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1. Math 235 Fall 2023, Worksheet 1: Induction

This is not an introduction to mathematical induction; I assume you are familiar
with the latter already. You can find explanations of the different forms of in-
duction, as well as basic examples, in [LeLeMe16, Chapter 5], [Day16], [Vellem06,
Chapter 6], [Hammac15, Chapter 10], [Vorobi02], [Grinbe15, Chapter 2]. We will
not discuss why induction is like a domino effect, or why all horses don’t have the
same color, or how to prove the commutativity of multiplication in Z. Our goal
here is rather to explore how induction can be used in non-obvious and advanced
ways to solve nontrivial problems. This will be just a little selection from a vast
realm; see [AndCri17] or [Gunder10] or [Grinbe20, Chapter 2] for more.

The format of this worksheet is as follows: We begin with a few example prob-
lems (to which we give rough outlines of solutions), then a few more problems
to be discussed during class, and finally 6 homework problems of which you are
supposed to solve 3.

We will abbreviate the word “induction hypothesis” by “IH”. The notation N

denotes {0, 1, 2, . . .}.

1.1. Example problems

1.1.1. The Fibonacci sequence

We begin with some properties of the Fibonacci sequence. First, we recall its defi-
nition (not least because its numbering is not standardized across the literature):

Definition 1.1.1. The Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of integers
which is defined recursively by

f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all n ≥ 2.

The first Fibonacci numbers (this is how the entries of the Fibonacci sequence are
called) are listed in the following table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

fn 0 1 1 2 3 5 8 13 21 34 55 89 144 233
.

Here is a bunch of properties of the Fibonacci sequence, all of which can be
proved by simple induction arguments:

Exercise 1.1.1. Let ( f0, f1, f2, . . .) be the Fibonacci sequence. Prove that:

(a) Each integer n ≥ 0 satisfies

f1 + f2 + · · ·+ fn = fn+2 − 1.
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(b) Each positive integer n satisfies

fn+1 fn−1 − f 2
n = (−1)n .

(This is known as Cassini’s identity.)

(c) For any nonnegative integers n and m, we have

fn+m+1 = fn fm + fn+1 fm+1.

(This is known as the addition formula for Fibonacci numbers.)

(d) Let φ =
1 +

√
5

2
and ψ =

1 −
√

5
2

be the two solutions of the quadratic

equation X2 − X − 1 = 0. Then,

fn =
1√
5

φn − 1√
5

ψn (1)

for every nonnegative integer n. (This is known as Binet’s formula. The number
φ ≈ 1.618 or its inverse φ−1 ≈ 0.618 is known as the golden ratio.)

(e) If a and b are two nonnegative integers satisfying a | b, then fa | fb.

(f) We have gcd ( fn, fn+1) = 1 for each n ≥ 0. (As usual, gcd (u, v) denotes the
greatest common divisor of two integers u and v.)

(g) We have f2 < f3 < f4 < · · · .

Solution idea. (a) (See [Grinbe20, Exercise 2.2.1] for details.) This is a straight-
forward induction on n. The induction base (the case n = 0) is trivial, since
f1 + f2 + · · · + f0 is an empty sum (i.e., a sum with no addends) and therefore
equals 0 by definition.1 The induction step (from n = k to n = k + 1) follows by
observing that2

f1 + f2 + · · ·+ fk+1 = ( f1 + f2 + · · ·+ fk)︸ ︷︷ ︸
= fk+2−1
(by IH)

+ fk+1 = fk+2 − 1 + fk+1

= ( fk+2 + fk+1)︸ ︷︷ ︸
= fk+3

(by Definition 1.1.1)

−1 = fk+3 − 1.

(b) (See [Grinbe20, Exercise 2.2.2] for details.) This is again an easy induction
on n. The induction base (that’s the case n = 1 here) is trivial. The induction step

1Yes, this is part of any good definition of a sum. Likewise, an empty product is defined to be 1.
2The abbreviation “IH” means “induction hypothesis”.
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(from n = k to n = k + 1) proceeds by observing that

fk+2︸︷︷︸
= fk+1+ fk

(by Definition 1.1.1)

fk − f 2
k+1 = ( fk+1 + fk) fk − f 2

k+1 = f 2
k − fk+1 ( fk+1 − fk)︸ ︷︷ ︸

= fk−1
(why?)

= f 2
k − fk+1 fk−1 = −

(
fk+1 fk−1 − f 2

k

)
︸ ︷︷ ︸

=(−1)k

(by IH)

= − (−1)k = (−1)k+1 .

(c) (See [Grinbe20, Exercise 2.2.3] for details.) This is slightly trickier, as we now
have two variables. If nothing else, we have to decide which one to induct on. Here,
this is not a real issue since they play symmetric roles, so we can pick either. But
note that inducting on n and inducting on m are not the only options; sometimes, it
is better to induct on some “derivate quantity” such as n+m (this is actually pretty
frequent; we will see such an example below) or |n − m| (this is more exotic). We
are in luck: Inducting on n will do. After all, this is an introductory exercise.

There is another subtlety: Do we first fix m and induct on n (that is, having fixed
m, we use induction to prove the statement “ fn+m+1 = fn fm + fn+1 fm+1 for all
n ≥ 0”), or do we induct on n right away (that is, we use induction to prove the
statement “( fn+m+1 = fn fm + fn+1 fm+1 for all m ≥ 0) for all n ≥ 0”)? The second
option is generally preferable to the first one, since anything we could do with a
fixed m could also be done with m being a variable. (The only downside of the
second option is that we have to carry the “for all m ≥ 0” quantifier around.)

Let us thus take the second option. Thus, for any n ≥ 0, we let A (n) denote the
statement “ fn+m+1 = fn fm + fn+1 fm+1 for all m ≥ 0”. Our goal is thus to prove that
A (n) holds for all n ≥ 0. We prove this by induction on n. The base case is again
trivial (why?). For the induction step, we fix a nonnegtive integer k and assume (as
our IH) that A (k) holds, and we need to prove that A (k + 1) holds. So we need to
prove that f(k+1)+m+1 = fk+1 fm + f(k+1)+1 fm+1 for all m ≥ 0. And this we can do,
again, by some mildly strategic computation: For any m ≥ 0, we have

f(k+1)+m+1 = fk+(m+1)+1 = fk fm+1 + fk+1 f(m+1)+1︸ ︷︷ ︸
= fm+2= fm+1+ fm

(by Definition 1.1.1) here, we have applied A (k) , which our IH guarantees
to be true; but we have applied it to m + 1 instead of m

(which is allowed, since it has a “for all m ≥ 0” quantifier)


= fk fm+1 + fk+1 ( fm+1 + fm) = fk+1 fm + ( fk+1 + fk)︸ ︷︷ ︸

= fk+2
(by Definition 1.1.1)

fm+1

= fk+1 fm + fk+2 fm+1 = fk+1 fm + f(k+1)+1 fm+1.
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So we are done. Note that we really profited from the fact that we did not fix m
here, because otherwise we would not have been able to apply the IH to m + 1
instead of m.

