8.2.4. Let G = (V, E, φ) be a multigraph.

1. If (G, X, Y) is a bipartite graph, then the map

f : V → {1, 2} ,

v 7→
{

1, if v ∈ X;
2, if v ∈ Y

is a proper 2-coloring of G.

2. Conversely, if f : V → {1, 2} is a proper 2-coloring of G, then

(G, {vertices of color 1} , {vertices of color 2})

is a bipartite graph.

3. These two operations are mutually inverse.

Proof. Follows from the definitions.

Proposition 8.2.5. Let (G, X, Y) be a bipartite graph. Then, the graph G has
no circuits of odd length. In particular, G has no loops or triangles.

Proof. Follows from the 2-coloring equivalence theorem.

Definition 8.2.6. Let G = (V, E, φ) be any multigraph. Let U be a subset of
V. Then,

N (U) := {v ∈ V | v has a neighbor in U} .

This is called the neighbor set of U.

For bipartite graphs, the neighbor set has a nice property:

Proposition 8.2.7. Let (G, X, Y) be a bipartite graph. Let A ⊆ X. Then,

N (A) ⊆ Y.
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Proof. Follows from the definitions.

The following is easy:

Proposition 8.2.8. Let (G, X, Y) be a bipartite graph. Assume that G has an
X-complete matching. Then, each subset A of X satisfies |N (A)| ≥ |A|.

But more interestingly, the converse of this proposition is also true:

Theorem 8.2.9 (Hall’s marriage theorem, short: HMT). Let (G, X, Y) be a
bipartite graph. Assume that each subset A of X satisfies |N (A)| ≥ |A|.
Then, G has an X-complete matching.

We will discuss this in more detail next time.
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Lecture 18

Recall:

Definition 8.2.10. Let G = (V, E, φ) be a loopless multigraph.

(a) A matching of G means a subset M of E such that no two distinct edges
in M have a common endpoint.

(b) If M is a matching of G, then an M-edge means an edge in M.

(c) If M is a matching of G, and if v ∈ V is any vertex, then we say that
v is matched in M if v is an endpoint of an M-edge. In this case, this
latter M-edge is necessarily unique, and will be called the M-edge of
v. The other endpoint of this M-edge (i.e., the endpoint ̸= v) is called
the M-partner of v.

(d) A matching M of G is said to be perfect if each vertex of G is matched
in M.

(e) Let A be a subset of V. A matching M of G is said to be A-complete if
each vertex in A is matched in M.

Definition 8.2.11. A bipartite graph is a triple (G, X, Y), where

• G = (V, E, φ) is a multigraph, and

• X and Y are two disjoint subsets of V such that X ∪ Y = V and such
that each edge of G has one endpoint in X and one endpoint in Y.

Definition 8.2.12. Let (G, X, Y) be a bipartite graph. We shall refer to the
vertices in X as the left vertices, and to the vertices in Y as the right vertices.
The edges of G will be called the edges of this bipartite graph (G, X, Y).

Definition 8.2.13. Let G = (V, E, φ) be any multigraph. Let U be a subset of
V. Then,

N (U) := {v ∈ V | v has a neighbor in U} .

This is called the neighbor set of U.

For bipartite graphs, the neighbor set has a nice property:

Proposition 8.2.14. Let (G, X, Y) be a bipartite graph. Let A ⊆ X. Then,

N (A) ⊆ Y.
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8.3. Hall’s marriage theorem

Let us begin with some very elementary and simple facts.

Proposition 8.3.1. Let (G, X, Y) be a bipartite graph. Let M be a matching of
G. Then:

1. The M-partner of a vertex x ∈ X belongs to Y (if it exists).

The M-partner of a vertex y ∈ Y belongs to X (if it exists).

2. We have |M| ≤ |X| and |M| ≤ |Y|.

3. If M is X-complete, then |X| ≤ |Y|.

4. If M is perfect, then |X| = |Y|.

Proof. Easy. See Spring 2022 Lecture 24 proof of Proposition 1.3.1.

Proposition 8.3.2. Let (G, X, Y) be a bipartite graph. Let A be a subset of X.
Assume that G has an X-complete matching. Then, |N (A)| ≥ |A|.

