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10. Math 235 Fall 2023, Worksheet 10:
Applications of linear algebra

This worksheet is devoted to linear algebra, and specifically to its uses in contest-
style problems (often of combinatorial or arithmetical nature).

This is not an introduction to linear algebra, as there are several good textbooks
for that: Strickland’s notes [Strick21] are a well-written and rigorous introduction
to matrices (despite their applied audience), whereas the textbook [LaNaSc16] ex-
poses the subject from the point of view of vector spaces. Axler’s book [Axler23]
is also recommended, even though it bungles the definition of a polynomial1.
Other (more advanced) texts are [Treil21], [Griffin20], [Camero08], [StoLui18] and
[Kuttle22].2

Thus, I assume that you are familiar with the basics of linear algebra (although
I will insert the occasional reminder), and set out to show how it can be used in
some unexpected places.

As before, N means the set {0, 1, 2, . . .}.

10.1. A note on fields

One of the main concepts in abstract algebra is that of a field. Roughly speaking,
a field is a set of “numbers” (in a sufficiently wide sense), which can be added,
subtracted, multiplied and divided (except by zero). These four operations are
assumed to satisfy certain axioms (commutativity, associativity, distributivity, ex-
istence of 0 and 1, and of course we want subtraction to undo addition and di-
vision to undo multiplication). See any textbook on abstract algebra for details
(e.g., [Aluffi21, Chapter 3] or [Steinb06, Chapter 7 onwards] or [Grinbe23a, §2.5
onwards]). The sets Q, R and C are fields, with the usual four operations. The set
Z is not, since integers cannot always be divided (at least not without leaving Z or
incurring remainders). Other fields exist, and we will meet one more on this very
worksheet; but the most important ones are Q, R and C.

The main concepts of linear algebra (matrices, vector spaces, linear maps, deter-
minants) can be defined over any field: If F is any field (e.g., one of Q, R and C),
then we can define

• matrices over F (these are matrices whose entries belong to F);

• vector spaces over F (these are vector spaces in which the vectors can be
scaled by the elements of F);

• linear maps (these are maps f : V → W that satisfy f (v1 + v2) = f (v1) +
f (v2) for all v1, v2 ∈ V and f (λv) = λ f (v) for all λ ∈ F and v ∈ V);

1Every time Axler says “polynomial”, read “polynomial function” instead.
2This list restricts itself to the sources openly available online and written in English; otherwise it

would go on for several more lines.
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• and so on.

When F = R, these concepts become the usual “real” concepts (i.e., matrices with
real entries, real vector spaces, real linear maps, etc.) known from basic courses on
linear algebra. Likewise, for F = C, we obtain complex matrices, complex vector
spaces, etc.3. In general, when doing linear algebra using a field F, one commonly
says that one is “working over F”, and one refers to the elements of F as “scalars”.

10.2. Linear dependence, bases, spanning

Some of the most fundamental facts in linear algebra concern lists of vectors in
vector spaces. Such lists can be linearly dependent or independent; they have
spans (which are subspaces); they can be a basis of the vector space. Furthermore,
finite-dimensional vector spaces have bases and dimensions4. This all can be found
in any good textbook on linear algebra (e.g., [LaNaSc16, Chapter 5] or [Axler23,
Chapter 2]). Let me highlight one particular result for its usefulness:

Theorem 10.2.1. Let k, n ∈ N. Assume you have a list of k vectors in an n-
dimensional vector space V.

(a) If k > n, then your k vectors are linearly dependent.

(b) If k = n and if your k vectors are linearly independent, then they form a
basis of V.

(c) If k < n, then your k vectors cannot span V.

(d) If k = n and if your k vectors span V, then they form a basis of V.

Proof. Part (a) is [Griffin20, Theorem 1.59]. Part (b) is [Griffin20, Theorem 1.63] or
[LaNaSc16, Theorem 5.4.4 part 3]. Part (c) follows easily from [LaNaSc16, Theorem
5.2.9]. Part (d) is [LaNaSc16, Theorem 5.4.4 part 2].

The four parts of Theorem 10.2.1 are sometimes called the pigeonhole principles
for vector spaces, due to their similarity to the pigeonhole principles for finite sets
(Theorem 3.0.1 in Worksheet 3). Just like the latter, they require finiteness (k and n

3For example, the matrix
(

1 1
−1 1

)
can be viewed both as a real matrix and as a complex matrix

(and even as a rational matrix). As a real matrix, it cannot be diagonalized, since its eigenvalues
1 + i and 1 − i are not real. But as a complex matrix, it can be diagonalized:(

1 1
−1 1

)
=

(
1 1
−i i

)(
1 − i 0

0 1 + i

)(
1 1
−i i

)−1

.

4Infinite-dimensional vector spaces have bases and dimensions, too, at least if you believe in the
axiom of choice. But this is both harder to prove and far less useful than the finite case.
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must be finite, although V will usually not be finite as a set), but finite-dimensional
vector spaces are widespread in mathematics, so there is no shortage of situations
to apply them to.

Part (a) alone is surprisingly useful. The following two “exercises” are combina-
torial results with known names and a long history; both are rather hard to prove
by elementary combinatorics. Using Theorem 10.2.1 (a), we will prove them both
with fairly little effort. The first is known as the easy Lindström theorem (the hard
one is Exercise 10.7.1):

Exercise 10.2.1. Let n ∈ N. Let S be an n-element set. Let A1, A2, . . . , An+1
be n + 1 nonempty subsets of S. Prove that there exist two disjoint nonempty
subsets I and J of {1, 2, . . . , n + 1} such that⋃

i∈I

Ai =
⋃
i∈J

Ai.

(Recall that
⋃
i∈I

Ai denotes the union of the Ai for all i ∈ I. For example, if

I = {2, 3, 6}, then
⋃
i∈I

Ai = A2 ∪ A3 ∪ A6. Similarly,
⋃
i∈J

Ai is understood.)

Example 10.2.2. For instance, let n = 5 and S = {1, 2, 3, 4, 5}. Let

A1 = {1, 2, 3} , A2 = {2, 3, 5} , A3 = {2, 4} ,
A4 = {1, 5} , A5 = {2, 3} , A6 = {1} .

Then, A5 ∪ A6 = A1. In other words, the two disjoint nonempty subsets I =
{5, 6} and J = {1} of {1, 2, 3, 4, 5, 6} satisfy

⋃
i∈I

Ai =
⋃
i∈J

Ai.

Example 10.2.3. For another example, let n = 5 and S = {1, 2, 3, 4, 5}. Let

A1 = {1, 3, 4} , A2 = {2, 3, 5} , A3 = {2, 4} ,
A4 = {1, 5} , A5 = {2, 3} , A6 = {1} .

Then, A1 ∪ A2 = A3 ∪ A4 ∪ A5. In other words, the two disjoint nonempty
subsets I = {1, 2} and J = {3, 4, 5} of {1, 2, 3, 4, 5, 6} satisfy

⋃
i∈I

Ai =
⋃
i∈J

Ai.

Example 10.2.4. We cannot allow the sets A1, A2, . . . , An+1 in Exercise 10.2.1 to
be empty. In fact, if we did so, then we could set S = {1, 2, . . . , n} and

A1 = {1} , A2 = {2} , . . . , An = {n} ,
An+1 = ∅,

and then there would not be any two disjoint nonempty subsets I and J of
{1, 2, . . . , n + 1} such that

⋃
i∈I

Ai =
⋃
i∈J

Ai.
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Solution to Exercise 10.2.1. WLOG assume that S = {1, 2, . . . , n} (otherwise, just re-
name the elements).

We shall use vectors – specifically, row vectors of size n with real entries. Such
vectors are written as (a1, a2, . . . , an), and the vector space consisting of these vec-
tors is called Rn. The j-th entry of such a vector is called its j-th coordinate.

For each subset J of S, we define the indicator vector eJ ∈ Rn as follows: For each
i ∈ S = {1, 2, . . . , n}, the i-th coordinate of eJ shall be{

1, if i ∈ J;
0, if i /∈ J.

For example:

• If n = 5 and J = {1, 3, 4}, then eJ = (1, 0, 1, 1, 0).

• If n = 5 and J = {2, 4}, then eJ = (0, 1, 0, 1, 0).

• If n = 5 and J = ∅, then eJ = (0, 0, 0, 0, 0).

• If n = 5 and J = S = {1, 2, 3, 4, 5}, then eJ = (1, 1, 1, 1, 1).

This indicator vector eJ is also known as “incidence vector” or “characteristic
vector”, but we prefer the name “indicator vector” since it is the most informative
(the entries of eJ literally indicate what numbers belong to J, like an indicator light
on an electric appliance).

Thus, we have n + 1 indicator vectors eA1 , eA2 , . . . , eAn+1 all belonging to the n-
dimensional vector space Rn (of row vectors). By Theorem 10.2.1 (a) (applied to
m = n + 1), we thus conclude that they are linearly dependent (since n + 1 > n). In
other words, there exist real numbers c1, c2, . . . , cn+1, not all zero, such that

c1eA1 + c2eA2 + · · ·+ cn+1eAn+1 = 0 (1)

(where 0 denotes the zero vector). Consider these numbers c1, c2, . . . , cn+1.
Let I and J be the two subsets of {1, 2, . . . , n + 1} defined by

I = {i ∈ {1, 2, . . . , n + 1} | ci > 0} and
J = {i ∈ {1, 2, . . . , n + 1} | ci < 0} .

These two subsets I and J are disjoint (since a single i cannot satisfy ci > 0 and
ci < 0 at the same time). Moreover, we can easily rewrite the equality (1) as

∑
i∈I

cieAi = −∑
i∈J

cieAi , (2)
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since (1) leads to

0 = c1eA1 + c2eA2 + · · ·+ cn+1eAn+1 = ∑
i∈{1,2,...,n+1}

cieAi

= ∑
i∈{1,2,...,n+1};

ci>0︸ ︷︷ ︸
= ∑

i∈I
(by the definition of I)

cieAi + ∑
i∈{1,2,...,n+1};

ci=0

ci︸︷︷︸
=0

eAi + ∑
i∈{1,2,...,n+1};

ci<0︸ ︷︷ ︸
= ∑

i∈J
(by the definition of J)

cieAi

(
since each i ∈ {1, 2, . . . , n + 1} satisfies

either ci > 0 or ci = 0 or ci < 0

)
= ∑

i∈I
cieAi + ∑

i∈{1,2,...,n+1};
ci=0

0eAi

︸ ︷︷ ︸
=0

+∑
i∈J

cieAi

= ∑
i∈I

cieAi + ∑
i∈J

cieAi .

Now comes a crucial but simple observation: The equality (2) entails⋃
i∈I

Ai =
⋃
i∈J

Ai. (3)

Proof of (3). Let k ∈ S. Thus, k ∈ S = {1, 2, . . . , n}. Recall that the k-th coordinate of
a given indicator vector eAi is {

1, if k ∈ Ai;
0, if k /∈ Ai.

Thus, the k-th coordinate of the vector ∑
i∈I

cieAi equals

∑
i∈I

ci

{
1, if k ∈ Ai;
0, if k /∈ Ai

= ∑
i∈I;

k∈Ai

ci · 1︸︷︷︸
=ci

+ ∑
i∈I;

k/∈Ai

ci · 0

︸ ︷︷ ︸
=0

= ∑
i∈I;

k∈Ai

ci.

This sum is 0 when k /∈ ⋃
i∈I

Ai (because in this case, the sum is empty5), and positive

otherwise (because if k ∈ ⋃
i∈I

Ai, then the sum ∑
i∈I;

k∈Ai

ci is nonempty6, and all its

5since k /∈ ⋃
i∈I

Ai means that there exists no i ∈ I satisfying k ∈ Ai

6since k ∈ ⋃
i∈I

Ai means that there exists some i ∈ I satisfying k ∈ Ai
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addends are positive7). Thus, we have shown that the k-th coordinate of the vector
∑
i∈I

cieAi is 0 when k /∈ ⋃
i∈I

Ai and positive otherwise. Hence, the k-th coordinate of

the vector ∑
i∈I

cieAi is nonzero exactly when k ∈ ⋃
i∈I

Ai.

An analogous argument shows that the k-th coordinate of the vector ∑
i∈J

cieAi is

nonzero exactly when k ∈ ⋃
i∈J

Ai. (The only difference is that now it will be negative,

rather than positive, in the case when k ∈ ⋃
i∈J

Ai.)

However, the equality (2) shows that the two vectors ∑
i∈I

cieAi and ∑
i∈J

cieAi are

equal up to a factor of −1. Thus, in particular, the k-th coordinate of the former
vector equals the k-th coordinate of the latter vector times −1. Hence, the k-th
coordinate of the former vector is nonzero if and only if the k-th coordinate of
the latter vector is nonzero. In other words, we have k ∈ ⋃

i∈I
Ai if and only if

k ∈ ⋃
i∈J

Ai (since the k-th coordinate of the vector ∑
i∈I

cieAi is nonzero exactly when

k ∈ ⋃
i∈I

Ai, and since the k-th coordinate of the vector ∑
i∈J

cieAi is nonzero exactly

when k ∈ ⋃
i∈J

Ai).

Forget that we fixed k. We thus have shown that for each k ∈ S, we have k ∈ ⋃
i∈I

Ai

if and only if k ∈ ⋃
i∈J

Ai. In other words, the sets
⋃
i∈I

Ai and
⋃
i∈J

Ai contain the exact

same elements of S. Since both
⋃
i∈I

Ai and
⋃
i∈J

Ai are subsets of S, this entails that

they are identical. In other words,
⋃
i∈I

Ai =
⋃
i∈J

Ai. This proves (3).

We are now almost done: We have constructed two disjoint subsets I and J of
{1, 2, . . . , n + 1} such that ⋃

i∈I

Ai =
⋃
i∈J

Ai.

It remains to prove that I and J are nonempty.
Here, we need to recall that the numbers c1, c2, . . . , cn+1 are not all zero. Thus,

at least one of them is positive or negative. In other words, at least one of the sets
I and J is nonempty. Let us WLOG assume that J ̸= ∅ (since the case I ̸= ∅ is
analogous). We shall now show that I ̸= ∅ as well. Indeed, from J ̸= ∅, we see that⋃
i∈J

Ai is a nonempty union of nonempty sets (since all n + 1 sets A1, A2, . . . , An+1

are nonempty), and thus is nonempty itself. In other words,
⋃
i∈I

Ai is nonempty

(since
⋃
i∈I

Ai =
⋃
i∈J

Ai). But this is only possible if I ̸= ∅ (since I = ∅ would lead

7since ci > 0 for each i ∈ I

Darij Grinberg



Math 235 Fall 2023, Worksheet 10, version December 25, 2023 page 7

to
⋃
i∈I

Ai =
⋃

i∈∅
Ai = ∅). Hence, we have shown that I ̸= ∅. Thus, both I and J are

nonempty, and this completes our solution to Exercise 10.2.1.