(d) (See [Grinbe20, Theorem 2.3.1] for details.)
This requires strong induction. See [Grinbe20, §2.3] or [Grinbe15, §2.8] for de-

tailed explanations of this method; here we just summarize how it works: In
regular induction, you prove that a statement A (n) holds for all integers n ≥ 0
by first showing that A (0) holds (the “induction base”), and then showing that
A (k − 1) =⇒ A (k) holds for each k ≥ 1 (the “induction step”). In other words,
you prove that a statement A (n) holds for all integers n ≥ 0 by first showing that
it holds for 0, and then showing that it holds for a positive integer k if it holds for
the preceding integer k − 1. In contrast, in strong induction, you achieve the same
goal by showing that

(A (0) ∧A (1) ∧ · · · ∧ A (k − 1)) =⇒ A (k) holds for each k ≥ 0 (2)

(the “induction step” of the strong induction). That is, you show that your state-
ment A (n) holds for n = k under the assumption that it holds for all n ∈ {0, 1, . . . , k − 1}
(that is, for all nonnegative integers n < k). In other words, you show that the state-
ment holds for a nonnegative integer k if it holds not just for the preceding integer
k − 1, but rather for all nonnegative integers smaller than k. That is, your IH is
not just A (k − 1) but rather A (0)∧A (1)∧ · · · ∧A (k − 1). Thus the name “strong
induction”: It is like regular induction but with a stronger IH.

(The attentive reader will have spotted another difference: A strong induction
has no induction base! A moderately attentive reader might be puzzled by this:
How can we get anywhere without a base case? How do we know that A (0)
holds? Of course, a really attentive reader will see the answer: It now follows from
the induction step! Indeed, note that (2) says “k ≥ 0”, not “k > 0” (unlike for
regular induction). So the induction step in a strong induction has to work for
k = 0 in particular. However, for k = 0, the “induction hypothesis” (that is, the
antecedent A (0)∧A (1)∧ · · · ∧A (k − 1) in (2)) is vacuously true (because it is just
saying that A (n) holds for all nonnegative integers n < k; but there are no such
integers because k = 0), and thus (2) gives us A (0) unconditionally. So, technically
speaking, a strong induction needs no base case, but this is merely because its
induction step has to include the k = 0 case and the IH is vacuous in this case.)

Enough talking, let us solve Exercise 1.1.1 (d) by strong induction. Thus, for any
n ≥ 0, we let A (n) denote the statement (1). As we said, no base case is required.
Here is the induction step: Let k ≥ 0 be an integer. We must prove (2). Thus, we
assume that A (0) ∧ A (1) ∧ · · · ∧ A (k − 1) holds (this is our IH), and we want to
prove that A (k) holds.

If k = 0 or k = 1, then we can check this by hand. (This is just saying that we
manually check that (1) is true for n = 0 and for n = 1.) So we WLOG assume
that k ≥ 2. Then, our IH yields that A (k − 1) and A (k − 2) hold. (This is where
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we need k ≥ 2 ! In fact, if k was < 2, then A (k − 2) wouldn’t even make sense,
since fk−2 would not be defined. Thus, in a sense, we didn’t cheat our way around
needing a base case; we still had to manually verify A (0) and A (1). It’s just that
we did it as part of the induction step, as opposed to calling it a base case.)

So we know that A (k − 1) and A (k − 2) hold. In other words, we have

fk−1 =
1√
5

φk−1 − 1√
5

ψk−1 and (3)

fk−2 =
1√
5

φk−2 − 1√
5

ψk−2. (4)

Our goal is to show that A (k) holds, i.e., that fk =
1√
5

φk − 1√
5

ψk. We do it in the

straightforward way:

fk = fk−1 + fk−2 (by Definition 1.1.1)

=

(
1√
5

φk−1 − 1√
5

ψk−1
)
+

(
1√
5

φk−2 − 1√
5

ψk−2
)

(by (3) and (4))

=
1√
5

(
φk−1 + φk−2

)
− 1√

5

(
ψk−1 + ψk−2

)
.

If we can show that

φk−1 + φk−2 = φk and ψk−1 + ψk−2 = ψk, (5)

then this will simplify to
1√
5

φk − 1√
5

ψk, and we will be done (as this will prove

A (k) and thus complete the induction step). Thus, all we need is to prove (5).
But this is easy: Since φ is a root of X2 − X − 1, we have φ2 = φ + 1 and thus
φk = φ2φk−2 = (φ + 1) φk−2 = φk−1 + φk−2. Similarly, ψk = ψk−1 + ψk−2. This
proves (5), and thus our induction step is complete. Part (d) is solved.

(e) (See [Grinbe20, Exercise 3.2.2] for details.) Again, we have two variables. In-
ducting on a is not a good idea, since that would make fa a “moving target”. (When
proving a divisibility u | v by induction, it is generally better to have u change as
little as possible during the induction step, so that the IH does not become useless.
It is usually easier to derive u | v from u | v′ than to derive u | v from u′ | v.)

So let’s induct on b. With regular induction, this would be impossible: Since the
claim we are proving has an “if a | b” condition, we cannot hope to get any use out
of the IH. After all, if a | b, then a ∤ b − 1 (unless a = 1), so that the IH is vacuously
true and equally useless.

One way to deal with this issue is to use strong induction instead of regular
induction. This is done in [Grinbe20, Exercise 3.2.2].

Here, let us take another way. Recall that the claim in question is “if a and b are
two nonnegative integers satisfying a | b, then fa | fb”. However, two nonnegative
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integers a and b satisfy a | b if and only if there exists a nonnegative integer n such
that b = an. This allows us to substitute an for b, thus rewriting our claim as “If a
and n are nonnegative integers, then fa | fan”. Then, we prove this rewritten claim
by inducting on n. The underlying idea here is to replace a condition (“if a | b”)
by a parameterization (in our case, b = an) that encodes this condition. This is
a powerful technique for simplifying problems, and useful not just for induction
problems; it is generally fair to say that claims tend to become easier to prove the
fewer conditions they have.

Here are the details of the argument. To simplify our life, we fix a ∈ N. (As
explained above, fixing a variable ahead of an induction is generally not a good
idea, as it takes some options away; but in our current situation, we can allow
ourselves to do it. And if we couldn’t, we could always say “oops” and go back
and unfix it... Just don’t do it on the clean copy!)

Now, for each integer n ≥ 0, we let A (n) denote the statement “ fa | fan”. Our
goal is thus to prove that this statement A (n) holds for all n ≥ 0. We shall do this
by induction on n. The base case (n = 0) is trivial, since fa·0 = f0 = 0 is divisible
by every integer3. For the induction step, we fix some k ≥ 0, and we assume (as
IH) that A (k) holds; our goal is to prove A (k + 1).