Proof. Let V be the vertex set of G. Let M be an X-complete matching of G (we
assumed that such an M exists). The map

p : X → V,
x 7→ (the M-partner of x)

is injective (since two distinct edges in M cannot have a common endpoint).
Therefore, |p (A)| = |A|. But p (A) ⊆ N (A) (since an M-partner of some
x ∈ A will always lie in N (A)), so that |p (A)| ≤ |N (A)|. Thus, |N (A)| ≥
|p (A)| = |A|.

So this proposition shows us a necessary condition for the existence of an
X-complete matching in a bipartite graph (G, X, Y): Namely, the condition says
that every A ⊆ X satisfies |N (A)| ≥ |A|.

Hall’s marriage theorem (short: HMT) claims that this condition is also suf-
ficient:

Theorem 8.3.3 (Hall’s marriage theorem, aka HMT). Let (G, X, Y) be a bi-
partite graph. Assume that each subset A of X satisfies |N (A)| ≥ |A|. (This
assumption is called the Hall condition.)

Then, G has an X-complete matching.

This theorem was originally found by Philip Hall in 1935 to solve a group the-
ory problem and simultaneously by Wilhelm Maak for use in analysis. Nowa-
days, most of its uses are in combinatorics.
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I will not prove it today, but next time I will prove it using the theory of
network flows; there are many other proofs, including some very elementary
ones. Network flows also give an efficient algorithm for finding a maximum
matching in a bipartite graph.

But before that, let me talk about variants and applications of the HMT.

8.4. König and Hall–König

Hall’s marriage theorem is famous for its many forms and versions, which are
“secretly” equivalent to it. We will start with one that is known as Kőnig’s
theorem (discovered by Dénes Kőnig and Jenő Egerváry in 1931). This relies
on the notion of a vertex cover:

Definition 8.4.1. Let G = (V, E, φ) be a multigraph. A vertex cover of G
means a subset C of V such that each edge of G contains at least one vertex
in C.

Remark 8.4.2. Each vertex cover of a multigraph G is a dominating set (as
long as G has no degree-0 vertices). But the converse is not true.

Proposition 8.4.3. Let G be a loopless multigraph.
Let m be the largest size of a matching in G.
Let c be the smallest size of a vertex cover in G.
Then, m ≤ c.

Proof. Consider a matching M of size m and a vertex cover C of size c (these
exist by assumption). Now, we build a map f : M → C by letting f (m) be an
endpoint of m that belongs to C (this always exists, since C is a vertex cover; if
there are two such endpoints, just choose one). This map f is injective, since M
is a matching. So we get |M| ≤ |C|, that is, m ≤ c.

In general, the inequality can be strict: We can have m < c. (For example, for
G = C3, we have m = 1 and c = 2.) König’s result is that m = c holds at least
when G is bipartite:

Theorem 8.4.4 (König’s theorem). Let (G, X, Y) be a bipartite graph.
Let m be the largest size of a matching in G.
Let c be the smallest size of a vertex cover in G.
Then, m = c.

Both Hall’s and König’s theorems follow easily from the following theorem:

Theorem 8.4.5 (Hall–König matching theorem, aka HKMT). Let (G, X, Y) be
a bipartite graph. Then, there exist a matching M of G and a subset U of X
such that

|M| ≥ |N (U)|+ |X| − |U| .
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Why?

Proof of Hall’s marriage using the HKMT. The HKMT yields that there exist a match-
ing M of G and a subset U of X such that

|M| ≥ |N (U)|+ |X| − |U| .

Consider these M and U. By the Hall condition, we have |N (U)| ≥ |U|. Hence,

|M| ≥ |N (U)|+ |X| − |U| ≥ |U|+ |X| − |U| = |X| .

This easily yields that M is X-complete (since otherwise, the M-edges would
have fewer than |X| many X-vertices going around them, but that would violate
the distinctness of their endpoints). So G has an X-complete matching, qed.

Proof of König’s theorem using the HKMT. The HKMT yields that there exist a match-
ing M of G and a subset U of X such that

|M| ≥ |N (U)|+ |X| − |U| .

Consider these M and U. Set C := (X \ U) ∪ N (U). Then, |C| = |N (U)| +
|X| − |U| (since X \ U is disjoint from N (U)). Furthermore, C is a vertex cover
of G (why?). Hence, |C| ≥ c. But M is a matching, so |M| ≤ m. Hence,

m ≥ |M| ≥ |N (U)|+ |X| − |U| = |C| ≥ c.