The next exercise is known as the the nonuniform Fisher inequality ([BabFra23,
Theorem 4.1]):

Exercise 10.2.2. Let k, n and m be three positive integers. In a town with n inhab-
itants, there are m clubs, no two of which have the exact same set of members.
Assume that any two distinct clubs share exactly k members. Prove that m ≤ n.

Example 10.2.5. Let n = 3 and let the inhabitants be 1, 2, 3. Consider the three
clubs

{1, 2} , {1, 3} , {2, 3}
(of course, we regard each club as the set of its members). Any two of them
share exactly 1 member. Exercise 10.2.2 claims that we cannot find more than 3
clubs with this property.

Example 10.2.6. Let n = 4 and let the inhabitants be 1, 2, 3, 4. Consider the four
clubs

{1, 2, 3} , {2, 3, 4} , {3, 4, 1} , {4, 1, 2} .

Any two of them share exactly 2 members. Exercise 10.2.2 claims that we cannot
find more than 4 clubs with this property.

Solution idea to Exercise 10.2.2. Let the n inhabitants be called 1, 2, . . . , n. Thus, each
club is a subset of {1, 2, . . . , n}.

Let C1, C2, . . . , Cm be our m clubs (regarded as subsets of {1, 2, . . . , n}). Let
v1, v2, . . . , vm be the indicator vectors of these clubs (defined in the same way as
in the solution to Exercise 10.2.1). Thus, for each i ∈ {1, 2, . . . , m}, the vector vi is a
row vector in Rn whose j-th coordinate is{

1, if j ∈ Ci;
0, otherwise

for each j ∈ {1, 2, . . . , n} .

These indicator vectors v1, v2, . . . , vm are distinct (since no two clubs have the
exact same set of members).

Recall one more concept from linear algebra: The dot product of two vectors
x = (x1, x2, . . . , xn) ∈ Rn and y = (y1, y2, . . . , yn) ∈ Rn is defined to be the scalar

x1y1 + x2y2 + · · ·+ xnyn =
n

∑
p=1

xpyp.

This dot product is denoted by ⟨x, y⟩ or sometimes by x · y. We will use the notation
⟨x, y⟩ in the following.
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For any i, j ∈ {1, 2, . . . , m}, we have

〈
vi, vj

〉
=

n

∑
p=1

{
1, if p ∈ Ci;
0, otherwise

·
{

1, if p ∈ Cj;

0, otherwise︸ ︷︷ ︸
=

1, if p ∈ Ci and p ∈ Cj;

0, otherwise
(since 1·1=1 but 1·0=0·1=0·0=0)(

by the definition of the dot product
and of the indicator vectors vi and vj

)
=

n

∑
p=1

{
1, if p ∈ Ci and p ∈ Cj;

0, otherwise
=

n

∑
p=1

{
1, if p ∈ Ci ∩ Cj;

0, otherwise(
since the statement “p ∈ Ci and p ∈ Cj”

is equivalent to “p ∈ Ci ∩ Cj”

)
=
∣∣Ci ∩ Cj

∣∣ (4)

(since this sum has a nonzero addend corresponding to each p ∈ Ci ∩ Cj, and all
these nonzero addends equal 1).

Therefore, for any two distinct elements i, j ∈ {1, 2, . . . , m}, we have〈
vi, vj

〉
=
∣∣Ci ∩ Cj

∣∣ = k (5)

(by our assumption that any two distinct clubs share exactly k members). On the
other hand, for each i ∈ {1, 2, . . . , m}, we have

⟨vi, vi⟩ = |Ci ∩ Ci| (by (4), applied to j = i)
= |Ci| . (6)

Now, we must prove that m ≤ n. Assume the contrary. Thus, m > n. Hence, by
Theorem 10.2.1 (a), the m vectors v1, v2, . . . , vm in the n-dimensional vector space
Rn are linearly dependent. In other words, there exist reals c1, c2, . . . , cm, not all
zero, such that

c1v1 + c2v2 + · · ·+ cmvm = 0

(where 0 denotes the zero vector). Consider these reals. Thus,

0 = c1v1 + c2v2 + · · ·+ cmvm = ∑
i

civi.

(Here and in the following, all summation indices range from 1 to m. Thus, “∑
i

”

means “
m
∑

i=1
”, and similarly for any other sums.)

It is easy to see that each i ∈ {1, 2, . . . , m} satisfies

|Ci| ≥ k. (7)

Darij Grinberg



Math 235 Fall 2023, Worksheet 10, version December 25, 2023 page 9

(Indeed, if i ∈ {1, 2, . . . , m}, then we can pick any arbitrary j ∈ {1, 2, . . . , m} that is
distinct from i 8, and then we have Ci ⊇ Ci ∩ Cj and therefore |Ci| ≥

∣∣Ci ∩ Cj
∣∣ = k

(by our assumption that any two distinct clubs share exactly k members). Thus, (7)
is proved.)

Now, from 0 = ∑
i

civi and 0 = ∑
i

civi = ∑
j

cjvj, we obtain

⟨0, 0⟩ =
〈

∑
i

civi, ∑
j

cjvj

〉

= ∑
i

∑
j

cicj
〈
vi, vj

〉 (
since the dot product is linear
in each of its two arguments

)
= ∑

i,j
cicj

〈
vi, vj

〉 (
of course, both indices i and j

range over {1, 2, . . . , m}

)
= ∑

i,j;
i=j

cicj
〈
vi, vj

〉
︸ ︷︷ ︸
=∑

i
cici⟨vi,vi⟩

+∑
i,j;
i ̸=j

cicj
〈
vi, vj

〉︸ ︷︷ ︸
=k

(by (5))

= ∑
i

cici︸︷︷︸
=c2

i

⟨vi, vi⟩︸ ︷︷ ︸
=|Ci|

(by (6))

+ ∑
i,j;
i ̸=j

cicjk

︸ ︷︷ ︸
=k ∑

i,j;
i ̸=j

cicj

= ∑
i

c2
i |Ci|+ k ∑

i,j;
i ̸=j

cicj.

Comparing this with ⟨0, 0⟩ = 0 (which is obvious), we obtain

∑
i

c2
i |Ci|+ k ∑

i,j;
i ̸=j

cicj = 0. (8)

Now, let us simplify the second sum on the left hand side here. (It is generally a
good idea to simplify the sums that have the most addends.) The trick is to observe

8Why does such a j exist? Because we have m > n ≥ 1, and thus there are at least two different
j ∈ {1, 2, . . . , m} (and therefore at least one of them is distinct from i).
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that (
∑

i
ci

)2

=

(
∑

i
ci

)(
∑

i
ci

)
=

(
∑

i
ci

)(
∑

j
cj

)
= ∑

i,j
cicj = ∑

i,j;
i=j

cicj

︸ ︷︷ ︸
=∑

i
c2

i

+∑
i,j;
i ̸=j

cicj = ∑
i

c2
i + ∑

i,j;
i ̸=j

cicj,

so that

∑
i,j;
i ̸=j

cicj =

(
∑

i
ci

)2

− ∑
i

c2
i .

Thus,

∑
i

c2
i |Ci|+ k ∑

i,j;
i ̸=j

cicj

︸ ︷︷ ︸
=

(
∑
i

ci

)2
−∑

i
c2

i

= ∑
i

c2
i |Ci|+ k

(∑
i

ci

)2

− ∑
i

c2
i



= ∑
i

c2
i (|Ci| − k) + k

(
∑

i
ci

)2

.

Comparing this with (8), we obtain

0 = ∑
i

c2
i (|Ci| − k) + k

(
∑

i
ci

)2

. (9)

This equality is peculiar in that the left hand side is 0, whereas the right hand side is
a sum of nonnegative addends (indeed, all the addends c2

i︸︷︷︸
≥0

(since squares are ≥0)

(|Ci| − k)︸ ︷︷ ︸
≥0

(by (7))

and k︸︷︷︸
>0

(
∑

i
ci

)2

︸ ︷︷ ︸
≥0

(since squares are ≥0)

on the right hand side are nonnegative). However, a sum

of nonnegative reals can only be 0 if all addends are 0. Thus, the equality (9) entails
that all the addends on the right hand side are 0. In other words,

c2
i (|Ci| − k) = 0 for each i ∈ {1, 2, . . . , m} , (10)
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and

k

(
∑

i
ci

)2

= 0. (11)

From (11), we obtain
∑

i
ci = 0 (12)

(since k is nonzero). Since the reals c1, c2, . . . , cm are not all zero, this entails that
there exist at least two numbers p ∈ {1, 2, . . . , m} satisfying cp ̸= 0 (because if there
was only one such number p, then the sum ∑

i
ci would equal its single nonzero ad-

dend cp ̸= 0; but this would contradict (12)). In other words, there exist two
distinct numbers i and j in {1, 2, . . . , m} that satisfy ci ̸= 0 and cj ̸= 0. Consider
these i and j. From (10), we obtain c2

i (|Ci| − k) = 0. Since ci ̸= 0, we can divide
this equality by c2

i , and thus obtain |Ci| − k = 0. In other words, |Ci| = k. How-
ever,

∣∣Ci ∩ Cj
∣∣ = k (by our assumption that any two distinct clubs share exactly k

members). Now, Ci ∩ Cj is a subset of the finite set Ci that has the same size as
Ci (because

∣∣Ci ∩ Cj
∣∣ = k = |Ci|). But the only such subset is obviously Ci. Thus,

Ci ∩ Cj = Ci. Similarly, Ci ∩ Cj = Cj. Comparing these two equalities, we obtain
Ci = Cj. But this contradicts the assumption that no two clubs have the exact same
set of members. Hence, we found a contradiction, and the exercise is solved.

Theorem 10.2.1 also leads to a useful general result about dimensions of vector
spaces (similar to the well-known fact in combinatorics that any subset of an n-
element set has size ≤ n):

Theorem 10.2.7. Let W be a subspace of a finite-dimensional vector space V.
(Here and in the following, “subspace” means “vector subspace”.) Then:

(a) We have dim W ≤ dim V.

(b) If dim W = dim V, then V = W.

Proof sketch. Set n := dim V. Let F be the field over which V is a vector space.

The vector space V is n-dimensional (since n = dim V). Thus, Theorem 10.2.1 (a)
shows that V does not contain more than n linearly independent vectors. Hence,
W does not contain more than n linearly independent vectors either (since W is a
subspace of V). But of course, W contains 0 linearly independent vectors. Thus,
there exists a largest integer m ∈ N such that W contains m linearly independent
vectors. Consider this largest m, and pick a list (w1, w2, . . . , wm) of m linearly in-
dependent vectors in W. Note that m cannot be larger than n (since W contains m
linearly independent vectors but does not contain more than n linearly indepen-
dent vectors). In other words, m ≤ n. Also note that W does not contain m + 1
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linearly independent vectors9.
Now, we claim that the list (w1, w2, . . . , wm) is a basis of W. Indeed, we already

know that this list is linearly independent, so we only need to prove that it spans
W. To this purpose, we fix a vector w ∈ W. Then, the list (w1, w2, . . . , wm, w)
consists of m + 1 vectors, and thus cannot be linearly independent (because if it
was, then W would contain m + 1 linearly independent vectors, but we know that
W does not contain m + 1 linearly independent vectors). Hence, there exist scalars
c1, c2, . . . , cm, c ∈ F, not all zero, such that

c1w1 + c2w2 + · · ·+ cmwm + cw = 0 (13)

(where 0 denotes the zero vector of V). Consider these scalars. If c was 0, then the
equality (13) would simplify to c1w1 + c2w2 + · · ·+ cmwm = 0 (since c︸︷︷︸

=0

w = 0w =

0), which would entail c1 = c2 = · · · = cm = 0 (since the list (w1, w2, . . . , wm) is
linearly independent) and therefore c1 = c2 = · · · = cm = c = 0 (since c = 0); but
this would contradict the fact that c1, c2, . . . , cm, c are not all zero. Hence, c cannot
be 0. Thus, we can divide by c in the field F. Dividing both sides of the equality

(13) by c (that is, multiplying them by
1
c

), we obtain

c1

c
w1 +

c2

c
w2 + · · ·+ cm

c
wm + w = 0.

Solving this for w, we find

w = −
( c1

c
w1 +

c2

c
w2 + · · ·+ cm

c
wm

)
=

−c1

c
w1 +

−c2

c
w2 + · · ·+ −cm

c
wm

∈ span {w1, w2, . . . , wm} .

Forget that we fixed w. We thus have shown that w ∈ span {w1, w2, . . . , wm}
for each w ∈ W. In other words, W ⊆ span {w1, w2, . . . , wm}. Thus, the list
(w1, w2, . . . , wm) spans the vector space W. Since this list is also linearly inde-
pendent, we conclude that it is a basis of W.

Hence, the vector space W has a basis consisting of m vectors (namely, this list
(w1, w2, . . . , wm)). Thus, its dimension is dim W = m. Now, dim W = m ≤ n =
dim V, so that Theorem 10.2.7 (a) is proved.

(b) Assume that dim W = dim V. Then, m = dim W = dim V = n. Now, recall
that the m vectors w1, w2, . . . , wm are linearly independent. In other words, the n
vectors w1, w2, . . . , wn are linearly independent (since m = n). Hence, w1, w2, . . . , wn
are n linearly independent vectors in the n-dimensional vector space V, and thus

9since m was chosen to be the largest integer with the property that W contains m linearly inde-
pendent vectors
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form a basis of V (by Theorem 10.2.1 (b)). Thus,

V = span {w1, w2, . . . , wn} = span {w1, w2, . . . , wm} (since n = m)

= W (since the list (w1, w2, . . . , wm) spans W) .

This proves Theorem 10.2.7 (b).

10.3. Determinants

A highly useful subfield of linear algebra is the evaluation of determinants. This
is an art all in itself, with a long history predating most of linear algebra (deter-
minants were introduced two centuries before matrices!10). An introduction to this
art can be found in [Grinbe21, §6.4], more advanced methods in [Kratte99], and a
multitude of exercises in [Prasol94, Chapter 1] and [Grinbe15, Chapter 6]. We will
only give a few examples and applications here.