Our assumption A (k) is saying that fa | fak. Our goal (A (k + 1)) is saying that
fa | fa(k+1). How do we get the latter from the former? Since multiplication is
repeated addition, it makes sense to apply the addition formula (Exercise 1.1.1 (c)).
We want to apply it in such a way that a (k + 1) will be n + m + 1, but the right
hand side will divisible by fa. Given these premises, a little bit of experimentation
tells us what to do: We apply Exercise 1.1.1 (c) to n = ak and m = a − 1, and obtain

fak+a−1+1 = fak fa−1︸ ︷︷ ︸
This is divisible by fa,

since fa| fak

+ fak+1 fa−1+1︸ ︷︷ ︸
This is divisible by fa,

because fa−1+1= fa

.

Thus, fa | fak+a−1+1 = fa(k+1) (since ak + a − 1 + 1 = a (k + 1)). This proves
A (k + 1), thus completing our induction step.

(f) We induct on n. The base case (n = 0) boils down to gcd (0, 1) = 1, which is
clear. For the induction step (from k − 1 to k), we assume that some k ≥ 1 satisfies
gcd ( fk−1, fk) = 1, and we set out to show that gcd ( fk, fk+1) = 1. (By the way, it is
perfectly fine to use the letter n instead of k here; just don’t write awkward things
like “the claim is true for n = n − 1”.)

We will need the following two basic properties of gcds:

1. We have gcd (a, b) = gcd (b, a) for any a, b ∈ Z.

2. We have gcd (a, ua + b) = gcd (a, b) for any a, b, u ∈ Z.

3Alas, some authors like to claim that 0 is not divisible by 0, because
0
0

is undefined. It is, of
course, their right to use their favorite definition of divisibility, but we prefer to use the more
reasonable “u | v holds if and only if there exists an integer w such that v = uw” definition.
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Both of these properties are fundamental to the Euclidean algorithm, as they say
that the gcd of two integers does not change when we swap the two integers or
add a multiple of one to the other. They easily follow from the definition of the
gcd.4

Now, fk+1 = fk + fk−1 = 1 fk + fk−1. Hence,

gcd ( fk, fk+1) = gcd ( fk, 1 fk + fk−1) = gcd ( fk, fk−1)

(by Property 2, applied to a = fk, b = fk−1 and u = 1)
= gcd ( fk−1, fk) (by Property 1)
= 1 (by the IH) .

This completes the induction step, and thus Exercise 1.1.1 (f) is solved.

(g) It is easy to see that the integers f1, f2, f3, . . . are positive5. Thus, every i ≥ 2
satisfies fi−1 > 0 and therefore fi < fi+1 (because fi+1 = fi + fi−1︸︷︷︸

>0

> fi). In other

words, f2 < f3 < f4 < · · · . This solves Exercise 1.1.1 (g).

We now come to a slightly deeper property of Fibonacci numbers. We claim that
every nonnegative integer can be uniquely represented as a sum of non-consecutive
Fibonacci numbers fn with n ≥ 2 (where “non-consecutive” means that fk and fk+1
can never appear together in the sum). For example,

50 = 34︸︷︷︸
= f9

+ 13︸︷︷︸
= f7

+ 3︸︷︷︸
= f4

= f9 + f7 + f4.

This fact is known as Zeckendorf’s theorem. Let us state it more formally:

Exercise 1.1.2. A set S of integers will be called lacunar if it contains no two
consecutive integers (i.e., if there exists no s ∈ S such that s + 1 ∈ S).

Let ( f0, f1, f2, . . .) be the Fibonacci sequence.
For any n ∈ N, there exists a unique finite lacunar subset S of {2, 3, 4, . . .}

such that n = ∑
s∈S

fs.

Solution idea. (See [Grinbe18, Theorem 2.4] for some details.) We will soon prove
this by induction. But first, we shall state a lemma and prove it (by induction,
too). Of course, when you solve a problem, you won’t magically come up with the
lemma ahead of the solution most of the time; instead, it will emerge (as a statement
you wish to be true) in the process of solving the problem. The reason why we are
starting with the lemma here is to uncrowd the solution that will follow it. We

4To be precise, property 1 is obvious, while property 2 follows from the following easy lemma:
Lemma. Let a, b, u ∈ Z. Let d be a divisor of a. Then, d divides ua + b if and only if d divides

b.
5If you insist, this requires another proof by induction, albeit a trivial one.
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could put it in the middle of the solution, but this would be needlessly confusing
and complicated (as a rule of style, an induction within an induction is almost
always to be avoided). So let me state the lemma first; you can trust me that it will
be exactly what we will need later on:

Lemma 1.1.2. Let u ∈ N. Let S be a lacunar subset of {2, 3, . . . , u}. Then,
∑

s∈S
fs < fu+1.

This lemma gives an upper bound on the sum of a set of non-consecutive Fi-
bonacci numbers in terms of the largest Fibonacci number that appears in this set
(or, more precisely, of the next Fibonacci number that appears after it). The proof
is by induction:

Proof of Lemma 1.1.2. We proceed by strong induction on u.
Induction step: Let v ∈ N. Assume (as the IH) that Lemma 1.1.2 holds for all

u < v. We must prove that Lemma 1.1.2 holds for u = v. In other words, we must
prove that if S is a lacunar subset of {2, 3, . . . , v}, then ∑

s∈S
fs < fv+1.

So let S be a lacunar subset of {2, 3, . . . , v}. We must show that ∑
s∈S

fs < fv+1. If

S is empty, then this is clear (since ∑
s∈S

fs = 0 in this case, but fv+1 > 0). Hence, we

WLOG assume that S is nonempty. Thus, S has a largest element, which we shall
call m. Since S is a subset of {2, 3, . . . , v}, we have m ≤ v. Since S is lacunar, the
second-largest element of S (if it exists) is not only < m, but also < m − 1; in other
words, the set S \ {m} is a subset of {2, 3, . . . , m − 2}. Of course, this set S \ {m} is
furthermore lacunar.

Now, our IH tells us that Lemma 1.1.2 holds for all u < v. Hence, in particular,
Lemma 1.1.2 holds for u = m − 2 (because m − 2 < m ≤ v). Thus, we can apply
Lemma 1.1.2 to m − 2 and S \ {m} instead of u and S (since S \ {m} is a lacunar
subset of {2, 3, . . . , m − 2}), and thus obtain ∑

s∈S\{m}
fs < f(m−2)+1 = fm−1.

However, m ∈ S, so that

∑
s∈S

fs = fm + ∑
s∈S\{m}

fs︸ ︷︷ ︸
< fm−1

< fm + fm−1 = fm+1 ≤ fv+1

(since m ≤ v entails m + 1 ≤ v + 1 and therefore fm+1 ≤ fv+1 by Exercise 1.1.1 (g)).
This inequality is precisely the one we wanted to show. Thus, we have proved that
Lemma 1.1.2 holds for u = v. The induction step is complete, and with it the proof
of Lemma 1.1.2.