Combining this with m ≤ c (which we know from a proposition above), we
obtain m = c. This proves König’s theorem.

So it will suffice to prove the HKMT.
Incidentally, the HKMT is not significantly stronger than either the HMT or

König. You can (with a bit of work) derive it from either of the two. (For details,
see the end of Lecture 24 in Spring 2022).

We shall now see theorems that are consequences of the HMT (often equiva-
lent to it) but look rather different, in particular not always coming from graph
theory.

8.5. Systems of representatives

The following equivalent form of the HMT doesn’t look like a graph theory
result at all:

Theorem 8.5.1 (existence of SDR). Let A1, A2, . . . , An be any n sets. Assume
that the union of any p of these sets has size ≥ p, for each p ∈ {0, 1, . . . , n}.
(In other words, assume that∣∣∣Ai1 ∪ Ai2 ∪ · · · ∪ Aip

∣∣∣ ≥ p for any 1 ≤ i1 < i2 < · · · < ip ≤ n.
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)
Then, we can find n distinct elements

a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An.

Proof. First, we WLOG assume that A1, A2, . . . , An are finite (otherwise, replace
the infinite ones among them by some arbitrarily chosen n-element subsets).

Also, WLOG assume that no integer belongs to any of A1, A2, . . . , An (other-
wise, rename the respective elements).

Now, let X = {1, 2, . . . , n} and Y = A1 ∪ A2 ∪ · · · ∪ An. Then, X and Y are
disjoint finite sets.

We define a simple graph G as follows:

• The vertices are the elements of X ∪ Y.

• A vertex x ∈ X is adjacent to a vertex y ∈ Y if and only if y ∈ Ax.

Thus, (G, X, Y) is a bipartite graph. The assumption∣∣∣Ai1 ∪ Ai2 ∪ · · · ∪ Aip

∣∣∣ ≥ p for any 1 ≤ i1 < i2 < · · · < ip ≤ n

ensures that it satisfies the Hall condition. Therefore, by the HMT (Hall’s mar-
riage theorem), we conclude that G has an X-complete matching. This matching
must have the form

{{1, a1} , {2, a2} , . . . , {n, an}}

where a1, a2, . . . , an are distinct. Thus, a1 ∈ A1 and a2 ∈ A2 and · · · and an ∈
An, so we are done.

There is also a different set-theoretical restatement of the HMT, called the
existence of an SCR (system of common representatives).

8.6. Regular bipartite graphs

The HMT gives a necessary and sufficient condition for the existence of an
X-complete matching in a bipartite graph. In the more restrictive setting of
regular bipartite graphs – i.e., bipartite graphs for which every vertex has the
same degree –, this can be greatly simplified: Such a matching always exists!
We shall soon prove this, but first let us get the definitions in order:

Definition 8.6.1. Let k ∈ N. A multigraph G is said to be k-regular if all its
vertices have degree k.

For example:
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• A graph is 1-regular if and only if it is a disjoint union of copies of P2.

• A graph is 2-regular if and only if it is a disjoint union of copies of Cn for
various n (allowing n = 1 and n = 2 in particular). Nice and reasonably
easy exercise.

• The 3-regular graphs are called cubic graphs and cannot really be classi-
fied.

Example 8.6.2. Any Kneser graph KS,k is
(
|S| − k

k

)
-regular.

Proof. Exercise.

Proposition 8.6.3. Let k > 0. Let (G, X, Y) be a k-regular bipartite graph (i.e.,
a bipartite graph such that G is k-regular). Then, |X| = |Y|.

Proof. Each edge of G has exactly one endpoint in X. Thus,

|E (G)| = ∑
x∈X

deg x = ∑
x∈X

k = k · |X| .

Similarly, |E (G)| = k · |Y|. Comparing these, we get k · |X| = k · |Y|. Dividing
by k, we obtain |X| = |Y| (since k > 0).

Theorem 8.6.4 (Frobenius matching theorem). Let k > 0. Let (G, X, Y) be
a k-regular bipartite graph (i.e., a bipartite graph such that G is k-regular).
Then, G has a perfect matching.