10.3.1. Definition and methods of computation

We recall that the determinant of an n × n-matrix

A =
(
ai,j
)

1≤i≤n, 1≤j≤n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

an,1 an,2 · · · an,n


is defined by the formula

det A = ∑
σ∈Sn

(−1)σ a1,σ(1)a2,σ(2) · · · an,σ(n), (14)

where

• the set Sn is the set of all permutations of the set {1, 2, . . . , n} (that is, bijective
maps from this set {1, 2, . . . , n} to itself);

• the factor (−1)σ denotes the sign of the permutation σ (that is, 1 if σ is even,
and −1 if σ is odd). (See, e.g., [Strick21, Appendix B] for a quick but well-
written introduction to signs of permutations.)

10The word “matrix” was introduced by J. J. Sylvester to refer to a rectangular table of numbers
out of which many determinants (“minor”) can be formed by removing some rows and some
columns (“as from the womb of a common parent”; thus the word “matrix”). Before Sylvester,

authors would just talk about determinants
∣∣∣∣ a b

c d

∣∣∣∣ without having a special name for the table

of entries “within” the determinant.
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The above formula (14) is known as the Leibniz formula, and is probably the
simplest way to define determinants, but one of the least efficient ways to compute
them. Over the centuries, many techniques for the computation of determinants
have appeared, such as the following:

• Laplace expansion (along a row or a column). See [Grinbe21, §6.4.7], [Grinbe15,
§6.12] or [Strick21, Propositions B.24 and B.25] (or various other sources) for
statements and proofs. For example, here is how a 3 × 3-determinant can be
expanded along the second row and the second column:

det

 a b c
a′ b′ c′

a′′ b′′ c′′

 = −a′ det
(

b c
b′′ c′′

)
+ b′ det

(
a c

a′′ c′′

)
− c′ det

(
a b

a′′ b′′

)

and

det

 a b c
a′ b′ c′

a′′ b′′ c′′

 = −b det
(

a′ c′

a′′ c′′

)
+ b′ det

(
a c

a′′ c′′

)
− b′′ det

(
a c
a′ c′

)
.

Note the signs, which always alternate and are positive whenever the entry
being plucked out comes from the diagonal of the matrix! Tactically, Laplace
expansion is at its most useful when many addends in the resulting sum van-

ish. For example, when computing det

 1 0 2
2 3 0
4 0 0

 by Laplace expansion, it

is reasonable to expand along the first row (since it has a 0 entry), but it is
best to expand along the third row or the second or third column (since it has
two 0 entries).

• Multilinearity and alternatingness. These basic properties of determinants (see
[Grinbe21, Theorems 6.4.12 and 6.4.14] or [Grinbe15, Exercise 6.7], for exam-
ple) look harmless, but are often helpful as steps in longer computations.
Here is a quick summary:

– If a row of a matrix A is zero (i.e., consists entirely of zeroes), then
det A = 0.

– If two rows of a matrix A are equal, then det A = 0.

– If we swap two rows of a matrix A, then det A gets multiplied by −1.

– If we multiply a row of a matrix A by a given scalar λ, then det A gets
multiplied by λ.

– If we add a scalar multiple of a row of a matrix A to another row of A,
then det A remains unchanged.
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– Let k ∈ {1, 2, . . . , n} be arbitrary. If three n × n-matrices A, B and C
satisfy

(the k-th row of C) = (the k-th row of A) + (the k-th row of B)

and

(the i-th row of C) = (the i-th row of A)

= (the i-th row of B) for all i ̸= k,

then
det C = det A + det B.

This property (known as multilinearity) is best illustrated on an example
(with n = 3 and k = 2):

det

 a b c
d + d′ e + e′ f + f ′

g h i


︸ ︷︷ ︸

this is C

= det

 a b c
d e f
g h i


︸ ︷︷ ︸

this is A

+det

 a b c
d′ e′ f ′

g h i


︸ ︷︷ ︸

this is B

.

– All of the above holds if “row” is replaced by “column”.

• Gaussian elimination, and (more generally) artful use of row and column opera-
tions. This relies on the properties listed above, and is particular convenient
when you have a fully specified matrix (with given size and given entries) in
front of you, but sometimes works in more general settings.

• The transpose AT of a matrix A has the same determinant as A (that is,
det

(
AT) = det A).

• The determinant of a triangular matrix equals the product of its diagonal
entries. This holds both for upper-triangular and lower-triangular matrices.
For example, for 3 × 3-matrices, this is saying that

det

 a b c
0 b′ c′

0 0 c′′

 = det

 a 0 0
a′ b′ 0
a′′ b′′ c′′

 = ab′c′′.

• Multiplicativity: i.e., the formula det (AB) = det A · det B that holds for any
two n × n-matrices A and B. This is useful whenever you can factor your
matrix as a product of two (or more) simpler matrices. Particularly helpful
are factorizations into triangular matrices (such as LU-factorization), whose
determinants can be immediately computed according to the previous bullet
point. See [Grinbe21, §6.4.5] or [Kratte99, §2.6] for examples of this strategy
in action.
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Keep in mind that there is no simple formula for det (A + B) (it rarely ever
equals det A + det B), and don’t forget that det (λA) for a number λ is not
λ det A but λn det A.

Note that there is also a formula for det (AB) when A and B are not square
(but AB is). This is the Cauchy–Binet formula ([Grinbe21, §6.4.3]), and is less
simple than the n × n-case (of course, det A and det B are not defined when
A and B are not square, so it cannot possibly be as simple).

• Eigenvalues. If the n eigenvalues of an n × n-matrix A are λ1, λ2, . . . , λn (listed
with their algebraic multiplicities), then det A = λ1λ2 · · · λn. This fact is not
very helpful for computing det A, since any practical use requires computing
all eigenvalues of A without going through the characteristic polynomial in
the first place (since the latter is no easier than computing det A). Neverthe-
less, there have been situations in which this has been useful (e.g., [Zhao09,
Problem 3] or [Grinbe23b, §5.14.5 and §5.15.2]).

• The invertible matrix theorem says (among many other things) that an n × n-
matrix A has determinant 0 if and only if it has a nonzero nullspace (i.e., if
there exists a nonzero vector v such that Av = 0). This can be used to prove
that some determinants are 0.

• Factor hunting (aka identification of factors). This works when the entries of
your matrix are polynomials, ideally in several indeterminates. See [Grinbe21,
§6.4.6] or [Kratte99, §2.4].

• Block matrices and Schur complements. The most useful facts here are (I am
assuming that you are familiar with block matrix notation)

– the formula det
(

A B
0 D

)
= det A · det D, where the matrix on the left

is a block matrix with square blocks A and D. (The 0 in the bottom left
means a zero matrix.)

– the Schur complement formula det
(

A B
C D

)
= det A ·det

(
D − CA−1B

)
,

where the matrix on the left is a block matrix with square blocks A and
D. This requires A to be invertible.

• The Sylvester identity (one of the many): If A is an n × m-matrix, and if B is
an m × n-matrix, then det (In + AB) = det (Im + BA). See [Zhao09, Remark
after Problem 5] for a sketch of another proof.

The usefulness of this identity comes mainly from the fact that n can be much
larger than m, in which case it reduces a large determinant (in terms of matrix
size) to a small one. A striking example of this trick in use is found in the
second solution to problem B5 in the 60th Putnam contest 1999 on Kiran
Kedlaya’s website.
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• Dodgson condensation. This is a recursive method based upon a surprising
formula. See [Grinbe21, §6.4.8] and [Kratte99, §2.3] for details.

10.3.2. Computing practice

Here is an example of a matrix whose determinant can be computed using some
of the above techniques.

Exercise 10.3.1. Let n ∈ N. Let a1, a2, . . . , an, b be n + 1 numbers (e.g., real or
complex). Compute the determinant

det


a1 + b b b · · · b

b a2 + b b · · · b
b b a3 + b · · · b
...

...
... . . . ...

b b b · · · an + b


︸ ︷︷ ︸

This is the n×n-matrix whose
diagonal entries are a1+b, a2+b, ..., an+b
and whose off-diagonal entries all equal b

.

First solution. The cases n = 0 and n = 1 are easily solved by hand: The deter-
minant is 1 if n = 0 (since the 0 × 0-matrix has determinant 1), and is a1 + b if
n = 1.

Now, assume that n ≥ 2. Let us denote our matrix (i.e., the n × n-matrix whose
diagonal entries are a1 + b, a2 + b, . . . , an + b and whose off-diagonal entries all
equal b) by A (a1, a2, . . . , an) (in order to stress its dependence on a1, a2, . . . , an

11).
Thus, we must compute det (A (a1, a2, . . . , an)).

We recall that the determinant of a matrix does not change when we add a scalar
multiple of a row to another row. In particular, it does not change if we subtract a
row from another row. Therefore, the determinant of the matrix

A (a1, a2, . . . , an) =



a1 + b b b · · · b b
b a2 + b b · · · b b
b b a3 + b · · · b b
...

...
... . . . ...

...
b b b · · · an−1 + b b
b b b · · · b an + b


does not change when we subtract the second-to-last row from the last row. We

11Of course, it also depends on b, but we have no need to make this explicit in our notation, since
b will remain unchanged in our entire solution.
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thus obtain

det (A (a1, a2, . . . , an))

= det



a1 + b b b · · · b b
b a2 + b b · · · b b
b b a3 + b · · · b b
...

...
... . . . ...

...
b b b · · · an−1 + b b

b − b b − b b − b · · · b − (an−1 + b) (an + b)− b



= det



a1 + b b b · · · b b
b a2 + b b · · · b b
b b a3 + b · · · b b
...

...
... . . . ...

...
b b b · · · an−1 + b b
0 0 0 · · · −an−1 an


.

The matrix on the right hand side has the nice property that the first n− 2 entries of
its last row are 0’s. This suggests computing its determinant by Laplace expansion
along the last row. In this expansion, all but the last two addends vanish (since the
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0’s from the last row appear as factors), and we are left with

det



a1 + b b b · · · b b
b a2 + b b · · · b b
b b a3 + b · · · b b
...

...
... . . . ...

...
b b b · · · an−1 + b b
0 0 0 · · · −an−1 an



= (−1)n+(n−1)︸ ︷︷ ︸
=−1

(−an−1)det



a1 + b b b · · · b b
b a2 + b b · · · b b
b b a3 + b · · · b b
...

...
... . . . ...

...
b b b · · · an−2 + b b
b b b · · · b b


︸ ︷︷ ︸

=A(a1,a2,...,an−2,0)

+ (−1)n+n︸ ︷︷ ︸
=1

an det


a1 + b b b · · · b

b a2 + b b · · · b
b b a3 + b · · · b
...

...
... . . . ...

b b b · · · an−1 + b


︸ ︷︷ ︸

=A(a1,a2,...,an−1)

= (−1) (−an−1)︸ ︷︷ ︸
=an−1

det (A (a1, a2, . . . , an−2, 0)) + an det (A (a1, a2, . . . , an−1))

= an−1 det (A (a1, a2, . . . , an−2, 0)) + an det (A (a1, a2, . . . , an−1)) .

Altogether, we thus have

det (A (a1, a2, . . . , an)) = det



a1 + b b b · · · b b
b a2 + b b · · · b b
b b a3 + b · · · b b
...

...
... . . . ...

...
b b b · · · an−1 + b b
0 0 0 · · · −an−1 an


= an−1 det (A (a1, a2, . . . , an−2, 0)) + an det (A (a1, a2, . . . , an−1)) .

(15)

This is a recursive formula for det (A (a1, a2, . . . , an)) that allows us to easily com-
pute these determinants for small values of n, starting with

det (A ()) = 1 (this was the case n = 0) and
det (A (a1)) = a1 + b (this was the case n = 1) .
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We obtain

det (A (a1, a2)) = a1 det (A (0))︸ ︷︷ ︸
=0+b

+ a2 det (A (a1))︸ ︷︷ ︸
=a1+b

= a1 (0 + b) + a2 (a1 + b)
= a1a2 + b (a1 + a2)

and similarly

det (A (a1, a2, a3)) = a1a2a3 + b (a1a2 + a1a3 + a2a3)

and

det (A (a1, a2, a3, a4)) = a1a2a3a4 + b (a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4) .

This suggests a general formula: We claim that for every n ∈ N and every n
numbers a1, a2, . . . , an, we have

det (A (a1, a2, . . . , an))

= a1a2 · · · an + b
n

∑
i=1

a1a2 · · · âi · · · an, (16)

where the hat over the “ai” means that the factor ai is being omitted from the prod-
uct (i.e., the product a1a2 · · · âi · · · an should be read as a1a2 · · · ai−1ai+1ai+2 · · · an).

It remains to prove our formula (16). This can be done quite easily by induction
on n: The cases n = 0 and n = 1 are obvious and can be used as base cases. For the
induction step, we fix an integer n ≥ 2, and we assume (as the induction hypothesis)
that (16) has already been proved for n − 1 instead of n. Now, we must prove that
(16) also holds for n. Since n ≥ 2, we can use the formula (15). Our induction
hypothesis yields that (16) holds for n − 1 instead of n. In other words, the equality

det (A (a1, a2, . . . , an−1)) = a1a2 · · · an−1 + b
n−1

∑
i=1

a1a2 · · · âi · · · an−1

holds. Applying this same equality to 0 instead of an−1, we obtain

det (A (a1, a2, . . . , an−2, 0)) = a1a2 · · · an−20 + b
n−1

∑
i=1

a1a2 · · · âi · · · an−20,

where the expression “a1a2 · · · âi · · · an−20” is to be read as the product a1a2 · · · an−20
with its i-th factor removed. In view of

n−1

∑
i=1

a1a2 · · · âi · · · an−20 =
n−2

∑
i=1

a1a2 · · · âi · · · an−20︸ ︷︷ ︸
=0

(since the last factor of this product is 0)

+ a1a2 · · · an−20̂︸ ︷︷ ︸
=a1a2···an−2(

here, we have removed the addend
for i = n − 1 from the sum

)
=

n−2

∑
i=1

0 + a1a2 · · · an−2 = a1a2 · · · an−2,
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this becomes

det (A (a1, a2, . . . , an−2, 0)) = a1a2 · · · an−20︸ ︷︷ ︸
=0

+ b
n−1

∑
i=1

a1a2 · · · âi · · · an−20︸ ︷︷ ︸
=a1a2···an−2

= b · a1a2 · · · an−2.

