Math 235: Mathematical Problem Solving, Fall 2023: Homework 5

Darij Grinberg

October 28, 2023

1 EXERCISE 1

1.1 PROBLEM

Let $a, b, c \in \mathbb{Z}$. Prove that:

(a) We have

 $gcd(b,c) \cdot gcd(c,a) \cdot gcd(a,b) = gcd(a,b,c) \cdot gcd(bc,ca,ab).$

(b) We have

 $\operatorname{lcm}(b,c) \cdot \operatorname{lcm}(c,a) \cdot \operatorname{lcm}(a,b) = \operatorname{lcm}(a,b,c) \cdot \operatorname{lcm}(bc,ca,ab).$

(c) Assume that a, b, c are nonzero. Then,

$$\frac{\gcd\left(bc, ca, ab\right)}{\gcd\left(a, b, c\right)} = \frac{\operatorname{lcm}\left(bc, ca, ab\right)}{\operatorname{lcm}\left(a, b, c\right)} \in \mathbb{Z}.$$

1.2 Solution

•••

2 EXERCISE 2

2.1 PROBLEM

Prove that gcd(a, b) = gcd(a + b, lcm(a, b)) for any two integers a and b.

2.2 Solution

•••

3 EXERCISE 3

3.1 PROBLEM

Fix a prime p. Let a and b be two integers satisfying gcd(a, b) = p. What values can $gcd(a^5, b^{13})$ take?

3.2 Solution

•••

4 EXERCISE 4

4.1 PROBLEM

Let $n, a, b, c \in \mathbb{N}$ such that n is odd. Prove that

 $\frac{(na)!\,(nb)!\,(nc)!}{a!b!c!\,((b+c)!\,(c+a)!\,(a+b)!)^{(n-1)/2}}$

is an integer.

4.2 Solution

•••

5 EXERCISE 5

5.1 Problem

Let $n \in \mathbb{N}$. Prove that

...

...

$$(n+1)$$
 lcm $\left(\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}\right) =$ lcm $(1, 2, \dots, n+1)$.

5.2 Solution

6 EXERCISE 6

6.1 Problem

Let *n* be any positive integer. Let *a*, *b*, *c* be three integers. Assume that $bc \mid a^n$ and $ca \mid b^n$ and $ab \mid c^n$. Show that $abc \mid (a + b + c)^{n+1}$.

6.2 Solution

7 EXERCISE 7

7.1 PROBLEM

Let k and n be any two positive integers. Prove that an expression of the form

$$\pm \frac{1}{k} \pm \frac{1}{k+1} \pm \frac{1}{k+2} \pm \dots \pm \frac{1}{k+n}$$

(where each \pm sign is either a + or a - sign) will never be an integer, no matter what the \pm signs are.

7.2 HINT

Show that one of the numbers k, k + 1, ..., k + n has a higher 2-valuation than all of the others.

7.3 Solution

•••

8 EXERCISE 8

8.1 Problem

For any positive integer n, we let $\tau(n)$ denote the number of all positive divisors of n, and we let $\zeta(n)$ denote the product of all positive divisors of n. (For example, $\tau(12) = 6$ and $\zeta(12) = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 6 \cdot 12 = 1728$.)

- (a) Prove that $\zeta(n) = n^{\tau(n)/2}$ for each integer $n \ge 2$.
- (b) Let n and m be two positive integers satisfying $\zeta(n) = \zeta(m)$. Prove that n = m.

8.2 Solution

•••

9 EXERCISE 9

9.1 Problem

Let n be a positive integer. Let d_1, d_2, \ldots, d_k be all positive divisors of n (including 1 and n itself, as usual). For each $i \in \{1, 2, \ldots, k\}$, let m_i be the number of all positive divisors of d_i . Prove that

$$m_1^3 + m_2^3 + \dots + m_k^3 = (m_1 + m_2 + \dots + m_k)^2$$
.

9.2 Hint

Feel free to use the classical identity

$$1^{3} + 2^{3} + \dots + a^{3} = (1 + 2 + \dots + a)^{2},$$

which holds for every $a \in \mathbb{N}$.

9.3 Solution

•••

10 EXERCISE 10

10.1 Problem

Let p be a prime. Let $n \in \mathbb{N}$. Set $n? := \prod_{k=1}^{n} k^k = 1^1 \cdot 2^2 \cdots n^n$. Prove that

$$v_p(n?) = \sum_{i \ge 1} p^i \cdot \frac{\lfloor n/p^i \rfloor \cdot (\lfloor n/p^i \rfloor + 1)}{2}.$$

10.2 SOLUTION

...

11 EXERCISE 11

11.1 PROBLEM

Let (u_1, u_2, u_3, \ldots) be a sequence of nonzero integers such that

every $a, b \in \{1, 2, 3, ...\}$ satisfy $gcd(u_a, u_b) = |u_{gcd(a,b)}|$.

(We have seen such a sequence in Exercise 2.9.6; another example is the Fibonacci sequence because of [Grinbe20, Exercise 3.7.2].)

Prove that there exists a sequence $|v_1, v_2, v_3, \ldots|$ of nonzero integers such that

each $n \in \{1, 2, 3, \ldots\}$ satisfies $u_n = \prod_{d|n} v_d$.

Here, the symbol " \prod " means a product over all positive divisors d of n. Thus, the equality d|n $u_n = \prod_{d|n} v_d$. means

$u_1 = v_1$	for $n = 1$;
$u_2 = v_1 v_2$	for $n = 2;$
$u_3 = v_1 v_3$	for $n = 3$;
$u_4 = v_1 v_2 v_4$	for $n = 4;$
$u_5 = v_1 v_5$	for $n = 5$;
$u_6 = v_1 v_2 v_3 v_6$	for $n = 6$:

and so on.

11.2 SOLUTION

. . .

REFERENCES

[Grinbe20] Darij Grinberg, Math 235: Mathematical Problem Solving, 10 August 2021. https://www.cip.ifi.lmu.de/~grinberg/t/20f/mps.pdf