Proof. First, we claim that each subset A of X satisfies |N (A)| ≥ |A|.
Indeed, let A be a subset of X. Consider the edges of G that have at least one

endpoint in A. We shall call such edges “A-edges”. How many are there?
On the one hand, each A-edge contains exactly one vertex in A (since A ⊆ X).

Hence,
(# of A-edges) = ∑

x∈A
deg x = ∑

x∈A
k = k · |A| .

On the other hand, each A-edge contains exactly one vertex in N (A) (since
N (A) ⊆ Y). Hence,

(# of A-edges) ≤ ∑
y∈N(A)

deg y = ∑
y∈N(A)

k = k · |N (A)| .

Hence,
k · |A| = (# of A-edges) ≤ k · |N (A)| .

Since k > 0, we can divide by k and conclude that |A| ≤ |N (A)|, that is,
|N (A)| ≥ |A|.
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So we have proved that the Hall condition is satisfied. Hence, the HMT yields
that G has an X-complete matching. Let M be this matching.

I claim that M is perfect. Why? Recall that |X| = |Y| by the previous proposi-
tion. Since M is X-complete, we have |M| = |X| = |Y|. Therefore, M must use
every vertex in Y, and hence is Y-complete as well. Thus, M is perfect, qed.

8.7. Latin squares

An application of the Frobenius matching theorem is the study of Latin squares:

Definition 8.7.1. Let n ∈ N. A Latin square of order n is an n × n-matrix M
such that:

1. The entries of M are the numbers 1, 2, . . . , n, each appearing exactly n
times.

2. In each row of M, the entries are distinct.

3. In each column of M, the entries are distinct.

(Add one more condition and you get the notion of a Sudoku!)

Example 8.7.2. Here is a Latin square of order 5:
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

 .

Similarly, for each n ∈ N, the matrix
(
ci+j−1

)
1≤i≤n, 1≤j≤n with

ck =

{
k, if k ≤ n;
k − n, if k > n

is a Latin square of order n.

This example (along with its many permutations) shows that Latin squares
of each order exist, but it doesn’t even begin to classify them. There are many
more. What would be a good algorithm to generate general Latin squares?

We can try this: Build a Latin square row by row, starting with the top row.
Each next row needs to consist of distinct numbers, and each of its entries needs
to differ from all the entries above it (in the same column). You should expect
to sometimes get stuck (i.e., being unable to add the next row).
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Surprisingly, you never get stuck (until you have all n rows). For example:
2 4 1 5 3
1 3 4 2 5
5 2 3 4 1
3 5 2 1 4
4 1 5 3 2

 .

Why does this always work? And more importantly, how do we actually
choose each new row, short of trying all n! permutations?

Proposition 8.7.3. Let n ∈ N and k ∈ {0, 1, . . . , n − 1}. Then, any k × n
Latin rectangle (i.e., any k× n-matrix that contains the entries 1, 2, . . . , n, each
exactly k times, and satisfies the conditions 2 and 3 from the definition of a
Latin square) can be extended to a (k + 1)× n Latin rectangle by inserting an
appropriately chosen new row at the bottom.

Proof. Let M be a k × n Latin rectangle. We want to find a new row that we can
append to M at the bottom, so that

• all its entries are distinct, and

• each of its entries differs from all the entries above it.

Let X = {1, 2, . . . , n} and Y = {−1,−2, . . . ,−n}. Let G be the simple graph
with vertex set X ∪ Y, where a vertex i ∈ X is adjacent to a vertex −j ∈ Y if
and only if the number j does not appear in the i-th column of M. Thus, we are
looking for an X-complete matching in G. (If we find such a matching

{{1, −a1} , {2, −a2} , . . . , {n, −an}} ,

then we can append the row (a1, a2, . . . , an) to our Latin rectangle.)
To find such an X-complete matching, we apply the Frobenius theorem (with

n − k instead of k). To do so, we need to show that G is (n − k)-regular. This is
because:

• Each column is missing exactly n − k elements. So each vertex in X has
degree k.

• Each element of {1, 2, . . . , n} appears in exactly k columns. So each vertex
in Y has degree k.

Thus, the Frobenius theorem applies (we are using n − k > 0 here), and we
are done.