Plugging these results into (15), we find

det (A (a1, a2, . . . , an))

= an−1 det (A (a1, a2, . . . , an−2, 0))︸ ︷︷ ︸
=b·a1a2···an−2

+ an det (A (a1, a2, . . . , an−1))︸ ︷︷ ︸
=a1a2···an−1+b

n−1
∑

i=1
a1a2···âi···an−1

= an−1 · b · a1a2 · · · an−2︸ ︷︷ ︸
=b·a1a2···an−2·an−1

=b·a1a2···an−1

+ an ·
(

a1a2 · · · an−1 + b
n−1

∑
i=1

a1a2 · · · âi · · · an−1

)
︸ ︷︷ ︸

=an·a1a2···an−1+an·b
n−1
∑

i=1
a1a2···âi···an−1

= b · a1a2 · · · an−1 + an · a1a2 · · · an−1︸ ︷︷ ︸
=a1a2···an−1·an

=a1a2···an

+ an · b
n−1

∑
i=1

a1a2 · · · âi · · · an−1︸ ︷︷ ︸
=b

n−1
∑

i=1
a1a2···âi···an−1·an

= b · a1a2 · · · an−1 + a1a2 · · · an + b
n−1

∑
i=1

a1a2 · · · âi · · · an−1 · an.

Comparing this with

a1a2 · · · an + b
n

∑
i=1

a1a2 · · · âi · · · an︸ ︷︷ ︸
=

n−1
∑

i=1
a1a2···âi···an+a1a2···ân

(here, we have split off the addend for i=n
from the sum)

= a1a2 · · · an + b

(
n−1

∑
i=1

a1a2 · · · âi · · · an + a1a2 · · · ân

)

= a1a2 · · · an + b
n−1

∑
i=1

a1a2 · · · âi · · · an︸ ︷︷ ︸
=a1a2···âi···an−1·an

+ b · a1a2 · · · ân︸ ︷︷ ︸
=a1a2···an−1

= a1a2 · · · an + b
n−1

∑
i=1

a1a2 · · · âi · · · an−1 · an + b · a1a2 · · · an−1

= b · a1a2 · · · an−1 + a1a2 · · · an + b
n−1

∑
i=1

a1a2 · · · âi · · · an−1 · an,
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we obtain

det (A (a1, a2, . . . , an)) = a1a2 · · · an + b
n

∑
i=1

a1a2 · · · âi · · · an.

In other words, (16) holds for n. This completes the induction step. Thus, (16) is
proved, and the problem solved.

Second solution (sketched). We start in a similar way as in our first solution, namely
by recalling that the determinant of a matrix does not change when we add a scalar
multiple of a row to another row. But this time, let us perform not one, but several
such row operations: We subtract the first row from each of the other rows of our
matrix. Thus, we obtain

det


a1 + b b b · · · b

b a2 + b b · · · b
b b a3 + b · · · b
...

...
... . . . ...

b b b · · · an + b



= det


a1 + b b b · · · b
−a1 a2 0 · · · 0
−a1 0 a3 · · · 0

...
...

... . . . ...
−a1 0 0 · · · an

 .

This has noticeably simplified our matrix, at least in the sense that it now has
lots of zero entries – but we still don’t have an immediate way to compute its
determinant.12 So let us perform some more row operations.

We can try to get rid of the b’s in the first row by subtracting appropriate mul-

tiples of other rows. Namely, let us subtract the
b
ai

-multiple of the i-th row from

the first row for each i ∈ {2, 3, . . . , n}. The factor
b
ai

was chosen here precisely to

cancel the b in the first row (as in Gaussian elimination); we obtain the matrix
r 0 0 · · · 0

−a1 a2 0 · · · 0
−a1 0 a3 · · · 0

...
...

... . . . ...
−a1 0 0 · · · an

 ,

where

r = (a1 + b)−
n

∑
i=2

b
ai
(−a1) .

12Actually, we could compute it immediately if we knew the formula for determinants of arrowhead
matrices ([Grinbe18, Exercise 6 (b)]). But let us try to avoid any apocryphal formulas here.
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This matrix is lower-triangular, and thus its determinant is the product of its diag-
onal entries, i.e., the product

ra2a3 · · · an.

Since all our row operations left the determinant of the matrix unchanged, we thus
conclude that the original matrix must have determinant ra2a3 · · · an as well.

Are we done? Almost. We have tacitly assumed that the numbers a2, a3, . . . , an
are nonzero, since we have been dividing by them. Even our final result ra2a3 · · · an
makes no sense if one of these numbers is zero, since these numbers appear as
denominators in the definition of r. Thus, we have solved the problem in the
“generic” case when the numbers a2, a3, . . . , an are nonzero, but the “exceptional”
case when some of them are zero still remains to be addressed.

Let us address it in steps: First, we adapt the answer; then, we will adapt the
proof. To adapt the answer, we rewrite our formula ra2a3 · · · an by plugging the
definition of r into it:

ra2a3 · · · an =

(
(a1 + b)−

n

∑
i=2

b
ai
(−a1)

)
a2a3 · · · an

= (a1 + b) a2a3 · · · an −
n

∑
i=2

b
ai
(−a1) a2a3 · · · an︸ ︷︷ ︸
=−

b
ai

·a1a2···an

=−b·
a1a2 · · · an

ai
=−ba1a2···âi···an

(where the hat over the “ai” is
understood as in the First solution)

= (a1 + b) a2a3 · · · an −
n

∑
i=2

(−ba1a2 · · · âi · · · an) .

This latter expression involves no fractions any more, so it makes sense in both
“generic” and “exceptional” cases. We can actually rewrite it in a nicer (more
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symmetric) form:

(a1 + b) a2a3 · · · an −
n

∑
i=2

(−ba1a2 · · · âi · · · an)

= (a1 + b) a2a3 · · · an︸ ︷︷ ︸
=a1·a2a3···an+b·a2a3···an

+
n

∑
i=2

ba1a2 · · · âi · · · an

= a1 · a2a3 · · · an︸ ︷︷ ︸
=a1a2···an

+ b · a2a3 · · · an +
n

∑
i=2

ba1a2 · · · âi · · · an︸ ︷︷ ︸
=b
(

a2a3···an+
n
∑

i=2
a1a2···âi···an

)

= a1a2 · · · an + b

(
a2a3 · · · an +

n

∑
i=2

a1a2 · · · âi · · · an

)
︸ ︷︷ ︸

=
n
∑

i=1
a1a2···âi···an

= a1a2 · · · an + b
n

∑
i=1

a1a2 · · · âi · · · an.

Altogether, our claimed formula is therefore

det


a1 + b b b · · · b

b a2 + b b · · · b
b b a3 + b · · · b
...

...
... . . . ...

b b b · · · an + b


= a1a2 · · · an + b

n

∑
i=1

a1a2 · · · âi · · · an. (17)

This is the exact same formula (16) that we obtained in the First solution. But
(in order to get an independent second solution) we still need to prove it in the
“exceptional” case. There are several ways to do this:

1. One way is to observe that (17) is a polynomial identity in a1, a2, . . . , an, b
(that is, both of its sides are polynomial functions in each of the arguments
a1, a2, . . . , an, b). Thus, the polynomial identity trick (Corollary 8.5.7 on Work-
sheet 8) shows that (for instance) if it holds for infinitely many values of
a2, then it holds for all values of a2 (where all the remaining arguments
a1, a3, a4, . . . , b are held constant). Thus, in particular, if it holds for all nonzero
a2, then it holds for all values of a2 (including 0). By drawing such conclu-
sion several times (once for each of the arguments a2, a3, . . . , an), we see that
if the equality (17) holds for all nonzero a2, a3, . . . , an, then it holds for all
a2, a3, . . . , an (including 0). In other words, if (17) holds in the “generic” case,
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then it holds in all cases. Since we have already proved (17) in the “generic”
case, this completes our proof.

2. Alternatively, we can prove (17) in the “exceptional” case by hand: First, we
observe that a1, a2, . . . , an play symmetric roles in the equality (17) (since the
determinant of a matrix responds in very simple ways when we permute
its rows or columns). Hence, we can permute the numbers a1, a2, . . . , an at
will13. In particular, if exactly one of these numbers a1, a2, . . . , an is 0, then
we can permute them so that this number becomes a1, while the remaining
numbers a2, a3, . . . , an are nonzero; but this lands us in the “generic” case,
and we already know that (17) holds in this case. Hence, it remains to only
consider the case when at least two of the numbers a1, a2, . . . , an are 0. But
this case is particularly simple: In this case, the left hand side of (17) is 0
because the matrix has two equal columns14, whereas the right hand side of
(17) is 0 because each of the products has at least one vanishing factor. All in
all, (17) has thus been proved.

In either case, we are done.

Yet another solution to Exercise 10.3.1 (with a slight change of notations: each ai
is replaced by ai − b) can be found in https://math.stackexchange.com/questions/
2110766/a/2112473#2112473 .

More examples of matrices with nicely computable determinants can be found
in the class and homework problems below.

10.3.3. A Putnam problem

Determinants have been originally introduced for solving systems of linear equa-
tions. Better ways are known for this nowadays, but determinants still have a
theoretical significance in determining how many solutions a given system has.

Exercise 10.3.2. Let n ∈ N. Assume that a1, a2, . . . , a2n+1 are 2n + 1 real numbers
with the following property:

Splitting property: If any of the 2n + 1 numbers a1, a2, . . . , a2n+1 is re-
moved, then the remaining 2n numbers can be split into two equinu-
merous heaps with equal sum. (“Equinumerous” means that each
heap contains exactly n numbers.)

Prove that all 2n + 1 numbers a1, a2, . . . , a2n+1 are equal.
(34th Putnam contest 1973, problem B1, generalized)

13In more details: Swapping two numbers ai and aj is tantamount to swapping the i-th row with
the j-th row and then swapping the i-th column with the j-th column in the matrix on the left
hand side of (17). The row swap multiplies the determinant by −1; then the column swap
multiplies it by −1 again. Both operations combined therefore leave the determinant unchanged
(since (−1) (−1) = 1). Thus, we can swap two of our numbers a1, a2, . . . , an without affecting
the correctness of (17).

14Namely, if ai = 0 and aj = 0, then the i-th and j-th columns of the matrix are equal.
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Solution idea. I shall proceed informally: I will show the argument on an example,
while occasionally explaining why the argument generalizes.

For my example, I take n = 2. Thus, we have 2n+ 1 = 5 real numbers a1, a2, a3, a4, a5
satisfying the splitting property. The splitting property is saying that if we remove
any of these 5 numbers, then the remaining 4 can be split into two equinumerous
heaps (i.e., two heaps of 2 numbers each) with equal sum. For example, if a1 is re-
moved, then the remaining 4 numbers a2, a3, a4, a5 can be split into two such heaps –
meaning that we have a2 + a3 = a4 + a5 or a2 + a4 = a3 + a5 or a3 + a4 = a2 + a5. For
example, let me assume that a2 + a4 = a3 + a5. Likewise, I assume that removing a2
leads to a1 + a3 = a4 + a5; that removing a3 leads to a1 + a5 = a2 + a4; that removing
a4 leads to a1 + a2 = a3 + a5; and that removing a5 leads to a1 + a3 = a2 + a4. Al-
together, we now know that our five numbers a1, a2, a3, a4, a5 satisfy the five linear
equations 

a2 + a4 = a3 + a5;
a1 + a3 = a4 + a5;
a1 + a5 = a2 + a4;
a1 + a2 = a3 + a5;
a1 + a3 = a2 + a4.

(18)

Our goal is to prove that all 5 numbers a1, a2, a3, a4, a5 are equal. We observe
that if we subtract one and the same real number b from each of our 5 numbers
a1, a2, a3, a4, a5 (that is, if we replace each ai by ai − b), then nothing really changes:
Our 5 numbers still satisfy the splitting property after this transformation (because
the sum of the two numbers in either heap is decreased by 2b), and our goal (to
prove that a1, a2, a3, a4, a5 are equal) remains the same.15

Thus, we can freely choose a real number b and subtract it from each of our 5
numbers a1, a2, a3, a4, a5. Let us choose b = a5. Then, this subtraction results in a5
becoming a5 − a5 = 0. Hence, we can WLOG assume that a5 = 0. Assume this.
Of course, in the general case (as opposed to the example we are looking at), the
assumption is a2n+1 = 0 rather than a5 = 0, but it is obtained in the same way (viz.,
subtracting a2n+1 from each of our 2n + 1 numbers a1, a2, . . . , a2n+1).

Since a5 = 0, we can simplify the system of equations (18) by removing each
appearance of a5. We thus obtain

a2 + a4 = a3;
a1 + a3 = a4;
a1 = a2 + a4;
a1 + a2 = a3;
a1 + a3 = a2 + a4.

(19)

15Note that we are using the “equinumerous” requirement in the splitting property here! If the
two heaps were not required to be equinumerous, then their sums could decrease by different
multiples of b when we subtract b from each of our 5 numbers a1, a2, a3, a4, a5.
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Furthermore, let us remove the last equation from this system, thus obtaining
a2 + a4 = a3;
a1 + a3 = a4;
a1 = a2 + a4;
a1 + a2 = a3.

(20)

Recall that our goal is to prove that all 5 numbers a1, a2, a3, a4, a5 are equal. Equiv-
alently, we must prove that all 4 numbers a1, a2, a3, a4 are 0 (since a5 is already 0).

Thus, our goal is an instance of a well-known basic problem in linear algebra:
To show that the only solution of a certain system of linear equations (specifically,
(20)) is the zero vector (i.e., the solution where each unknown is 0).

The system (20) of linear equations can, of course, be solved by Gaussian elim-
ination, but this would not be generalizable beyond the specific example I have
chosen. So let us instead analyze it from a “bird’s-eye view”, without looking too
closely at the specifics. As with any system of linear equations, we can rewrite it in
the form “matrix times unknown vector equals known vector”. Rewritten in this
form, it becomes 

0 1 −1 1
1 0 1 −1
1 −1 0 −1
1 1 −1 0




a1
a2
a3
a4

 =


0
0
0
0

 .

In other words, it becomes

A


a1
a2
a3
a4

 =


0
0
0
0

 , (21)

where

A :=


0 1 −1 1
1 0 1 −1
1 −1 0 −1
1 1 −1 0

 .

The entries of this matrix A are specific to our example, but the general structure
is always the same:

• The matrix A has dimensions 2n × 2n.

• All diagonal entries of A are 0’s, since the i-th equation in (20) comes from
removing ai.