Now, let us solve the actual Exercise 1.1.2.
We apply strong induction on n. For the induction step, we fix an integer k ≥ 0,

and we assume (as the IH) that Exercise 1.1.2 holds for each n < k. We must now
prove that Exercise 1.1.2 holds for n = k.
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If k = 0, then this is trivial (the only subset S of {2, 3, 4, . . .} satisfying 0 = ∑
s∈S

fs is

the empty set, since any other subset S would lead to ∑
s∈S

fs > 0). Thus, we WLOG

assume that k > 0.
Exercise 1.1.1 (g) yields f2 < f3 < f4 < · · · . Thus, the sequence ( f2, f3, f4, . . .)

grows unboundedly. Hence, there exists a largest i ∈ {2, 3, 4, . . .} satisfying fi ≤ k
(why?). Consider this i. Then, fi ≤ k < fi+1.

From k < fi+1, we obtain k − fi < fi+1 − fi = fi−1 (why?). This will be useful
later on.

Now, k − fi is a nonnegative integer (since fi ≤ k) and is < k (since fi > 0).
Hence, the IH shows that Exercise 1.1.2 holds for n = k − fi. Thus, there exists a
unique finite lacunar subset S′ of {2, 3, 4, . . .} such that

k − fi = ∑
s∈S′

fs. (6)

Consider this S′.
We next claim that each element of S′ is smaller than i − 1. Indeed, if S′ would

contain some j ≥ i − 1, then we would have

∑
s∈S′

fs ≥ f j ≥ fi−1
(
since j ≥ i − 1, thus f j ≥ fi−1 (why?)

)
,

which would contradict ∑
s∈S′

fs = k − fi < fi−1. Thus, each element of S′ is smaller

than i − 1. In particular, S′ contains neither i − 1 nor i + 1. Hence, the set S′ ∪ {i}
is still lacunar (since S′ is lacunar). Moreover, from (6), we obtain k = fi + ∑

s∈S′
fs =

∑
s∈S′∪{i}

fs (since i /∈ S′ (why?)).

Thus, we have found a finite lacunar subset S of {2, 3, 4, . . .} such that k = ∑
s∈S

fs

(namely, S = S′ ∪ {i}). This means we are halfway to our goal; we still need to
show that this subset S is unique.

In order to show this, we fix some finite lacunar subset S of {2, 3, 4, . . .} such
that k = ∑

s∈S
fs. Our goal is to show that this S must be our previously constructed

S′ ∪ {i}. Indeed, this will clearly entail the uniqueness of S, and thus complete the
induction step.

We will first show that i ∈ S. It is here that Lemma 1.1.2 reveals its usefulness.
Indeed, the set S is nonempty (since ∑

s∈S
fs = k > 0), so it has a largest element.

Call this largest element m. If we had m ≥ i + 1, then we would have

∑
s∈S

fs ≥ fm ≥ fi+1 (by Exercise 1.1.1 (g), since m ≥ i + 1) ,

which would contradict ∑
s∈S

fs = k < fi+1. Thus, we must have m < i + 1. On the

other hand, if we had m ≤ i − 1, then S would be a subset of {2, 3, . . . , i − 1}, and
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therefore Lemma 1.1.2 (applied to u = i − 1) would yield ∑
s∈S

fs < f(i−1)+1 = fi ≤ k,

which would contradict ∑
s∈S

fs = k. Hence, we must have m > i − 1. Combining

this with m < i + 1, we obtain m = i (since m and i are integers). Thus, i = m ∈ S.
Now,

k = ∑
s∈S

fs = fi + ∑
s∈S\{i}

fs (since i ∈ S) ,

so that
k − fi = ∑

s∈S\{i}
fs.

Thus, S \ {i} is a finite lacunar subset of {2, 3, 4, . . .} such that k − fi = ∑
s∈S\{i}

fs.

Hence, S \ {i} = S′ (because S′ is the unique finite lacunar subset S′ of {2, 3, 4, . . .}
such that k − fi = ∑

s∈S′
fs, but we just saw that S \ {i} is another such subset).

Therefore, S = S′ ∪ {i} (since i ∈ S). This is precisely what was left to be proved.
Thus, the induction step is complete. This solves Exercise 1.1.2.

1.1.2. More general recursions

As we have seen, the Fibonacci numbers make for a nice playground for induction
proofs, but their real significance is as one of the simplest examples of what I’d
call a (u, v)-recurrent sequence (which in turn is a particular case of many more
comprehensive concepts):

Definition 1.1.3. Let u and v be two numbers. A sequence (x0, x1, x2, . . .) of
numbers will be called (u, v)-recurrent if every n ≥ 2 satisfies

xn = uxn−1 + vxn−2. (7)

It is clear that an (u, v)-recurrent sequence (x0, x1, x2, . . .) is uniquely determined
by the four numbers u, v, x0 and x1, since the equality (7) can be used to com-
pute all entries of the sequence using these four numbers. The Fibonacci sequence
( f0, f1, f2, . . .) is the (1, 1)-recurrent sequence with the starting entries f0 = 0 and
f1 = 1. Other examples of (u, v)-recurrent sequences are arithmetic progressions
(these are precisely the (2,−1)-recurrent sequences) and the geometric progres-
sions (these are (u, 0)-recurrent) as well as the sequences of the forms

(sin (α + 0β) , sin (α + 1β) , sin (α + 2β) , . . .) and
(cos (α + 0β) , cos (α + 1β) , cos (α + 2β) , . . .)

for any angles α and β.
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Many properties of Fibonacci numbers (e.g., Exercise 1.1.1, but not Exercise 1.1.2)
can be generalized to arbitrary (or at least fairly general) (u, v)-recurrent sequences.
Here is what becomes of Exercise 1.1.1 when we generalize it:

Exercise 1.1.3. Let u and v be two numbers (e.g., real or complex numbers). Let
(x0, x1, x2, . . .) be any (u, v)-recurrent sequence of numbers. Prove that:

(a) If v = 1, then each integer n ≥ 0 satisfies

u (x1 + x2 + · · ·+ xn) = xn+1 + xn − x1 − x0.

(b) Each positive integer n satisfies

xn+1xn−1 − x2
n = (−v)n−1

(
x2x0 − x2

1

)
.

(c) For any nonnegative integers n and m, we have

vx0xn+m + x1xn+m+1 = vxnxm + xn+1xm+1. (8)

More generally, if (y0, y1, y2, . . .) is a further (u, v)-recurrent sequence, then

vx0yn+m + x1yn+m+1 = vxnym + xn+1ym+1. (9)

(d) Let λ =
u +

√
u2 + 4v
2

and µ =
u −

√
u2 + 4v
2

be the two solutions of the

quadratic equation X2 − uX − v = 0. If u2 + 4v ̸= 0 (that is, λ ̸= µ), then we
have

xn = γλn + δµn (10)

for every nonnegative integer n, where

γ =
x1 − µx0

λ − µ
and δ =

λx0 − x1

λ − µ
.