Next time, we will actually prove the HKMT (and thus get all the other
theorems today as corollaries).
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Lecture 19

9. Network flows

Today I will give an introduction to network flows and their optimization.
Books like Ford/Fulkerson (see 2022 Lecture 26 for precise references) say much
more and (in particular) talk about applications. We will just prove the most
basic theorem and use it to prove the Hall-König matching theorem and another
theorem called the Menger theorem (see 2022 Lecture 27 for much more about
that).

9.1. Definition

Recall that N = {0, 1, 2, . . .}.

Definition 9.1.1. A network consists of

• a multidigraph D = (V, A, ψ);

• two distinct vertices s, t ∈ V called the source and the sink, respec-
tively;

• a function c : A → N, called the capacity function.

For an example, see the picture on the blackboard. (The label on an arc a is
the number c (a).)

Remark 9.1.2. I do not require that deg− s = 0 and deg+ t = 0, but this is
often satisfied in applications.

Also, c (a) can be 0, but in practice usually isn’t.

Definition 9.1.3. Let N be a network consisting of a multidigraph D =
(V, A, ψ), a source s ∈ V, a sink t ∈ V and a capacity function c : A → N.
Then:

1. For any arc a ∈ A, the number c (a) is called the capacity of a.

2. For any subset S of V, we let S denote the subset V \ S of V.

3. If P and Q are two subsets of V, then [P, Q] shall mean the set of all
arcs of D whose source belongs to P and whose target belongs to Q.
Thus,

[P, Q] := {a ∈ A | ψ (a) ∈ P × Q} .
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4. If P and Q are two subsets of V, and if d : A → N is any function, then
we set

d (P, Q) := ∑
a∈[P,Q]

d (a) ∈ N.

(In particular, we can apply this to d = c, thus getting c (P, Q) =
∑

a∈[P,Q]
c (a).)

Example 9.1.4. In the example on the blackboard, let P = {s, u} and Q =
P = {v, w, x, y, t}. Thus,

[P, Q] = {uv, ux, sw} .

Hence,
c (P, Q) = c (uv) + c (ux) + c (sw) = 2 + 1 + 2 = 5.

Definition 9.1.5. Let N be a network consisting of a multidigraph D =
(V, A, ψ), a source s ∈ V, a sink t ∈ V and a capacity function c : A → N.

A flow (on N) means a function f : A → N with the following properties:

• We have 0 ≤ f (a) ≤ c (a) for each arc a ∈ A. This condition is called
the capacity constraints.

• For any vertex v ∈ V \ {s, t}, we have

f− (v) = f+ (v) ,

where

f− (v) := ∑
a∈A is an arc
with target v

f (a)

︸ ︷︷ ︸
inflow into v

and f+ (v) := ∑
a∈A is an arc
with source v

f (a)

︸ ︷︷ ︸
outflow from v

.

This condition is called the conservation constraints.

If f : A → N is a flow and a ∈ A is an arc, then the nonnegative integer
f (a) is called the arc flow of f on a.

You can think of a flow as ...

• ... traffic along one-way roads (c (a) is the capacity of road a, while f (a)
is the hourly traffic on road a);

• ... water (or oil) flowing through pipes (c (a) is the capacity of pipe a,
while f (a) is the actual flow);
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• ... money getting transferred between bank accounts (going from s to t,
with all the other vertices acting as middlemen).

Real-life applications are somewhat different.

Remark 9.1.6. Flows on a network N can be viewed as a generalization of
paths on the underlying digraph D. Indeed, if p is a path from s to t on the
digraph D = (V, A, ψ) that underlies a network N, then we can define a flow
fp on N as follows:

fp (a) =

{
1, if a is an arc of p;
0, if not

for each a ∈ A,

provided that all arcs of p have capacity ≥ 1.

Definition 9.1.7. Let N be a network consisting of a multidigraph D =
(V, A, ψ), a source s ∈ V, a sink t ∈ V and a capacity function c : A → N.

Let f : A → N be an arbitrary map (e.g., a flow on N). Then:

1. For each vertex v ∈ V, we set

f− (v) := ∑
a∈A is an arc
with target v

f (a)

︸ ︷︷ ︸
called the

inflow into v

and f+ (v) := ∑
a∈A is an arc
with source v

f (a)

︸ ︷︷ ︸
called the

outflow from v

.

2. We define the value of the map f to be the number f+ (s)− f− (s). This
value is called | f |.

Now we can state an important optimization problem, known as the maxi-
mum flow problem: Given a network N, find a flow of maximum value.