• All off-diagonal entries of A are 1’s and −1’s, since the i-th equation in (20)
involves all of our 2n+ 1 numbers a1, a2, . . . , a2n+1 except for ai and a2n+1 = 0.
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Moreover, the vector on the right hand side of (21) is the zero vector, since the
equations in (20) are homogeneous (i.e., have no constant term). Thus, (21) can be

rewritten as Av = 0, where v =


a1
a2
...

a2n

 ∈ R2n, and where 0 is the zero vector.

(Here, we use R2n to denote the vector space of all column vectors of size 2n.)
Our goal is to show that all 2n numbers a1, a2, . . . , a2n are 0. In other words, our

goal is to show that the vector v =


a1
a2
...

a2n

 satisfying Av = 0 is the zero vector.

In other words, our goal is to show that the nullspace of A is trivial (i.e., consists
only of the zero vector). By the invertible matrix theorem, this will follow if we can
show that det A ̸= 0.

So let us show this. Even better, we shall show that det A is an odd integer. This
will automatically yield det A ̸= 0, since 0 is even.

The Leibniz formula for det A yields

det A = ∑
σ∈S2n

(−1)σ a1,σ(1)a2,σ(2) · · · a2n,σ(2n), (22)

where ai,j denotes the (i, j)-th entry of A. Thus, det A is an integer (since all entries
of A are integers). Moreover, if we add a multiple of 2 to some entry of A, then
det A also changes by a multiple of 2 (since every addend on the right hand side
of (22) either stays the same or changes by a multiple of 2), and thus the parity of
det A remains unchanged. Hence, on our quest to prove that det A is odd, we can
freely add multiples of 2 to each entry of A.

Recall that each off-diagonal entry of A is an odd integer (since it is either 1 or
−1). Thus, by adding appropriate multiples of 2 to these entries, we can ensure
that they all become 1. Let B be the resulting 2n × 2n-matrix (with 0’s along the
diagonal and 1’s in all off-diagonal positions); thus, in our example, we have

B =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (23)

Since B is obtained from A by adding multiples of 2 to some entries, we have
det B ≡ det A mod 2 (because if we add a multiple of 2 to some entry of A, then
det A also changes by a multiple of 2). Thus, in order to prove that det A is odd, it
suffices to prove that det B is odd.

But we can compute det B explicitly. Indeed, the formula (16) that we obtained in
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the solution to Exercise 10.3.1 (applied to 4, 1 and −1 instead of n, ai and b) yields

det


1 + (−1) 1 1 1

1 1 + (−1) 1 1
1 1 1 + (−1) 1
1 1 1 1 + (−1)


= 1 · 1 · · · · · 1︸ ︷︷ ︸

=1

+ (−1)
4

∑
i=1

1 · 1 · · · · · 1̂ · · · · 1︸ ︷︷ ︸
=1

= 1 + (−1)
4

∑
i=1

1︸︷︷︸
=4

= 1 + (−1) 4 = 1 − 4 = −3.

Since 1+ (−1) = 0, the matrix on the left hand side of this equality is precisely our
B, and thus the equality rewrites as

det B = −3,

which shows that det B is odd, and we are done. In the general case, det B will be
1 + (−1) 2n = 1 − 2n, which is also odd, so the argument still works.

See also [Grinbe20a, Exercise 5.3.3] for a different approach to Exercise 10.3.2
(stopping short of a complete solution, but solving the exercise in the case when
a1, a2, . . . , a2n+1 are rational numbers). Two other solutions (both using linear alge-
bra!) can be found in [GelAnd17, Problem 300].

10.3.4. Rank and nullity

Another feature of matrices that often comes useful in contest problems (and else-
where) is the notion of rank. The rank of a matrix A (over any field F) is defined
to be the maximum number of linearly independent columns of A. Equivalently,
it can be defined as the maximum number of linearly independent rows of A. The
equivalence is nontrivial (see, e.g., [Axler23, 3.57] or [Camero08, Theorem 2.5] or
[StoLui18, Theorem 8.12 (3)] for a proof) and often useful by itself. Another way to
describe the rank of A is as the largest integer k such that A has a k × k-submatrix
with nonzero determinant (see, e.g., [Kuttle22, Corollary 8.6.8]). Yet another is as
the dimension of the image of A (that is, of the vector space of all vectors of the
form Av). The rank of a matrix A is commonly denoted rank A. The most impor-
tant property of the rank is probably the rank-nullity theorem ([StoLui18, Theorem
8.12]; see also [Axler23, 3.21] or [Griffi20, Theorem 3.40] or [StoLui18, Theorem 8.3]
for a statement in terms of linear maps):

Theorem 10.3.1. Let A be an n × m-matrix over a field F. Let Fm denote the
vector space of all column vectors of size m. Let Ker A be the nullspace of A
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(that is, the set of all column vectors v ∈ Fm such that Av = 0, where 0 denotes
the zero vector of size n). Then,

m = dim (Ker A) + rank A.

This theorem can be used to compute rank A from dim (Ker A) and vice versa,
which is often helpful. We will see an example soon, but let us first explore a
different topic.

10.4. Linear algebra over F2

10.4.1. A brief introduction to F2

As mentioned in Subsection 10.1 above, linear algebra can be done over any field.
The most popular choices are Q, R and C, but other options should not be dis-
counted either.

The simplest of all fields is none of Q, R and C. It is a field called F2 or Z/2,
consisting of just two elements. We call these elements 0 and 1. You can think of 0
as the set of all even integers, and of 1 as the set of all odd integers (these are their
actual definitions). The addition is defined by

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0;

the multiplication is defined by

0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, 1 · 1 = 1.

These are just the standard parity rules for integers: For example, 1 + 1 = 0 means
“odd plus odd equals even”, whereas 1 · 0 = 0 means “odd times even equals
even”.

The set F2 =
{

0, 1
}

, equipped with the addition and the multiplication just
defined, is a field. Its subtraction is precisely its addition (since plus and minus are
the same modulo 2). Its division is even simpler: Division by 1 changes nothing,
whereas division by 0 is impossible (you cannot divide by zero, and 0 is the zero
of F2).

10.4.2. Oddtown

You might think that nothing interesting can be done with such a small field as F2,
but you would be mistaken. Linear algebra is not about the field, but about vectors
over the field; and of course, vectors over F2 can carry much more information
than scalars in F2. The following exercise is a first illustration:
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Exercise 10.4.1. Let n, m ∈ N. In a town with n inhabitants, there are m clubs,
each of which has an odd number of members. Any two distinct clubs share an
even number of common members. Prove that m ≤ n.

Solution idea. Again, we assume the contrary. Thus, m > n. We denote the n
inhabitants by 1, 2, . . . , n, and we denote the m clubs by C1, C2, . . . , Cm.

Let v1, v2, . . . , vm be the indicator vectors of our m clubs over F2. This means that,
for each i ∈ {1, 2, . . . , m}, the vector vi is a row vector of size n whose j-th entry is{

1, if j ∈ Ci;
0, if j /∈ Ci

for each j ∈ {1, 2, . . . , n} .

Thus we have defined m vectors v1, v2, . . . , vm in the n-dimensional vector space
Fn

2 over the field F2.
We shall use dot products again, as in the solution to Exercise 10.2.2 (but this

time, they live in F2 rather than R). Just as we proved (4) in the latter solution, we
can now see that any i, j ∈ {1, 2, . . . , m} satisfy〈

vi, vj
〉
=
∣∣Ci ∩ Cj

∣∣, (24)

where
∣∣Ci ∩ Cj

∣∣ means

{
0, if

∣∣Ci ∩ Cj
∣∣ is even;

1, if
∣∣Ci ∩ Cj

∣∣ odd
(since a sum of an even number

of 1’s is 0, whereas a sum of an odd number of 1’s is 1). Hence:

• For any two distinct elements i, j of {1, 2, . . . , m}, we have〈
vi, vj

〉
=
∣∣Ci ∩ Cj

∣∣ = 0 (25)

(since any two distinct clubs share an even number of common members).

• For any i ∈ {1, 2, . . . , m}, we have

⟨vi, vi⟩ = |Ci ∩ Ci| = |Ci| = 1 (26)

(since each club has an odd number of members).

Our m vectors v1, v2, . . . , vm belong to the n-dimensional vector space Fn
2 , and

thus are linearly dependent (by Theorem 10.2.1 (a), since m > n). In other words,
there exist m elements c1, c2, . . . , cm ∈ F2, not all zero, such that

c1v1 + c2v2 + · · ·+ cmvm = 0

(where 0 is the all-zero vector over F2, that is,

0, 0, . . . , 0︸ ︷︷ ︸
n entries

). Consider these m

elements.
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Since the dot product is linear in each argument, we now have

⟨c1v1 + c2v2 + · · ·+ cmvm, v1⟩
= c1 ⟨v1, v1⟩︸ ︷︷ ︸

=1
(by (26))

+ c2 ⟨v2, v1⟩︸ ︷︷ ︸
=0

(by (25))

+ · · ·+ cm ⟨vm, v1⟩︸ ︷︷ ︸
=0

(by (25))

= c11 + c20 + · · ·+ cm0︸ ︷︷ ︸
=0

= c11 = c1,

so that

c1 =

〈
c1v1 + c2v2 + · · ·+ cmvm︸ ︷︷ ︸

=0

, v1

〉
= ⟨0, v1⟩ = 0.

Similarly, we can find that ci = 0 for all i ∈ {1, 2, . . . , m} (since there is nothing
special about the 1-st club). But this contradicts the fact that not all c1, c2, . . . , cm are
zero. This contradiction shows that our assumption was wrong. Hence, Exercise
10.4.1 is solved.

Remark 10.4.1. The inequality m ≤ n in Exercise 10.4.1 is sharp (i.e., equality
can be achieved). In fact, if each inhabitant of our town forms a very exclusive
club just by himself, then we obtain n clubs that satisfy the conditions of Exercise
10.4.1.

10.4.3. Eventown

Exercise 10.4.1 is one of the four famous Oddtown/Eventown theorems (which appear
in many sources: e.g., three of them appear in [BabFra23, §1.1] and in [Bollob10,
problems 59, 114 and 116]); here is another:

Exercise 10.4.2. Let n, m ∈ N with n > 0. In a town with n inhabitants, there are
m clubs, each of which has an even number of members. Any two distinct clubs
share an odd number of common members.

(a) Prove that m ≤ n.

(b) If n is even, then prove that m ≤ n − 1.

Solution idea. As in the solution to Exercise 10.4.1, we shall use row vectors of size
n over the field F2. Again, let v1, v2, . . . , vm be the indicator vectors of our m clubs
over F2. Then, just as we proved the equalities (25) and (26) in the solution to
Exercise 10.4.1, we can now show that:

• For any two distinct elements i, j of {1, 2, . . . , m}, we have〈
vi, vj

〉
= 1 (27)

(since any two distinct clubs share an odd number of common members).
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• For any i ∈ {1, 2, . . . , m}, we have

⟨vi, vi⟩ = 0 (28)

(since each club has an even number of members).

Let W be the subset{
x ∈ Fn

2 | the sum of all coordinates of x is 0
}

=
{
(x1, x2, . . . , xn) ∈ Fn

2 | x1 + x2 + · · ·+ xn = 0
}

of Fn
2 . Then, W is a vector subspace of Fn

2 (this is easy to see16). It is a proper subset
of Fn

2 (since it does not contain the vector
(
1, 0, 0, . . . , 0

)
, and thus its dimension

dim W is lower than the dimension of Fn
2 . In other words,

dim W < dim (Fn
2) = n,

so that dim W ≤ n − 1. (Actually, dim W is exactly n − 1, but we don’t need this
fact17.)

Let i ∈ {1, 2, . . . , m}. Then, the i-th club has an even number of members (by an
assumption of the exercise). In other words, the vector vi has an even number of
coordinates equal to 1. Hence, the sum of all coordinates of vi is 0 (since the sum
of an even number of 1’s is always 0). In other words, vi ∈ W (by the definition of
W).

Forget that we fixed i. We thus have shown that vi ∈ W for each i ∈ {1, 2, . . . , m}.
In other words, the m vectors v1, v2, . . . , vm belong to W.

Now we shall prove two crucial claims:

16Proof. The easiest way to see this is to argue that W is the left nullspace of the matrix(
1 1 · · · 1

)
, and thus is a vector subspace (like any nullspace). A more down-to-earth

proof goes by arguing that if x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two vectors in W,
then their sum x + y = (x1 + y1, x2 + y2, . . . , xn + yn) also belongs to W, since

(x1 + y1) + (x2 + y2) + · · ·+ (xn + yn)

= (x1 + x2 + · · ·+ xn)︸ ︷︷ ︸
=0

(since x∈W)

+ (y1 + y2 + · · ·+ yn)︸ ︷︷ ︸
=0

(since y∈W)

= 0 + 0 = 0.

(We would also need to show that 0 ∈ W and that λx ∈ W for each λ ∈ F2 and each x ∈ W. But
the former is trivial, and the latter is is automatic, since the only options for λ are 0 and 1.)

17Nevertheless, it is easy to prove: For example, one can argue that W is carved out of Fn
2 by

the single equation x1 + x2 + · · · + xn = 0, which is not a tautology and thus decreases the
dimension by 1. Alternatively, one can easily see that W has a basis(

1, 0, 0, . . . , 0, 1
)

,
(
0, 1, 0, 0, . . . , 0, 1

)
, . . . ,

(
0, 0, 0, . . . , 0, 1, 1

)
(each vector of this basis has a 1 in its last position and at another position, and 0’s everywhere
else), and this basis has n − 1 elements, so that dim W = n − 1.
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Claim 1: If m is even, then m ≤ n − 1.

Proof of Claim 1. Assume that m is even. We must prove that m ≤ n − 1.
Assume the contrary. Thus, m > n − 1 ≥ dim W (since dim W ≤ n − 1). But the

m vectors v1, v2, . . . , vm belong to the vector space W, whose dimension is dim W.
Hence, Theorem 10.2.1 (a) (applied to m and dim W instead of k and n) yields that
these m vectors v1, v2, . . . , vm are linearly dependent. In other words, there exist m
elements c1, c2, . . . , cm ∈ F2, not all zero, such that

c1v1 + c2v2 + · · ·+ cmvm = 0

(where 0 is the all-zero vector over F2, that is,

0, 0, . . . , 0︸ ︷︷ ︸
n entries

). Consider these m

elements.
Set d := c1 + c2 + · · ·+ cm.
Since the dot product is linear in each argument, we now have

⟨c1v1 + c2v2 + · · ·+ cmvm, v1⟩
= c1 ⟨v1, v1⟩︸ ︷︷ ︸

=0
(by (28))

+ c2 ⟨v2, v1⟩︸ ︷︷ ︸
=1

(by (27))

+ · · ·+ cm ⟨vm, v1⟩︸ ︷︷ ︸
=1

(by (27))

= c10︸︷︷︸
=0

+ c21︸︷︷︸
=c2

+ · · ·+ cm1︸︷︷︸
=cm

= 0 + c2 + · · ·+ cm

= c2 + c3 + · · ·+ cm = (c1 + c2 + · · ·+ cm)︸ ︷︷ ︸
=d

− c1 = d − c1,

so that

d − c1 =

〈
c1v1 + c2v2 + · · ·+ cmvm︸ ︷︷ ︸

=0

, v1

〉
= ⟨0, v1⟩ = 0.