On the other hand, if u2 + 4v = 0 (that is, λ = µ), then we have

xn =
1
2n

(
2nun−1x1 − (n − 1) unx0

)
(11)

(where we agree to understand nun−1 as 0 when n = 0).

(e) Assume that u, v and all of x0, x1, x2, . . . are integers. Assume furthermore
that x0 = 0. If a and b are two nonnegative integers satisfying a | b, then xa | xb.

(f) Assume that u, v and all of x0, x1, x2, . . . are integers. Assume furthermore
that x1 = 1 and gcd (u, v) = 1. Then, we have gcd (xn, xn+1) = 1 for each n ≥ 0.
(As usual, gcd (u, v) denotes the greatest common divisor of two integers u and
v.)

(g) If x0 ≥ 0 and x1 > 0 and u ≥ 1 and v > 0, then we have x2 < x3 < x4 < · · · .
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Solution idea. Almost all parts of this exercise can be solved in the same way as the
corresponding parts of Exercise 1.1.1 (which are just their particular cases for u = 1
and v = 1 and xi = fi). Try it! The only complications arise in parts (d), (e) and (f).

The complication in part (d) stems from the case λ = µ, which requires some
care but is still equally straightforward as the other case. (See [Grinbe20, Theorem
4.9.11] for details.)

In part (e), we observe that (8) becomes x1xn+m+1 = vxnxm + xn+1xm+1 (since
x0 = 0). Proceeding as in Exercise 1.1.1 (e), we can try to apply this equality to
n = ak and m = a − 1 in the hope of concluding that xa | xa(k+1) (assuming that
xa | xak). Unfortunately, the x1 factor on the left hand side of this equality prevents
this argument from working: we only get xa | x1xa(k+1), not xa | xa(k+1).

However, an easy trick gets you past this factor: If x1 = 0, then all entries of the
sequence (x0, x1, x2, . . .) are 0 (why?), so the claim holds obviously. Thus, WLOG

assume that x1 ̸= 0. Now, consider the sequence
(

x0

x1
,

x1

x1
,

x2

x1
, . . .

)
. This sequence

is (u, v)-recurrent (why?). The first entries of this sequence are
x0

x1
=

0
x1

= 0 and
x1

x1
= 1; thus, all entries of this sequence are integers (why?). So we can WLOG

assume that x1 = 1 (otherwise, just replace our original sequence (x0, x1, x2, . . .)

by
(

x0

x1
,

x1

x1
,

x2

x1
, . . .

)
). Now, the x1 factor is not in our way any more; (8) becomes

xn+m+1 = vxnxm + xn+1xm+1, which is perfectly sufficient for our induction step.
(See [Grinbe20, Exercise 4.10.2] for details.)

The complication in part (f) is probably the most interesting one, as it requires
a new idea to overcome. Again, we induct on n (as in Exercise 1.1.1 (f)). The base
case (n = 0) boils down to gcd (x0, 1) = 1, which is clear. For the induction step
(from k − 1 to k), we assume that some k ≥ 1 satisfies gcd (xk−1, xk) = 1, and we
set out to show that gcd (xk, xk+1) = 1. From xk+1 = uxk + vxk−1, we obtain6

gcd (xk, xk+1) = gcd (xk, uxk + vxk−1) = gcd (xk, vxk−1)

(by Property 2, applied to a = xk and b = xk−1)

= gcd (vxk−1, xk) (by Property 1) .

What now? Our IH tells us that gcd (xk−1, xk) = 1, not that gcd (vxk−1, xk) = 1. It
looks like we are stuck: Our IH is too weak to yield the goal. In a sense, we did
not pack enough provisions into our backpack.

The trick is to pack more. That is, we start from scratch and try again, but this
time we try to prove a stronger claim. Namely, instead of proving that gcd (xn, xn+1) =
1 for each n ≥ 0, we try to prove that

gcd (v, xn+1) = 1 and gcd (xn, xn+1) = 1 (12)
6We are using the Properties 1 and 2 that were stated in our above solution to Exercise 1.1.1 (f).
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for each n ≥ 0. The new statement “gcd (v, xn+1) = 1” here is the extra provision
we are packing into our backpack in order to have it handy when we need it in the
induction step.

So let us try again. The base case is still trivial (since x1 = 1). For the induction
step (from k − 1 to k), we assume that some k ≥ 1 satisfies

gcd (v, xk) = 1 and gcd (xk−1, xk) = 1,

and we set out to show that

gcd (v, xk+1) = 1 and gcd (xk, xk+1) = 1.

As before, we can show that gcd (xk, xk+1) = gcd (vxk−1, xk). However, this time
we know that both gcd (v, xk) = 1 and gcd (xk−1, xk) = 1; this easily yields that
gcd (vxk−1, xk) = 1. Indeed, we have the following property of gcds:

3. If a, b, c are three integers satisfying gcd (a, c) = 1 and gcd (b, c) = 1, then
gcd (ab, c) = 1.

This is not as simple as properties 1 and 2, but is still easily proved once you
know some basic number theory (Bezout’s identity or the prime factorization the-
orem). See, e.g., [Grinbe20, Theorem 3.5.10] for a proof. (Keep in mind that
[Grinbe20] uses the notation “p ⊥ q” for “gcd (p, q) = 1”.)

Anyway, Property 3 lets us derive gcd (vxk−1, xk) = 1 from gcd (v, xk) = 1 and
gcd (xk−1, xk) = 1. Because of gcd (xk, xk+1) = gcd (vxk−1, xk), this rewrites as
gcd (xk, xk+1) = 1.

This is half the battle. The other half is proving that gcd (v, xk+1) = 1. We again
recall that xk+1 = uxk + vxk−1 = vxk−1 + uxk, and thus

gcd (v, xk+1)

= gcd (v, vxk−1 + uxk) = gcd (v, uxk) (again by Property 2 (why?))
= gcd (uxk, v)
= 1 (by Property 3, since gcd (u, v) = 1 and gcd (xk, v) = gcd (v, xk) = 1) .

So we are done with the induction step, and Exercise 1.1.3 (f) is solved. (See
[Grinbe20, Exercise 4.9.8] for details.)

The above solution to Exercise 1.1.3 (f) illustrates one of the major intricacies
in the use of induction: Often, the exact claim that one wants to prove cannot be
directly proved by induction, and paradoxically the trick is often to strengthen the
claim (aka pack extra provisions into the “induction backpack”). Of course, any
such strengthening is a tradeoff: You have more to prove, but you also have more
to use in the induction step. Finding the right strengthening is an art, not a science,
and it is here where the most interesting ideas often lie.
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1.1.3. Induction in combinatorics

Here is another unusual type of induction argument:

Exercise 1.1.4. We will say that a finite sequence (x1, x2, . . . , xn) of integers is nice
if there exist no three integers i, j, k with

1 ≤ i < j < k ≤ n and xi + xk = 2xj.