Example 9.1.8. For any network N, we can define the zero flow on N. This
is the flow 0A : A → N that sends each arc a ∈ A to 0. This flow has value
|0A| = 0.

Example 9.1.9. Finding a maximum matching in a bipartite graph is a par-
ticular case of the maximum flow problem.

Indeed, let (G, X, Y) be a bipartite graph. Then, we can transform it into a
network as follows:

• Add two new vertices s and t.
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• Turn each edge e of G into an arc −→e whose source is the X-endpoint of
e and whose target is the Y-endpoint of e.

• Add an arc from s to each x ∈ X.

• Add an arc from each y ∈ Y to t.

• Assign to each arc the capacity 1.

Now, the flows on this network N are in bijection with the matchings of G.
Namely, if f is a flow on N, then the set{

e ∈ E (G) | f
(−→e ) = 1

}
is a matching of G. Conversely, if M is a matching of G, then we obtain a
flow f on N by assigning the arc flow 1 to all arcs of the form −→e where
e ∈ M, as well as assigning the arc flow 1 to every new arc that joins s or t to
a vertex matched in M. All other arcs are assigned the arc flow 0.

If a flow f corresponds to a matching M under this bijection, then
| f | = |M|. Thus, finding a maximum matching is equivalent to finding a
maximum-value flow.

9.2. Some basic properties of flows

Before we solve the maximum flow problem, let us prove some basic facts about
flows:

Proposition 9.2.1. Let N be a network consisting of a multidigraph D =
(V, A, ψ), a source s ∈ V, a sink t ∈ V and a capacity function c : A → N.

Let f : A → N be a flow on N. Then,

| f | = f + (s)− f − (s)
= f − (t)− f + (t) .

Proof. We have
∑

v∈V
f + (v) = ∑

v∈V
f − (v) ,

since both sides are just ∑
a∈A

f (a). However, the conservation constraints yield

that
∑

v∈V\{s,t}
f + (v) = ∑

v∈V\{s,t}
f − (v) (term by term) .

Subtracting this equality from the previous one, you obtain

f + (s) + f + (t) = f − (s) + f − (t) .
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In other words,
f + (s)− f − (s) = f − (t)− f + (t) .

But the LHS here is | f |. So the RHS is | f | as well.

Proposition 9.2.2. Let N be a network consisting of a multidigraph D =
(V, A, ψ), a source s ∈ V, a sink t ∈ V and a capacity function c : A → N.

Let f : A → N be a flow on N. Let S be a subset of V. Then:

1. We have
f
(
S, S
)
− f

(
S, S
)
= ∑

v∈S

(
f + (v)− f − (v)

)
.

2. Assume that s ∈ S and t /∈ S. Then,

| f | = f
(
S, S
)
− f

(
S, S
)

.

3. Assume that s ∈ S and t /∈ S. Then,

| f | ≤ c
(
S, S
)

.

4. Assume that s ∈ S and t /∈ S. Then, | f | = c
(
S, S
)

if and only if(
f (a) = 0 for all a ∈

[
S, S
])

and(
f (a) = c (a) for all a ∈

[
S, S
])

.

Proof. See 2022 Lecture 26 Proposition 1.2.2.

9.3. The max-flow-min-cut theorem

One more definition, before we meet the hero of today’s story:

Definition 9.3.1. Let N be a network consisting of a multidigraph D =
(V, A, ψ), a source s ∈ V, a sink t ∈ V and a capacity function c : A → N.
Then:

1. A cut of N means a subset of A that has the form
[
S, S
]
, where S is a

subset of V satisfying s ∈ S and t /∈ S.

2. The capacity of a cut
[
S, S
]

is defined to be c
(
S, S
)
= ∑

a∈[S,S]
c (a) ∈ N.

Now, part of the previous proposition says that the value of any flow f can
never be larger than the capacity of any cut

[
S, S
]
. In particular, the maximum

value of a flow is ≤ to the minimum capacity of a cut.
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It turns out that this inequality actually is an equality! And moreover, it is
not hard to compute both a maximum-value flow and a minimum-capacity cut:

Theorem 9.3.2 (max-flow-min-cut theorem). Let N be a network consisting
of a multidigraph D = (V, A, ψ), a source s ∈ V, a sink t ∈ V and a capacity
function c : A → N. Then,

max {| f | | f is a flow} = min
{

c
(
S, S
)

| S ⊆ V and s ∈ S and t /∈ S
}

.