Hence, d = c1, so that c1 = d. Similarly, we can find that ci = d for all i ∈
{1, 2, . . . , m} (since there is nothing special about the 1-st club). In other words, all
the elements c1, c2, . . . , cm equal d. Hence, d is not zero (since not all c1, c2, . . . , cm
are zero). In other words, d ̸= 0. Since d ∈ F2 =

{
0, 1
}

, we thus obtain d = 1.
Thus, for all i ∈ {1, 2, . . . , m}, we have ci = d = 1. Adding these equations

together for all i ∈ {1, 2, . . . , m}, we obtain

c1 + c2 + · · ·+ cm = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
m many 1’s

= 0

(because m is even, but a sum of an even number of 1’s is always 0). This contradicts
c1 + c2 + · · · + cm = d = 1. This contradiction shows that our assumption was
wrong. Hence, Claim 1 is proved.
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Claim 2: If m is odd, then m ≤ n.

Proof of Claim 2. Assume that m is odd. Thus, m− 1 is even. Furthermore, m cannot
be 0 (since m is odd), and thus m − 1 ∈ N.

Now, let us dissolve the m-th club. Then, we are left with m − 1 clubs, which still
satisfy all assumptions of the exercise (i.e., each of them has an even number of
members, but any two have an odd number of common members). Thus, we can
apply Claim 1 to these m − 1 clubs (using m − 1 instead of m), and conclude that
m − 1 ≤ n − 1 (since m − 1 is even). Thus, m ≤ n. This proves Claim 2.

Now we can easily solve the exercise:

(a) We must prove that m ≤ n. If m is odd, then this follows directly from Claim
2. If m is even, then this follows from Claim 1, since Claim 1 yields m ≤ n − 1 ≤ n.
In either case, Exercise 10.4.2 (a) is solved.

(b) Assume that n is even. We must prove that m ≤ n − 1.
Assume the contrary. Thus, m > n − 1, so that m ≥ n. But part (a) yields

m ≤ n. Combining these two inequalities, we find m = n, so that m is even (since
n is even). Hence, Claim 1 yields m ≤ n − 1, which contradicts m ≥ n > n − 1.
This contradiction shows that our assumption was false. Exercise 10.4.2 (b) is thus
solved.

Remark 10.4.2. When n is even, the inequality m ≤ n − 1 in Exercise 10.4.2 (b)
is sharp (i.e., equality can be achieved). In fact, let us single out an inhabitant
α. For each of the n − 1 remaining inhabitants β ̸= α, we form a club containing
only α and β. Thus, we obtain n − 1 clubs that satisfy the conditions of Exercise
10.4.1.

When n is odd, the inequality m ≤ n in Exercise 10.4.2 (a) is sharp as well.
To see it become an equality, we construct n − 1 clubs just as in the preceding
paragraph, but we also create an n-th club that contains all n − 1 inhabitants
distinct from α. The resulting n clubs satisfy the conditions of Exercise 10.4.1
(since n is odd).

Remark 10.4.3. There is an alternative solution to Exercise 10.4.2, which is worth
sketching since it connects it to our previous work on determinants.

Again, we let v1, v2, . . . , vm be the indicator vectors of our m clubs over F2.
This time, we pack them into a matrix: Let A be the n × m-matrix with columns
v1, v2, . . . , vm over F2. Consider also the transpose AT of this matrix A. Then, the
equalities (28) and (27) show that AT A = R, where R is the m × m-matrix

0 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
... . . . ...

1 1 1 · · · 0


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whose all diagonal entries equal 0 and whose all off-diagonal entries equal 1.
Again, defining W to be the subset{

x ∈ Fn
2 | the sum of all coordinates of x is 0

}
of Fn

2 , we can easily see that W is a vector subspace of dimension ≤ n − 1 (actu-
ally = n − 1), and therefore

n − 1 ≥ dim W ≥ rank A (since all columns of A belong to W)

≥ rank
(

AT A
) (

since rank V ≥ rank (UV) for
any two matrices U and V

)
= rank R

(
since AT A = R

)
.

It remains to compute rank R. Here, it helps to observe that R is the F2-analogue
of the matrix B considered in our solution to Exercise 10.3.2 above (see (23)), and
its determinant can be computed along the same lines (or it can be obtained from
det B by “projecting” onto F2). This shows that det R = 1 if m is even. When m
is odd, we have det R = 0, but the (m − 1)× (m − 1)-submatrix of R obtained by
removing the last row and the last column has determinant 1. Combining these
facts, we conclude that

rank R =

{
m, if m is even;
m − 1, if m is odd

(since the rank of a matrix M equals the largest k ∈ N such that M has a k × k-
submatrix with nonzero determinant). Combining what we have shown, we find

n − 1 ≥ rank R =

{
m, if m is even;
m − 1, if m is odd,

which yields both Claims 1 and 2 from our above solution to Exercise 10.4.2.

10.4.4. Size and dimension

There are two more Eventown/Oddtown theorems: see Exercises 10.5.2 and 10.5.3
below. In preparation for their proofs, let us prove a simple property of finite-
dimensional vector spaces over F2. In “usual” linear algebra (i.e., linear algebra
over Q, R or C), you rarely have a reason to think about the size of a vector space,
since all nontrivial vector spaces are infinite. However, when working over a finite
field such as F2, finite-dimensional vector spaces are finite sets, and it makes sense
to ask about their sizes. The answer (which we only state here for F2) is nice and
simple:
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Proposition 10.4.4. Let n ∈ N. Let V be a vector space over F2 that has dimen-
sion n. Then, the size of V (as a set) is |V| = 2n.

Proof. The vector space V has dimension n; thus, it has a basis (v1, v2, . . . , vn) con-
sisting of n vectors. Consider this basis.

Each vector w ∈ V can be uniquely expressed as a linear combination c1v1 +
c2v2 + · · ·+ cnvn with coefficients c1, c2, . . . , cn ∈ F2 (since (v1, v2, . . . , vn) is a basis
of V). In other words, the map

Fn
2 → V,

(c1, c2, . . . , cn) 7→ c1v1 + c2v2 + · · ·+ cnvn

is a bijection18. By the bijection principle19, this entails |Fn
2 | = |V|. Hence, |V| =

|Fn
2 | = |F2|n = 2n (since |F2| = 2). This proves Proposition 10.4.4.

10.5. Orthogonality

10.5.1. Theory

Let us now discuss a bit more linear algebra, which will help us prove two more
Eventown/Oddtown theorems.

Let F be any field (for example, Q, R, C or F2), and let n ∈ N be arbitrary. Con-
sider the vector space Fn of all row vectors (a1, a2, . . . , an) of size n with entries in F.
The dot product of two vectors x = (x1, x2, . . . , xn) ∈ Fn and y = (y1, y2, . . . , yn) ∈ Fn

is defined to be the scalar

x1y1 + x2y2 + · · ·+ xnyn =
n

∑
p=1

xpyp ∈ F.

This dot product is denoted by ⟨x, y⟩ or sometimes by x · y. (We have already used
this dot product for F = R in the solution to Exercise 10.2.2, and for F = F2 in
Subsection 10.4. Now we are defining it in the general case.)

The dot product has several important properties (all of which follow easily from
its definition):

• Symmetry: We have ⟨x, y⟩ = ⟨y, x⟩ for any x, y ∈ Fn.

18Indeed,

• it is surjective since each vector w ∈ V can be expressed as a linear combination c1v1 +
c2v2 + · · ·+ cnvn with coefficients c1, c2, . . . , cn ∈ F2;

• and it is injective since these coefficients c1, c2, . . . , cn ∈ F2 are uniquely determined by w.

19The bijection principle says that if there exists a bijection between two sets X and Y, then |X| = |Y|.
This is a fundamental fact that underlies all enumerative combinatorics.
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• Bilinearity: We have〈
x + x′, y

〉
= ⟨x, y⟩+

〈
x′, y

〉
for all x, x′, y ∈ Fn;〈

x, y + y′
〉
= ⟨x, y⟩+

〈
x, y′

〉
for all x, y, y′ ∈ Fn;

⟨λx, y⟩ = ⟨x, λy⟩ = λ ⟨x, y⟩ for all λ ∈ F and x, y ∈ Fn;
⟨0, x⟩ = ⟨x, 0⟩ = 0 for all x ∈ Fn,

where 0 denotes the zero vector (0, 0, . . . , 0) in Fn.

For two vectors x and y in Fn, we say that x is orthogonal to y if and only if
⟨x, y⟩ = 0. The shorthand notation for this is “x ⊥ y”. This orthogonality relation
is symmetric (i.e., we have x ⊥ y if and only if y ⊥ x). If F = R, then it is precisely
the classical orthogonality relation from Euclidean geometry (i.e., two vectors are
orthogonal if and only if they span perpendicular lines or one of them is zero). But
it is useful for other fields as well, even F2 ! (Of course, when F = F2, the relation
⟨x, y⟩ = 0 means ⟨x, y⟩ = 0, since 0 plays the role of 0 in F2.)

Warning 10.5.1. Not all properties known from the real case (F = R) generalize
to other fields! For F = R, the only vector x ∈ Fn satisfying x ⊥ x is the zero
vector 0. But this is not the case for F = F2. For instance, the vector

(
1, 1
)
∈ F2

2
is orthogonal to itself, since

〈(
1, 1
)

,
(
1, 1
)〉

= 1 · 1 + 1 · 1 = 1 + 1 = 0. But it is
not the zero vector. A similar example exists for F = C: Here, the vector (1, i)
(with i =

√
−1) is orthogonal to itself but is not zero. The reason why such

vectors don’t exist for F = R is that in R, a sum of squares is never zero unless
all addends are zero.

This, incidentally, is the reason why many authors shun the dot product for
F = C in favor of a subtler notion of product, which involves complex conjuga-
tion (specifically, it replaces x1y1 + x2y2 + · · ·+ xnyn by x1y1 + x2y2 + · · ·+ xnyn
in the definition of the inner product); this latter product is usually called the
inner product. See [Axler23, Chapter 6] for much more about it.

The following fact is easy but crucial:

Lemma 10.5.2. Let n ∈ N, and let F be a field. Let u1, u2, . . . , un and v
be some vectors in Fn. Assume that v is orthogonal to each of the vectors
u1, u2, . . . , un. Then, v is also orthogonal to each linear combination of these
vectors u1, u2, . . . , un.

Proof sketch. Let w be a linear combination of u1, u2, . . . , un. Thus, w = λ1u1 +
λ2u2 + · · ·+λnun for some coefficients λ1, λ2, . . . , λn ∈ F. Consider these λ1, λ2, . . . , λn.
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Thus,

⟨v, w⟩ = ⟨v, λ1u1 + λ2u2 + · · ·+ λnun⟩
= λ1 ⟨v, u1⟩+ λ2 ⟨v, u2⟩+ · · ·+ λn ⟨v, un⟩

(by the bilinearity of the dot product)

=
n

∑
k=1

λk ⟨v, uk⟩︸ ︷︷ ︸
=0

(since v is orthogonal
to each of u1,u2,...,un,

thus in particular to uk)

=
n

∑
k=1

λk0 = 0.

In other words, v is orthogonal to w. Since w was chosen to be an arbitrary linear
combination of u1, u2, . . . , un, we thus have shown that v is orthogonal to each such
combination. This proves Lemma 10.5.2.

An important definition related to orthogonality is the “orthogonal space”. If U
is any subset of Fn (for some n ∈ N and some field F), then we define a subset U⊥

of Fn by
U⊥ := {v ∈ Fn | v ⊥ u for each u ∈ U} .

This is the set of all vectors v ∈ Fn that are orthogonal to all vectors in U. It is
called the orthogonal complement of U in Fn. (Informally, it is often called the “perp
of U” or the “U-perp”, imitating the LaTeX command \perp for the ⊥ symbol.) Its
major properties are the following:20

Theorem 10.5.3. Let n ∈ N, and let F be a field. Let U be a subset of Fn. Then:

(a) The set U⊥ is a vector subspace of Fn (even if U is not!).

(b) We have U ⊆
(
U⊥)⊥.

(c) Assume that U is a vector subspace of Fn. Then,

dim U + dim
(

U⊥
)
= n.

(d) Assume that U is a vector subspace of Fn. Then,
(
U⊥)⊥ = U.

Proof sketch. Part (a) follows from the bilinearity of the dot product (or from Lemma
10.5.2); part (b) from its symmetry.

(c) This is the rank-nullity theorem in disguise. To wit: Let (u1, u2, . . . , uk) be
a basis of U. Thus, dim U = k. Note that the k vectors u1, u2, . . . , uk are linearly

20Theorem 10.5.3 can be generalized by replacing Fn with an arbitrary finite-dimensional vector
space, and replacing the dot product with an arbitrary bilinear form. See, e.g., [Grinbe20b,
Corollary 7.1] for this kind of generalization of Theorem 10.5.3 (c).
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independent (since they form a basis of U), and their span is span {u1, u2, . . . , uk} =
U (for the same reason).

Now let A be the k × n-matrix (with entries in F) whose rows are these k vectors
u1, u2, . . . , uk. Then, the k rows of A are linearly independent (since we just showed
that u1, u2, . . . , uk are linearly independent), and thus the rank of A is rank A = k.

Next, we consider the nullspace Ker A of A. This is defined as the set of all
column vectors v ∈ Fn such that Av = 0. In other words,

Ker A = {v ∈ Fn | Av = 0} . (29)

Being sloppy, we regard the column vectors in Ker A as row vectors (by identifying
them with their transposes).