(In other words, a finite sequence is nice if and only if it contains no three-term
arithmetic progression as a subsequence. Or, to put it slightly differently: It
is nice if and only if no two of its entries have their average written anywhere
between them.)

Prove that for every integer n ≥ 0, there exists a nice permutation of the
sequence (1, 2, . . . , n).

For example, a nice permutation of the sequence (1, 2, 3, 4, 5, 6, 7) is (1, 5, 3, 7, 2, 6, 4).
On the other hand, there are plenty of non-nice permutations of (1, 2, 3, 4, 5, 6, 7);
for example, (4, 1, 3, 7, 8, 2, 5, 6) is not nice (since the two entries 1 and 5 have their
average – that is, 3 – written between them). Of course, (1, 2, 3, 4, 5, 6, 7) itself is not
nice (and is, in fact, as far from “nice” as a permutation can be).

Solution idea. We let A (n) denote the statement “there exists a nice permutation of
the sequence (1, 2, . . . , n)”. Our goal is thus to prove A (n) for all n ≥ 0.

We could try regular induction, i.e., we could try to prove that A (k) =⇒ A (k + 1)
for each k ≥ 0. However, it is not immediately clear how to do this.

However, it is easy to show that A (k) =⇒ A (2k) for each k ≥ 0. In other words,
if we have an integer k ≥ 0 and we know that there exists a nice permutation of
(1, 2, . . . , k), then we can easily construct a nice permutation of (1, 2, . . . , 2k). To wit,
if (a1, a2, . . . , ak) is our given nice permutation of (1, 2, . . . , k), then the sequence

(2a1, 2a2, . . . , 2ak, 2a1 − 1, 2a2 − 1, . . . , 2ak − 1)

is a nice permutation of (1, 2, . . . , 2k). (Check this! The trick is that the average
between an even and an odd integer is not an integer; thus, if two entries of this
sequence had their average written anywhere between them, then these two en-
tries would be either both among the first k entries or among the last k entries.
But in each of these cases, we would easily get a contradiction to the niceness of
(a1, a2, . . . , ak).)

So we have shown that A (k) =⇒ A (2k) for each k ≥ 0. Since we can also easily
check that A (1) holds (indeed, the trivial permutation (1) of (1) is nice, since it
has no two entries to begin with), we thus obtain A (1) =⇒ A (2) =⇒ A (4) =⇒
A (8) =⇒ · · · . Thus, A (n) is proved whenever n is a power of 2. In other words,

A (2m) holds for each m ≥ 0. (13)
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However, it is also easy to show that A (k) =⇒ A (k − 1) for each k ≥ 1. Indeed,
if we have an integer k ≥ 1 and we know that there exists a nice permutation of
(1, 2, . . . , k), then we can easily obtain a nice permutation of (1, 2, . . . , k − 1). (To
wit, we simply remove the entry k from our nice permutation.)

Using this “backward induction step” A (k) =⇒ A (k − 1) multiple times, we
conclude that we have

A (u) =⇒ A (v) whenever u ∈ N and v ∈ N satisfy u ≥ v. (14)

Now, using (13) and (14), we can easily see that A (n) holds for every n ≥ 0.
Indeed, let us fix some n ≥ 0. Then, there exists some m ∈ N such that 2m ≥ n
(because the powers of 2 are unbounded). Consider this m. Now, (13) tells us that
A (2m) holds. Then, (14) lets us conclude that A (n) holds (since 2m ≥ n). Thus,
A (n) is proven for every n ≥ 0. This solves Exercise 1.1.4.

This strange version of induction that we just used – with two induction steps,
one being A (k) =⇒ A (2k) and the other being A (k) =⇒ A (k − 1) – is known as
Cauchy induction.

Finally, here is a tricky combinatorial exercise ([Grinbe20, Exercise 3.7.9]):

Exercise 1.1.5. Let p, q, m, n ∈ N with p ≤ m and q ≤ n. Consider an m × n-table
T of integers, with all entries distinct. In each column of T, we mark the p largest
entries with a cyan marker. In each row of T, we mark the q largest entries with
a red marker. Prove that at least pq entries of T are marked twice (i.e., with both
colors).

[Example: Let p = 2 and q = 2 and m = 3 and n = 3 and

T =

 1 2 9
4 3 8
5 6 7

 .

Then,

the cyan entries are 4, 5, 3, 6, 8, 9, while
the red entries are 2, 9, 4, 8, 6, 7.

Thus, the entries 4, 6, 8, 9 are marked twice. This is exactly the pq entries claimed
in the exercise. You can easily find situations in which there are more than pq
doubly-marked entries.]

Solution idea. (See [Grinbe20, §A.2.9] for details.) We induct on m + n. The base
case (m + n = 0) is trivial (since m + n = 0 entails m = n = 0 and thus p = q = 0).

Induction step: Let k ∈ N. Assume (as the IH) that Exercise 1.1.5 holds for
m + n = k. We must prove that Exercise 1.1.5 holds for m + n = k + 1.
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So let p, q, m, n ∈ N be such that p ≤ m and q ≤ n and m + n = k + 1. Let T be
an m × n-table of integers, with all entries distinct. Mark some of the entries in T
with a cyan marker and some with a red marker, as described in the statement of
the exercise. We must show that at least pq entries of T are marked twice (i.e., with
both colors).

We shall use the abbreviations “cyan”, “red”, “1-marked” and “2-marked” for
“marked cyan”, “marked red”, “marked with exactly one color” and “marked with
both colors”, respectively. Thus, our goal is to show that at least pq entries of T are
2-marked.

If T has no 1-marked entries, then this is true (why?). Hence, we WLOG assume
that T has some 1-marked entries. Let M be the largest 1-marked entry of T. We
WLOG assume that M is marked cyan (indeed, if it is marked red, then we rotate
our table by 90◦, which turns rows into columns and red into cyan and vice versa).
Thus, M is marked cyan but not red. Therefore, p ≥ 1 (why?), so that p − 1 ∈ N.

Let R be the row of T in which this entry M is located. Then, the q largest entries
of the row R are 2-marked in T (why?7).

Let us now remove the row R from the m × n-table T. The result is an (m − 1)×
n-table T′.

We do not copy the cyan and red markings from T to T′, but instead we mark
some of the entries in T′ as follows: In each column of T′, we mark the p− 1 largest
entries with a cyan marker. In each row of T′, we mark the q largest entries with a
red marker. It is clear that the red entries of T′ are precisely the red entries of T that
happen to lie in T′ (that is, that are not in row R). It is also easy to see that all cyan
entries of T′ are cyan in T as well (why?), although the converse is not necessarily
true8. Thus, all entries of T′ that are 2-marked in T′ must also be 2-marked in T.