In other words, the maximum value of a flow is the minimum capacity of a
cut.

Moreover, the Ford-Fulkerson algorithm lets you compute both flow and
cut.

Proof idea. (See Spring 2022 Lecture 26 for details.)
The idea is to start with the zero flow 0A and gradually improve it, increasing

its value. Once we can no longer do this, we will have a flow of maximum value
and also find a cut whose capacity equals this value.

How to improve a flow f ? The simplest way is to find a path from s to t that
is not used to its full capacity (more precisely, each arc of this path has at least
1 unit of unused capacity in f ). Then, we can increase f (a) by 1 for each arc a
of this path, and we obtain a better flow (i.e., a flow of higher value).

But such a path doesn’t always exist, even if f is not maximum-value. Thus,
we have to make our method subtler. Namely, we pick a “zig-zag path” (i.e.,
a path that can use arcs both forward and backward) from s to t with the
property that every forward arc a has at least 1 unit of unused capacity (i.e.,
satisfies f (a) < c (a)) and every backward arc a has at least 1 unit of arc flow
(i.e., satisfies f (a) > 0). Then, we increase f (a) by 1 for every forward arc a of
this path, and decrease f (a) by 1 for every backward arc a of this path. As a
result, our flow remains a flow (not hard to check), but has higher value (higher
by 1), thus is an improvement.

Two questions:

1. How do we find such a “zig-zag path”?

2. What if there is none?

The answers to these questions are related. Namely, zig-zag paths are just
regular paths in a different digraph: the residual digraph D f . This residual
digraph D f has the same vertices as D, but its arcs are:

• the arcs a ∈ A that satisfy f (a) < c (a), as well as

• the reversals of all arcs a ∈ A that satisfy f (a) > 0.
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The paths of D f are precisely the “zig-zag paths” of D that satisfy the re-
quired capacity condition (i.e., that satisfy f (a) < c (a) for each forward arc a
and f (a) > 0 for each backward arc a). Thus, we can answer question 1 since
we have an algorithm for finding a path in a digraph.

As to question 2: What if there is no zig-zag path? I.e., what if D f has no
path from s to t ? In that case, we let

S =
{

v ∈ V | D f has a path from s to v
}

.

Then, S ⊆ V and s ∈ S and t /∈ S. Hence,
[
S, S
]

is a cut of N. Now, it is
not hard to see that f

(
S, S
)
= c

(
S, S
)

(since f (a) = c (a) for each a ∈
[
S, S
]
)

and f
(
S, S
)
= 0 (since f (a) = 0 for each a ∈

[
S, S
]
). Thus, using the previous

proposition, we get c
(
S, S
)
= | f |. However, every flow on N has value ≤

c
(
S, S
)

(again by the previous proposition). Thus, c
(
S, S
)
= | f | shows that the

flow f has maximum possible value. Likewise, it shows that the cut
[
S, S
]

has
minimum possible capacity. Thus, if there is no zig-zag path, then we are done.

So our algorithm to find a maximum-value flow is as follows:

• Start with the zero flow 0A.

• Look for a zig-zag path. If there is one, then use it to improve the flow.

• Repeat until there is no longer a zig-zag path available. At that point,
your flow is maximum-value.

This is called the Ford-Fulkerson algorithm. (Note that this will always
terminate, since every step increases the value of the flow by at least 1, but the
value of the flow is bounded from above.)

Remark 9.3.3. The max-flow-min-cut theorem works also if we replace N

by Q+ or R+, but the proof gets trickier. For Q+, the algorithm still works,
because essentially it is the same as N up to common denominator. For
R+, the algorithm might run in an endless loop without getting close to
the maximum value. There is a way to fix it by choosing not some random
zig-zag path, but a shortest possible zig-zag path at every step (provided,
of course, that you modify the algorithm to increase the arc flows not by
1 but by the appropriate largest possible amounts). This is known as the
Edmonds-Karp version of the Ford-Fulkerson algorithm.

See Lecture 26 for:

• a proof of the Hall-König matching theorem using the max-flow-min-cut
theorem (and thus of Hall’s marriage theorem).

See Lecture 27 for:

• Menger’s theorems.
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