The rows of A are u1, u2, . . . , uk. Thus, for any column vector v ∈ Fn, the product

Av is just the vector


⟨u1, v⟩
⟨u2, v⟩

...
⟨uk, v⟩

 (why?). Hence, for any v ∈ Fn, we have the

following chain of logical equivalences:

(Av = 0)

⇐⇒




⟨u1, v⟩
⟨u2, v⟩

...
⟨uk, v⟩

 = 0


⇐⇒ (⟨ui, v⟩ = 0 for each i ∈ {1, 2, . . . , k})
⇐⇒ (⟨u, v⟩ = 0 for each u ∈ span {u1, u2, . . . , uk})

since each u ∈ span {u1, u2, . . . , uk} can be written as
a linear combination c1u1 + c2u2 + · · ·+ ckuk with

coefficients c1, c2, . . . , ck ∈ F, and thus
satisfies ⟨u, v⟩ = ⟨c1u1 + c2u2 + · · ·+ ckuk, v⟩

= c1 ⟨u1, v⟩+ c2 ⟨u2, v⟩+ · · ·+ ck ⟨uk, v⟩
(by the bilinearity of the dot product); but this latter

sum is 0 if we have ⟨ui, v⟩ = 0 for each i ∈ {1, 2, . . . , k}


⇐⇒ (⟨u, v⟩ = 0 for each u ∈ U) (since span {u1, u2, . . . , uk} = U)

⇐⇒ (⟨v, u⟩ = 0 for each u ∈ U) (since ⟨u, v⟩ = ⟨v, u⟩ for any u ∈ Fn)

⇐⇒ (v ⊥ u for each u ∈ U) (since v ⊥ u means that ⟨v, u⟩ = 0) .

Hence, we can rewrite (29) as

Ker A = {v ∈ Fn | v ⊥ u for each u ∈ U}

= U⊥
(

by the definition of U⊥
)

.
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But the rank-nullity theorem (Theorem 10.3.1, applied to k and n instead of n
and m) yields

n = dim

Ker A︸ ︷︷ ︸
=U⊥

+ rank A︸ ︷︷ ︸
=k=dim U

= dim
(

U⊥
)
+ dim U = dim U + dim

(
U⊥
)

.

This proves Theorem 10.5.3 (c).

(d) Theorem 10.5.3 (a) yields that U⊥ is a vector subspace of Fn. Theorem 10.5.3
(a) (applied to U⊥ instead of U) yields that

(
U⊥)⊥ is a vector subspace of Fn as

well. Theorem 10.5.3 (c) yields dim U + dim
(
U⊥) = n. Theorem 10.5.3 (c) (applied

to U⊥ instead of U) yields dim
(
U⊥)+ dim

((
U⊥)⊥) = n. Comparing these two

equalities, we find dim U + dim
(
U⊥) = dim

(
U⊥) + dim

((
U⊥)⊥). Subtracting

dim
(
U⊥) from both sides of this, we obtain dim U = dim

((
U⊥)⊥).

However, Theorem 10.5.3 (b) yields U ⊆
(
U⊥)⊥. Thus, U is a vector subspace

of
(
U⊥)⊥. As we know, it satisfies dim U = dim

((
U⊥)⊥). Hence, Theorem 10.2.7

(b) (applied to
(
U⊥)⊥ and U instead of V and W) yields

(
U⊥)⊥ = U. This proves

Theorem 10.5.3 (d).

10.5.2. Application: Odd intersections

The best-known applications of orthogonal complements are found in geometry
(where they are used to construct, e.g., the normal vector to a plane in space) and in
representation theory (where they can be used to decompose larger representations
into smaller ones). But they also have uses in combinatorics. The following example
is another result in the vein of Oddtown and Eventown (although we don’t state it
in terms of towns and clubs):

Exercise 10.5.1. Let n ∈ N, and let p and q be two positive integers.
Let S be an n-element set. Let A1, A2, . . . , Ap be p distinct subsets of S. Let

B1, B2, . . . , Bq be q distinct subsets of S. (Note that “distinct” does not mean
“disjoint”!)

Assume that
∣∣Ai ∩ Bj

∣∣ is odd for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}.
Then:

(a) There exist integers α ∈ N and β ∈ N such that α + β ≤ n − 1 and p ≤ 2α

and q ≤ 2β.

(b) In particular, we have pq ≤ 2n−1.

Solution idea. We WLOG assume that S = {1, 2, . . . , n} (otherwise, we rename the
elements of S).
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For each i ∈ {1, 2, . . . , p}, we let ai denote the indicator vector of the subset Ai
over F2; this is the vector of size n with entries in F2 whose k-th coordinate is{

1, if k ∈ Ai;
0, if k /∈ Ai

for each k ∈ {1, 2, . . . , n} .

Likewise, for each j ∈ {1, 2, . . . , q}, we let bj denote the indicator vector of the
subset Bj of F2.

The subsets A1, A2, . . . , Ap are distinct; thus, their indicator vectors a1, a2, . . . , ap
are distinct as well. Similarly, the vectors b1, b2, . . . , bq are distinct.

Recall that
∣∣Ai ∩ Bj

∣∣ is odd for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. Trans-
lating this into the language of dot products, we obtain the following:

Claim 1: We have
〈

ai, bj
〉
= 1 for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}.

Proof of Claim 1. Let i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. Then,
∣∣Ai ∩ Bj

∣∣ is odd (by
the assumption of the exercise). However, just as we proved (24) in the solution
to Exercise 10.4.1, we can show that

〈
ai, bj

〉
=
∣∣Ai ∩ Bj

∣∣. But
∣∣Ai ∩ Bj

∣∣ = 1, since∣∣Ai ∩ Bj
∣∣ is odd. Thus,

〈
ai, bj

〉
=
∣∣Ai ∩ Bj

∣∣ = 1. This proves Claim 1.

Let

A := span
{

a1, a2, . . . , ap
}

and B := span
{

b1, b2, . . . , bq
}

.

Then, both A and B are subspaces of the vector space Fn
2 (since a span of a set of

vectors is always a subspace). Obviously, a1, a2, . . . , ap ∈ A and b1, b2, . . . , bq ∈ B.
Let furthermore

A′ := span {ai − a1 | i ∈ {1, 2, . . . , p}}︸ ︷︷ ︸
={a1−a1, a2−a1, ..., ap−a1}

and

B′ := span
{

bj − b1 | j ∈ {1, 2, . . . , q}
}︸ ︷︷ ︸

={b1−b1, b2−b1, ..., bq−b1}

.

Again, A′ and B′ are subspaces of Fn
2 . Furthermore, Claim 1 easily entails the

following:

Claim 2: We have
A′ ⊆ B⊥. (30)

Proof of Claim 2. Let i ∈ {1, 2, . . . , p}. For each j ∈ {1, 2, . . . , q}, we have ai − a1 ⊥ bj,
since 〈

ai − a1, bj
〉
=

〈
ai, bj

〉︸ ︷︷ ︸
=1

(by Claim 1)

−
〈

a1, bj
〉︸ ︷︷ ︸

=1
(by Claim 1)

(
by the bilinearity of

the dot product

)

= 1 − 1 = 0.
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In other words, the vector ai − a1 is orthogonal to each of the q vectors b1, b2, . . . , bq.
Hence, ai − a1 is also orthogonal to each linear combination of these q vectors
b1, b2, . . . , bq (by Lemma 10.5.2). In other words, ai − a1 is orthogonal to each vector
in span

{
b1, b2, . . . , bq

}
. In other words, ai − a1 is orthogonal to each vector in B

(since B = span
{

b1, b2, . . . , bq
}

). In other words, ai − a1 ∈ B⊥ (by the definition of
B⊥).

Now forget that we fixed i. We thus have shown that ai − a1 ∈ B⊥ for each
i ∈ {1, 2, . . . , p}. In other words, the p vectors ai − a1 for all i ∈ {1, 2, . . . , p} all
belong to B⊥. Thus, any linear combination of these p vectors also belongs to B⊥

(since B⊥ is a subspace of Fn
2 and thus is closed under linear combination). In

other words, span {ai − a1 | i ∈ {1, 2, . . . , p}} ⊆ B⊥. In other words, A′ ⊆ B⊥

(since A′ = span {ai − a1 | i ∈ {1, 2, . . . , p}}). This proves Claim 2.

Moreover, it is not hard to see the following:

Claim 3: We have
dim

(
A′) = dim A − 1. (31)

Proof of Claim 3. Let us first observe that a1 is not orthogonal to b1 (since Claim 1
yields ⟨a1, b1⟩ = 1 ̸= 0). Thus, a1 /∈ B⊥ (since b1 ∈ B). Hence, a1 /∈ A′ (since (30)
shows that A′ ⊆ B⊥). But obviously, a1 ∈ A. Hence, A′ ̸= A (because if we had
A′ = A, then we would have a1 /∈ A′ = A, which would contradict a1 ∈ A).

The vectors ai − a1 for all i ∈ {1, 2, . . . , p} obviously are linear combinations of
a1, a2, . . . , ap, and thus belong to span

{
a1, a2, . . . , ap

}
= A. Hence, all their linear

combinations also belong to A (since A is a subspace of Fn
2 , and thus is closed under

linear combination). In other words, A′ ⊆ A (since A′ = span {ai − a1 | i ∈ {1, 2, . . . , p}}
is the set of the linear combinations of the vectors ai − a1). Thus, A′ is a subspace
of A. Consequently, Theorem 10.2.7 (a) yields dim (A′) ≤ dim A.

Furthermore, if we had dim (A′) = dim A, then Theorem 10.2.7 (b) would yield
A = A′ (since A′ is a subspace of A), which would contradict A′ ̸= A. Hence,
dim (A′) ̸= dim A. Combined with dim (A′) ≤ dim A, this yields dim (A′) <
dim A, so that dim (A′) ≤ dim A − 1.

Now, let us show that dim (A′) ≥ dim A − 1 as well. Indeed, choose any basis
(u1, u2, . . . , uk) of A′; thus, dim (A′) = k. Then, the k + 1 vectors u1, u2, . . . , uk, a1
span the vector space A (this is easy to see21). According to Theorem 10.2.1 (c)

21Proof. Let i ∈ {1, 2, . . . , p}. Then, ai − a1 ∈ A′ (since A′ was defined as the span of p vectors,
one of which is ai − a1). Thus, ai − a1 ∈ A′ = span {u1, u2, . . . , uk} (since (u1, u2, . . . , uk) is
a basis of A′). In other words, ai − a1 is a linear combination of u1, u2, . . . , uk. That is, there
exist coefficients c1, c2, . . . , ck ∈ F2 satisfying ai − a1 = c1u1 + c2u2 + · · ·+ ckuk. Consider these
c1, c2, . . . , ck. Solving ai − a1 = c1u1 + c2u2 + · · ·+ ckuk for ai, we find

ai = c1u1 + c2u2 + · · ·+ ckuk + a1 ∈ span {u1, u2, . . . , uk, a1} .

Forget that we fixed i. We thus have shown that ai ∈ span {u1, u2, . . . , uk, a1} for
each i ∈ {1, 2, . . . , p}. In other words, each of the p vectors a1, a2, . . . , ap belongs to
span {u1, u2, . . . , uk, a1}. Hence, any linear combination of these p vectors also belongs to
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(applied to k + 1 and dim A instead of k and n), this would be impossible if
k + 1 was smaller than dim A. Thus, k + 1 ≥ dim A. Hence, k ≥ dim A − 1.
Since dim (A′) = k, this rewrites as dim (A′) ≥ dim A − 1. Combining this with
dim (A′) ≤ dim A − 1, we obtain dim (A′) = dim A − 1. This proves Claim 3.

Now, let us set α := dim (A′) and β := dim (B′). Thus, we can rewrite (31) as
α = dim A − 1. Hence, dim A = α + 1. Similarly, dim B = β + 1. But Claim 2 yields
A′ ⊆ B⊥, so that A′ is a subspace of B⊥. Thus, by Theorem 10.2.7 (a), we obtain
dim (A′) ≤ dim

(
B⊥). However, Theorem 10.5.3 (c) (applied to F = F2 and U = B)

yields
dim B + dim

(
B⊥
)
= n.

Hence, dim
(
B⊥) = n − dim B︸ ︷︷ ︸

=β+1

= n − (β + 1). Thus,

α = dim
(
A′) ≤ dim

(
B⊥
)
= n − (β + 1) ,

so that α + β + 1 ≤ n. In other words, α + β ≤ n − 1.
Next, we recall that the p vectors a1, a2, . . . , ap are distinct. In other words, the

p vectors ai for all i ∈ {1, 2, . . . , p} are distinct. Hence, the p vectors ai − a1 for all
i ∈ {1, 2, . . . , p} are distinct as well (since subtracting a1 from a bunch of vectors
does not disturb their distinctness). Since all these p vectors belong to A′, we thus
conclude that the set A′ has at least p elements. In other words, |A′| ≥ p. On
the other hand, A′ is an α-dimensional vector space (since dim (A′) = α). Hence,
Proposition 10.4.4 (applied to α and A′ instead of n and V) yields |A′| = 2α. Thus,
2α = |A′| ≥ p, so that p ≤ 2α. Similarly, q ≤ 2β.

We have now found two integers α ∈ N and β ∈ N such that α + β ≤ n − 1 and
p ≤ 2α and q ≤ 2β. Thus, two such integers exist. This solves Exercise 10.5.1 (a).

(b) Multiplying the equalities p ≤ 2α and q ≤ 2β, we obtain pq ≤ 2α · 2β = 2α+β ≤
2n−1 (since α + β ≤ n − 1). This solves Exercise 10.5.1 (b).

span {u1, u2, . . . , uk, a1} (since span {u1, u2, . . . , uk, a1} is a subspace of Fn
2 and thus is closed

under linear combination). In other words,

span
{

a1, a2, . . . , ap
}
⊆ span {u1, u2, . . . , uk, a1} .

Since A = span
{

a1, a2, . . . , ap
}

, we can rewrite this as

A ⊆ span {u1, u2, . . . , uk, a1} . (32)

On the other hand, the vectors u1, u2, . . . , uk belong to A′ and thus to A (since A′ ⊆ A). The
vector a1 belongs to A as well. Hence, all k + 1 vectors u1, u2, . . . , uk, a1 belong to A. Their linear
combinations must therefore belong to A as well (since A is a subspace of Fn

2 and thus is closed
under linear combination). In other words,

span {u1, u2, . . . , uk, a1} ⊆ A.