However, T′ is an (m − 1)× n-table, and we have p − 1 ≤ m − 1 and q ≤ n. Since
(m − 1) + n = m + n︸ ︷︷ ︸

=k+1

−1 = k, we can thus apply the IH to this (m − 1)× n-table T′

(and to p − 1 instead of p), and conclude that at least (p − 1) q entries are 2-marked
in T′. All of these entries must be 2-marked in T as well (since all entries of T′ that
are 2-marked in T′ must also be 2-marked in T). However, the q largest entries of
the row R are also 2-marked in T (as we have seen above). Thus, we have found
a total of (p − 1) q + q entries that are 2-marked in T. That is, we have found pq
entries that are 2-marked in T. This completes the induction step.

1.2. Class problems

The following problems are to be discussed during class.
First, some comments on binomial coefficients. We recall that a binomial coeffi-

7Hint: They are all red. What would go wrong if any of them was 1-marked?
8There might be cyan entries of T that are not cyan in T′ (and not just because they are in row R).
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cient
(

n
k

)
is defined by the formula

(
n
k

)
:=

n (n − 1) (n − 2) · · · (n − k + 1)
k!

(15)

whenever n is any number (integer, real or even complex) and k is a nonnegative
integer. When n ∈ N and n ≥ k, there is an equivalent formula(

n
k

)
=

n!
k! (n − k)!

; (16)

however, if n /∈ N or n < k, then the formula (16) becomes meaningless while the
formula (15) continues to hold.

Exercise 1.2.1. Prove that every n ∈ N and q ∈ Q satisfy

n

∑
r=0

(
r + q

r

)
=

(
n + q + 1

n

)
.

Exercise 1.2.2. Let n be a positive integer. Show that

∑
(x,y)∈{1,2,...,n}2;

gcd(x,y)=1;
x+y>n

1
xy

= 1.

Exercise 1.2.3. Let x and y be two complex numbers such that x + y and xy are
integers. Prove that xn + yn is an integer for each n ∈ N.

Exercise 1.2.4. Let n ∈ N. Consider a 2n × 2n-chessboard, consisting of (2n)2 unit
squares. A rook is standing on one squares of the chessboard. Prove that it is
possible to cover all the remaining squares (i.e., all the (2n)2 − 1 squares that the
rook is not standing on) with L-trominoes in such a way that no two L-trominos
overlap.

Here, an L-tromino means a shape consisting of three unit squares, looking as
follows:

(possibly rotated) .
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Exercise 1.2.5. We shall consider matrices with real entries. A saddle entry of
such a matrix means an entry that is the largest entry in its row and the smallest
entry in its column. (Ties are allowed – i.e., “the largest” doesn’t mean “the only
largest”.)

Consider an n × m-matrix A (with n > 0 and m > 0) such that any 2 × 2-
submatrix of A has a saddle entry. Prove that A has a saddle entry, too.

(A 2 × 2-submatrix of A is a 2 × 2-matrix obtained by picking any two dis-
tinct rows of A (not necessarily consecutive) and any two distinct columns of
A (not necessarily consecutive), and intersecting these two rows with these two

columns. Thus, an n × m-matrix has
(

n
2

)
·
(

m
2

)
many 2 × 2-submatrices.)

1.3. Homework exercises

Solve 4 of the 10 exercises below and upload your solutions on gradescope by
October 10 before class.

Exercise 1.3.1. The Lucas sequence is the sequence (ℓ0, ℓ1, ℓ2, . . .) of integers which
is defined recursively by

ℓ0 = 2, ℓ1 = 1, and ℓn = ℓn−1 + ℓn−2 for all n ≥ 2.

(Thus, this sequence satisfies the same recursive equation as the Fibonacci se-
quence, differing only in the starting value ℓ0 ̸= f0. For instance, ℓ2 = 3 and
ℓ4 = 4 and ℓ5 = 7.)

(a) Prove that ℓn = fn−1 + fn+1 for each n ≥ 1.

(b) Prove that ℓ2
n − 5 f 2

n = 4 · (−1)n for each n ≥ 0.

Exercise 1.3.2. Let n be a positive integer. For each k ∈ {1, 2, . . . , n − 1}, we let

ak := (n − k)
k−2

∏
i=0

(n − i) = (n − k) (n − k + 2) (n − k + 3) · · · n.

Prove that
n−1

∑
k=1

ak = n! − 1.

[Hint: For convenience, rename ak as an,k to stress the dependence on n.]

The next two exercises are again devoted to binomial coefficients. Some of their
basic properties might be required to solve them; see [Grinbe15, §3.1] or [Grinbe19,
§1.3] for an overview of these properties (you can use them all without proof).
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Exercise 1.3.3. Let n ∈ N. Prove that

n

∑
r=1

1
r

(
n
r

)
=

n

∑
r=1

2r − 1
r

.

Exercise 1.3.4. Let n and p be positive integers such that p ≤ 2n. Prove that

n

∑
k=p

2kk
(

2n − k − 1
n − 1

)
= 2pn

(
2n − p

n

)
.

[Hint: If you induct on p, the base case will be hard. Try to induct on n −
p instead! (If p > n, then both sides are 0, so you can assume n − p to be
nonnegative.)]

You can induct on a nonnegative or positive integer. A slightly modified form of
induction works for integers in general (here you need an induction step “from n
to n + 1” as well as a second induction step “from n to n − 1”). It is not possible to
induct on a rational or real number, however. Nevertheless, induction can still be
helpful for questions about rational numbers, since a rational number is a ratio of
two integers. Try this on the following exercise:

Exercise 1.3.5. Let S be a set of nonnegative rational numbers. Assume the
following.

1. We have 0 ∈ S.

2. For any x ∈ S, we have
1

x + 1
∈ S and

x
x + 1

∈ S.

Prove that the set S contains all rational numbers in the interval [0, 1].

Next come some exercises of a combinatorial flavor.

Exercise 1.3.6. We will say that a finite sequence (x1, x2, . . . , xn) of integers is rude
if it there exist no three integers i, j, k with

1 ≤ i < j < k ≤ n and
(
xi + xj = 2xk or xj + xk = 2xi

)
.

(In other words, a finite sequence is rude if and only if no two of its entries have
their average written anywhere to the left of them both or to the right of them
both.)

Prove that for every integer n ≥ 2, there exist exactly two rude permu-
tations of the sequence (1, 2, . . . , n), namely (1, 2, . . . , n) itself and its reversal
(n, n − 1, . . . , 1).
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Exercise 1.3.7. Let n be a positive integer. In a tournament, 2n−1 contestants
participate, with each pair of (distinct) contestants playing exactly one round
against each other (“round-robin tournament”). Each round is won by exactly
one player (there are no ties).

Prove that we can find n distinct contestants c1, c2, . . . , cn such that for each
i < j, the contestant ci wins against cj.

Exercise 1.3.8. A country has n towns (with n ≥ 1), arranged along a linear
road running from left to right. Each town has a left bulldozer (standing on the
road to the left of the town and facing left) and a right bulldozer (standing on the
road to the right of the town and facing right). The sizes of the 2n bulldozers
are distinct. Every time when a left and right bulldozer confront each other,
the larger bulldozer pushes the smaller one off the road. On the other hand,
bulldozers are unprotected at their rears; so, if a bulldozer reaches the rear-end
of another one, the first one pushes the second one off the road, regardless of
their sizes.

For any two towns P and Q, we say that town P dominates town Q if the
bulldozer of P that is facing in the direction of Q can move over to Q without
getting pushed off the road.

Prove that there is exactly one town that is not dominated by any other town.
[Example: Here is one possibility for n = 5:

7A3 5B4 1C9 2D6 8E10 ,

where A, B, C, D, E are the five towns and where each number stands for the size
of the corresponding bulldozer. It is easy to check that in this configuration,
town A dominates no other town; town B dominates towns A, C and D; town C
dominates D and E; town D dominates no other towns; town E dominates town
D. Thus, the unique undominated town is B.]

[Hint: What happens if we remove the town with the largest bulldozer?]

Exercise 1.3.9. Let k and n be two nonnegative integers. Let S be a set with size
|S| ≥ k (n + 1)− 1. Assume that each n-element subset of S is colored either red
or green. Prove that there exist k pairwise disjoint n-element subsets of S that
have the same color.

Exercise 1.3.10. Let n be a positive integer. You have n boxes, and each box
contains a non-negative number of pebbles. In each move, you are allowed to
take two pebbles from an arbitrary box, throw away one of the pebbles and
put the other pebble in another box. (You can freely choose these two boxes.)
An initial configuration of pebbles is called solvable if it is possible to reach a
configuration with no empty box, in a finite (possibly zero) number of moves.

Prove that a configuration (a1, a2, . . . , an) (that is, a configuration in which box
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1 has a1 pebbles, box 2 has a2 pebbles, and so on) is solvable if and only if⌈ a1

2

⌉
+

⌈ a2

2

⌉
+ · · ·+

⌈ an

2

⌉
≥ n.

Here, ⌈x⌉ denotes the ceiling of a real number x (that is, the smallest integer that
is ≥ x).

[Example: The configuration (3, 0, 6, 0, 0) is solvable. Indeed, we can take
two pebbles from the first box and move one of them to the second, obtaining
(1, 1, 6, 0, 0); then we can take two pebbles from the third box and move one of
them to the fourth, obtaining (1, 1, 4, 1, 0); and finally take two pebbles from the
third box and move one of them to the fifth, obtaining (1, 1, 2, 1, 1).]

[Hint: For a configuration (a1, a2, . . . , an), define its size to be a1 + a2 + · · ·+ an

(that is, the total number of pebbles), and define its level to be
⌈ a1

2

⌉
+

⌈ a2

2

⌉
+

· · ·+
⌈ an

2

⌉
. Note that the size decreases by 1 with each move, whereas the level

either stays the same or decreases by 1 (why?). This suggests making moves that
don’t decrease the level unless absolutely necessary. When is it necessary?]

References

[AndCri17] Titu Andreescu, Vlad Crisan, Mathematical Induction: A powerful and
elegant method of proof, XYZ Press 2017.

[Day16] Martin V. Day, An Introduction to Proofs and the Mathematical Vernacular,
7 December 2016.
https://web.archive.org/web/20180521211821/https://www.math.
vt.edu/people/day/ProofsBook/IPaMV.pdf .

[Grinbe15] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 Jan-
uary 2019.
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift
when the project gets updated; for a “frozen” version whose num-
bering is guaranteed to match that in the citations above, see https:
//github.com/darijgr/detnotes/releases/tag/2019-01-10 .

[Grinbe18] Darij Grinberg, Zeckendorf family identities generalized,
arXiv:1103.4507v2, 10 June 2018.

[Grinbe19] Darij Grinberg, Enumerative Combinatorics (Drexel Fall 2019 Math 222
notes), 18 September 2020.
http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf

Darij Grinberg

https://bookstore.ams.org/xyz-25
https://bookstore.ams.org/xyz-25
https://web.archive.org/web/20180521211821/https://www.math.vt.edu/people/day/ProofsBook/IPaMV.pdf
https://web.archive.org/web/20180521211821/https://www.math.vt.edu/people/day/ProofsBook/IPaMV.pdf
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
https://github.com/darijgr/detnotes/releases/tag/2019-01-10
https://github.com/darijgr/detnotes/releases/tag/2019-01-10
https://arxiv.org/abs/1103.4507v2
https://arxiv.org/abs/1103.4507v2
http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf


Math 235 Fall 2023, Worksheet 1, version October 13, 2023 page 22

[Grinbe20] Darij Grinberg, Math 235: Mathematical Problem Solving, 10 August 2021.
https://www.cip.ifi.lmu.de/~grinberg/t/20f/mps.pdf

[Gunder10] David S. Gunderson, Handbook of Mathematical Induction: Theory and
Applications, CRC Press 2010.

[Hammac15] Richard Hammack, Book of Proof, 3rd edition 2018.
https://www.people.vcu.edu/~rhammack/BookOfProof/

[LeLeMe16] Eric Lehman, F. Thomson Leighton, Albert R. Meyer, Mathematics for
Computer Science, revised Tuesday 6th June 2018,
https://courses.csail.mit.edu/6.042/spring18/mcs.pdf .

[Vellem06] Daniel J. Velleman, How to Prove It, 2nd edition, Cambridge University
Press 2006.

[Vorobi02] Nicolai N. Vorobiev, Fibonacci Numbers, Translated from the Russian by
Mircea Martin, Springer 2002 (translation of the 6th Russian edition).

Darij Grinberg

https://www.cip.ifi.lmu.de/~grinberg/t/20f/mps.pdf
https://www.routledge.com/Handbook-of-Mathematical-Induction-Theory-and-Applications/Gunderson/p/book/9781138199019
https://www.routledge.com/Handbook-of-Mathematical-Induction-Theory-and-Applications/Gunderson/p/book/9781138199019
https://www.people.vcu.edu/~rhammack/BookOfProof/
https://courses.csail.mit.edu/6.042/spring18/mcs.pdf
https://doi.org/10.1017/CBO9780511808234
https://doi.org/10.1017/CBO9780511808234
https://doi.org/10.1007/978-3-0348-8107-4
https://doi.org/10.1007/978-3-0348-8107-4

	Math 235 Fall 2023, Worksheet 1: Induction
	Example problems
	The Fibonacci sequence
	More general recursions
	Induction in combinatorics

	Class problems
	Homework exercises