Combining this with (32), we find A = span {u1, u2, . . . , uk, a1}. In other words, the k + 1 vectors
u1, u2, . . . , uk, a1 span the vector space A.
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Using Exercise 10.5.1, we can now easily solve the remaining two of the four
Oddtown/Eventown theorems:

Exercise 10.5.2. Let n, m ∈ N. In a town with n inhabitants, there are m clubs,
each of which has an odd number of members. Any two distinct clubs share an
odd number of common members. No two distinct clubs have the exact same
set of members. Prove that m ≤ 2⌊(n−1)/2⌋.

Solution idea. Let S be the set of all the n inhabitants. Let A1, A2, . . . , Am be the m
clubs (regarded as subsets of S). Let B1, B2, . . . , Bm be the same m clubs, listed once
again. Then, the m subsets A1, A2, . . . , Am are distinct (since no two distinct clubs
have the exact same set of members). Similarly, the m subsets B1, B2, . . . , Bm are
distinct.

Moreover, the number
∣∣Ai ∩ Bj

∣∣ is odd for every i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , m}.
(Indeed, either Ai and Bj are two different clubs, in which case this follows from the
assumption “any two distinct clubs share an odd number of common members”;
or Ai and Bj are the same club, in which case this follows from the assumption
“each club has an odd number of members”.)

Thus, Exercise 10.5.1 (a) (applied to p = m and q = m) shows that there exists
integers α ∈ N and β ∈ N such that α + β ≤ n − 1 and m ≤ 2α and m ≤ 2β.
Consider these α and β.

WLOG assume that α ≤ β (since otherwise, we can achieve this by swapping
α with β). Hence, 2α = α + α︸︷︷︸

≤β

≤ α + β ≤ n − 1, so that α ≤ (n − 1) /2. Since

α is an integer, this entails α ≤ ⌊(n − 1) /2⌋. Thus, m ≤ 2α ≤ 2⌊(n−1)/2⌋ (since
α ≤ ⌊(n − 1) /2⌋). This solves Exercise 10.5.2.

Exercise 10.5.3. Let n, m ∈ N. In a town with n inhabitants, there are m clubs,
each of which has an even number of members. Any two distinct clubs share an
even number of common members. No two distinct clubs have the exact same
set of members. Prove that m ≤ 2⌊n/2⌋.

Solution idea. Invite an outsider to move into town and join every existing club.
Thus,

• the town now has n + 1 inhabitants and m clubs;

• each club now has an odd number of members (since it had an even number
of members before the outsider joined);

• any two distinct clubs now share an odd number of common members (since
they shared an even number of common members before the outsider joined
them both);

• no two distinct clubs have the exact same set of members (since this held
before the outsider joined).
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Thus, we can apply Exercise 10.5.2 to the new situation (keeping in mind that
we must substitute n + 1 for n). We obtain m ≤ 2⌊((n+1)−1)/2⌋ = 2⌊n/2⌋ (since
(n + 1)− 1 = n). This solves Exercise 10.5.3.

Remark 10.5.4. In both Exercise 10.5.2 and Exercise 10.5.3, the inequalities are
sharp (i.e., equality is possible). Let me show how to obtain m = 2⌊n/2⌋ in
Exercise 10.5.3:

Let the n inhabitants be 1, 2, . . . , n. Call a subset T of {1, 2, . . . , n} blocky if it has
the property that an odd integer i ∈ {1, 2, . . . , n} belongs to T if and only if i + 1
belongs to T. (For example, for n = 5, the blocky subsets are ∅, {1, 2}, {3, 4} and
{1, 2, 3, 4}. The name “blocky” comes from the fact that the pairs (1, 2), (3, 4),
(5, 6), . . . are treated as “blocks”, with each block either completely included in
or completely excluded from the subset.)

There are 2⌊n/2⌋ blocky subsets of {1, 2, . . . , n} (why?). If we use these blocky
subsets as clubs, then the conditions of Exercise 10.5.3 are satisfied (why?), and
we have m = 2⌊n/2⌋.

Constructing a similar example for equality in Exercise 10.5.2 is left as an
exercise.

See [BabFra23] and [Stanle18, §13.2 and Exercises] for further results on and
variants of Eventown/Oddtown as well as other combinatorial questions that can
be resolved using linear algebra over finite fields.

Further applications of linear algebra can be found in [AndDos10, Chapter 12]
and [AndDos12, Chapter 12].

10.6. Class problems

The following problems are to be discussed during class.

Exercise 10.6.1. Recall the Fibonacci sequence ( f0, f1, f2, . . .), defined recursively
by

f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all n ≥ 2.

We furthermore set f−1 := 1 (so that the equality fn = fn−1 + fn−2 also holds for
n = 1).

Let A be the 2 × 2-matrix
(

0 1
1 1

)
.

(a) Prove that An = fn A + fn−1 I2 for all n ∈ N. (Here, I2 denotes the 2 × 2
identity matrix.)

(b) Prove that fn+m+1 = fn fm + fn+1 fm+1 for all n, m ∈ N. (This was Exercise
1.1.1 (c) on Worksheet 1.)
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(c) Prove that fn+1 fn−1 − f 2
n = (−1)n for each positive integer n. (This was

Exercise 1.1.1 (b) on Worksheet 1.)

(d) Let v be the column vector
(

0
1

)
. Prove that Anv =

(
fn

fn+1

)
for each

n ∈ N.

(e) Let n, p ∈ N. Prove that

n

∑
k=0

(
n
k

)
fk+p = fp+2n.

(f) Let n, p ∈ N be such that p ≥ n. Prove that

n

∑
k=0

(−1)k
(

n
k

)
fk+p = (−1)n fp−n.

[Hint: For part (e), take the equality A2 = A+ I2 to the n-th power and expand
the right hand side using the binomial formula.]

Exercise 10.6.2. Let n ∈ N. Let a1, a2, . . . , an be n numbers (or, more generally, el-
ements of a field F). Let p1, p2, . . . , pn be n polynomials in R [X] (more generally,
in F [X] where F is our field) with the property that

deg
(

pj
)
≤ j − 1 for each j ∈ {1, 2, . . . , n} .

(In particular, p1 is constant.)

(a) Prove that

det
((

pj (ai)
)

1≤i≤n, 1≤j≤n

)
=

(
n

∏
j=1

[
X j−1

] (
pj
))

·det
((

aj−1
i

)
1≤i≤n, 1≤j≤n

)
.

(Recall that
[
Xk] p means the Xk-coefficient of a polynomial p.)

(b) Prove that

det
((

aj−1
i

)
1≤i≤n, 1≤j≤n

)
= ∏

1≤j<i≤n

(
ai − aj

)
.

(This is known as the Vandermonde determinant.)

(c) Conclude that

det
((

pj (ai)
)

1≤i≤n, 1≤j≤n

)
=

(
n

∏
j=1

[
X j−1

]
pj

)
· ∏

1≤j<i≤n

(
ai − aj

)
.
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(d) Prove that

det

(((
ai

j − 1

))
1≤i≤n, 1≤j≤n

)
=

∏
1≤j<i≤n

(
ai − aj

)
∏

1≤j<i≤n
(i − j)

.

(Here,
(

ai

j − 1

)
is a binomial coefficient, not a column vector.)

[Hint: Part (a) can be done in many ways, but the simplest is probably by
factoring the matrix

(
pj (ai)

)
1≤i≤n, 1≤j≤n as a product of two matrices. To prove

part (b), apply part (a) to n special polynomials p1, p2, . . . , pn, chosen strategically
to make the matrix

(
pj (ai)

)
1≤i≤n, 1≤j≤n triangular. This is the nicest proof of the

Vandermonde determinant, in my opinion, but there are many others that are
not much worse.]

Exercise 10.6.3. Let n ∈ N. Let a1, a2, . . . , an be n integers. Prove that

∏
1≤i<j≤n

(j − i) | ∏
1≤i<j≤n

(
aj − ai

)
.

Exercise 10.6.4. You are given a row of 2023 lamps, each of which is either on or
off. To “flip” a lamp means to change its state (i.e., turn it on if it was off and
turn it off if it was on).

You have a tool that can flip 50 consecutive lamps on the row; but the tool can
only be applied when the leftmost of these 50 lamps is on. (So you can choose
any lamp that is on and has at least 49 further lamps to its right; then the tool
turns it off and flips the next 49 lamps to its right.) You can use this tool as often
as you want.

Prove the following:

(a) No matter how you use this tool, you will eventually run into a state where
it can no longer be used (i.e., all lamps that have at least 49 lamps to their
right are off).

(b) This final state does not depend on the choices you made (i.e., how you
applied the tool), but only on the initial state.

Exercise 10.6.5. A complex number z ∈ C is said to be algebraic if there exists a
nonzero polynomial P ∈ Q [X] (yes, a polynomial with rational coefficients) such
that z is a root of P. (For instance,

√
2 and 3

√
15 and all roots of X5 − 7X − 1 are

algebraic.)
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Let u and v be two algebraic complex numbers. Prove that the numbers u + v
and uv are algebraic as well.

[Hint: Let P ∈ Q [X] and Q ∈ Q [X] be nonzero polynomials satisfying P (u) =
0 and Q (v) = 0, and let n = deg P and m = deg Q be their degrees. Now use
linear algebra over Q, treating C as an (infinite-dimensional) vector space over
Q. Let W be the vector subspace of C spanned by all the nm products of the
form uivj with i ∈ {0, 1, . . . , n − 1} and j ∈ {0, 1, . . . , m − 1} over Q (that is, the
elements of W are the Q-linear combinations of these products). Prove that W
is preserved under multiplication by u and by v (meaning that if x ∈ W, then
ux ∈ W and vx ∈ W). Conclude that the nm + 1 powers

(u + v)0 , (u + v)1 , . . . , (u + v)nm

all belong to W. What now?]

10.7. Homework exercises

This homework set is optional and not to be graded.

Exercise 10.7.1. Let n ∈ N. Let S be an n-element set. Let A1, A2, . . . , An+2 be
n + 2 subsets of S. Prove that there exist two disjoint nonempty subsets I and J
of {1, 2, . . . , n + 2} such that⋃

i∈I

Ai =
⋃
i∈J

Ai and
⋂
i∈I

Ai =
⋂
i∈J

Ai.

[Hint: Append an extra 1 at the end of each indicator vector.]

Exercise 10.7.2. Let n > 1 be an integer. Let S be an n-element set. Let d be a
positive integer.

Let A1, A2, . . . , Am be some proper subsets of S. Assume that every 2-element
subset of S is contained (as a subset) in exactly d many of these subsets
A1, A2, . . . , Am.

Prove that m ≥ n.

Exercise 10.7.3. Let a1, a2, . . . , an be n numbers (or, more generally, elements of a
field). Compute

det
((

amin{i,j}

)
1≤i≤n, 1≤j≤n

)
= det


a1 a1 a1 · · · a1
a1 a2 a2 · · · a2
a1 a2 a3 · · · a3
...

...
... . . . ...

a1 a2 a3 · · · an

 .
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Exercise 10.7.4. Let α1, α2, . . . , αn, β1, β2, . . . , βn be 2n reals.

(a) Compute

det
((

αi + β j
)

1≤i≤n, 1≤j≤n

)
= det


α1 + β1 α1 + β2 · · · α1 + βn
α2 + β1 α2 + β2 · · · α2 + βn

...
... . . . ...

αn + β1 αn + β2 · · · αn + βn

 .

(b) Compute

det
((

sin
(
αi + β j

))
1≤i≤n, 1≤j≤n

)

= det


sin (α1 + β1) sin (α1 + β2) · · · sin (α1 + βn)
sin (α2 + β1) sin (α2 + β2) · · · sin (α2 + βn)

...
... . . . ...

sin (αn + β1) sin (αn + β2) · · · sin (αn + βn)

 .

[Hint: The cases n ≤ 2 might be somewhat misleading...]

Exercise 10.7.5. Let n ∈ N, and let a and b be two numbers. Prove that

det


b −a −a · · · −a
a b −a · · · −a
a a b · · · −a
...

...
... . . . ...

a a a · · · b


︸ ︷︷ ︸

n×n-matrix

=
(b + a)n + (b − a)n

2
.

(Here, all entries below the diagonal are a’s; all entries on the diagonal are b’s;
all entries above the diagonal are −a’s.)

Exercise 10.7.6. Let

A =
(
ai,j
)

1≤i≤n, 1≤j≤n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

an,1 an,2 · · · an,n


be an n × n-matrix with real entries. Assume that

ai,i ≥ ∑
j∈{1,2,...,n};

j ̸=i

∣∣ai,j
∣∣ for each i ∈ {1, 2, . . . , n} .
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(Such a matrix A is said to be weakly diagonally dominant.) Prove that

det A ≥
n

∏
i=1

(
ai,i −

n

∑
j=i+1

∣∣ai,j
∣∣) .

The following exercise is a generalization of Exercise 10.4.1:

Exercise 10.7.7. Let p be a prime number.
Let n, m ∈ N. In a town with n inhabitants, there are m clubs, each of which

has a number of members that is not divisible by p. Any two distinct clubs have
a number of common members that is divisible by p. Prove that m ≤ n.

We note that a similar generalization of Exercise 10.4.2 does not work, as (e.g.)

the example of p = 3 and n = 5 and m =

(
5
3

)
= 10 shows (here, each three

inhabitants form a club).

Exercise 10.7.8. An ornithological handbook classifies birds by 100 attributes;
each bird either has a given attribute or does not have it. Two birds are said to
be dissimilar if they differ in at least 51 attributes.

(a) Show that the handbook cannot contain 51 birds all dissimilar from each
other.

(b) (harder:) Can it contain 50 such birds?

(Tournament of Towns 14.42)

[Hint: In part (a), you can replace 100 and 51 by 2n and n + 1, respectively,
where n is an even integer. In part (b), you can replace 50 by n, but you must
additionally require that n > 4.]

Exercise 10.7.9. Let n, m ∈ N. In a town with n inhabitants, there are m red
clubs R1, R2, . . . , Rm and m blue clubs B1, B2, . . . , Bm. Assume that |Ri ∩ Bi| is
odd for each i ∈ {1, 2, . . . , m}. Assume further that

∣∣Ri ∩ Bj
∣∣ is even for each

i, j ∈ {1, 2, . . . , m} satisfying i < j. Prove that m ≤ n.

Exercise 10.7.10. Let n, b, r ∈ N. In a town with n inhabitants, there are r red
clubs and b blue clubs. Each red club has an even number of members, whereas
each blue club has an odd number of members. Any two distinct clubs (no
matter their color) share an even number of common members. No two distinct
clubs have the exact same set of members. Prove that r ≤ 2⌊(n−b)/2⌋.
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