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Math 530 Spring 2022, Lecture 9: multigraphs
and digraphs

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Multigraphs (cont’d)

1.1. Eulerian circuits and walks

Recall that a walk of a multigraph G is said to be Eulerian if each edge of G
appears exactly once in this walk.

Last time, we stated the following theorem:

Theorem 1.1.1 (Euler, Hierholzer). Let G be a connected multigraph. Then:

(a) The multigraph G has an Eulerian circuit if and only if each vertex of
G has even degree.

(b) The multigraph G has an Eulerian walk if and only if all but at most
two vertices of G have even degree.

We have already explained why the “=⇒” directions of both parts (a) and
(b) are true. Today, we will prove the “⇐=” directions.

We prepared for this a bit last time:

Definition 1.1.2. Let G be a multigraph. A trail of G means a walk of G
whose edges are distinct.

We showed the following:

Lemma 1.1.3. Let G be a multigraph with at least one vertex. Then, G has a
longest trail.

Our goal now is to show that under appropriate conditions, such a longest
trail will be Eulerian. This will require two lemmas.

First, one more piece of notation: We say that an edge e of a multigraph G
intersects a walk w if at least one endpoint of e is a vertex of w. Here is how
this can look like:

w w w w

e

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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(here, the edges of w are marked with a “w” underneath them) or

w w w w

e

(here, the endpoint of e that is a vertex of w happens to be the starting point of
w) or

w w w w

e

(here, both endpoints of e happen to be vertices of w). Be careful with such
pictures, though: A walk doesn’t have to be a path; it can visit a vertex any
number of times!

Lemma 1.1.4. Let G be a connected multigraph. Let w be a walk of G. As-
sume that there exists an edge of G that is not an edge of w.

Then, there exists an edge of G that is not an edge of w but intersects w.

Proof. We assumed that there exists an edge of G that is not an edge of w. Pick
such an edge, and call it f .

A “w- f -path” will mean a path from a vertex of w to an endpoint of f . Such
a path clearly exists, since G is connected. Thus, we can pick a shortest such
path. If this shortest path has length 0, then we are done (since f intersects w in
this case). If not, we consider the first edge of this path. This first edge cannot
be an edge of w, because otherwise we could remove it from the path and get
an even shorter w- f -path. But it clearly intersects w. So we have found an edge
of G that is not an edge of w but intersects w. This proves the lemma.

Lemma 1.1.5. Let G be a multigraph such that each vertex of G has even
degree. Let w be a longest trail of G. Then, w is a closed walk.

Proof. Assume the contrary. Let u be the starting point and v the ending point
of w. Since we assumed that w is not a closed walk, we thus have u ̸= v.

Consider the edges of w that contain v. Such edges are of two kinds: those
by which w enters v (this means that v comes immediately after this edge in
w), and those by which w leaves v (this means that v comes immediately before
this edge in w). 1 Except for the very last edge of w, each edge of the former
kind is immediately followed by an edge of the latter kind; conversely, each
edge of the latter kind is immediately preceded by an edge of the former kind

1Loops whose only endpoint is v count as both.
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(since w starts at the vertex u, which is distinct from v). Hence, the walk w has
exactly one more edge entering v than it has edges leaving v. Thus, the number
of edges of w that contain v (with loops counting twice) is odd. However, the
total number of edges of G that contain v (with loops counting twice) is even
(because it is the degree of v, but we assumed that each vertex of G has even
degree). So these two numbers are distinct. Thus, there is at least one edge of
G that contains v but is not an edge of w.

Fix such an edge and call it f . Now, append f to the trail w at the end. The
result will be a trail (since f is not an edge of w) that is longer than w. But this
contradicts the fact that w is a longest trail. Thus, the lemma is proved.

We can now finish the proof of the Euler–Hierholzer theorem:

Proof of Theorem 1.1.1. (a) =⇒: We did this back in Lecture 8.

⇐=: Assume that each vertex of G has even degree.
By Lemma 1.1.3, we know that G has a longest trail. Fix such a longest trail,

and call it w. Then, Lemma 1.1.5 shows that w is a closed walk.
We claim that w is Eulerian. Indeed, assume the contrary. Then, there exists

an edge of G that is not an edge of w. Hence, Lemma 1.1.4 shows that there
exists an edge of G that is not an edge of w but intersects w. Fix such an edge,
and call it f .

Since f intersects w, there exists an endpoint v of f that is a vertex of w.
Consider this v. Since w is a closed trail, we can WLOG assume that w starts
and ends at v (since we can otherwise achieve this by rotating2 w). Then, we
can append the edge f to the trail w. This results in a new trail (since f is not
an edge of w) that is longer than w. And this contradicts the fact that w is a
longest trail of G.

This contradiction proves that w is Eulerian. Hence, w is an Eulerian circuit
(since w is a closed walk). Thus, the “⇐=” direction of Theorem 1.1.1 (a) is
proven.

(b) =⇒: Already proved in Lecture 8.

⇐=: Assume that all but at most two vertices of G have even degree. We
must prove that G has a Eulerian walk.

If each vertex of G has even degree, then this follows from Theorem 1.1.1 (a),
since every Eulerian circuit is an Eulerian walk. Thus, we WLOG assume that
not each vertex of G has even degree. In other words, the number of vertices of
G having odd degree is positive.

2Rotating a closed walk (w0, e1, w1, e2, w2, . . . , ek, wk) means moving its first vertex and its first
edge to the end, i.e., replacing the walk by (w1, e2, w2, e3, w3, . . . , ek, wk, e1, w1). This always
results in a closed walk again. For example, if (1, a, 2, b, 3, c, 1) is a closed walk, then we can
rotate it to obtain (2, b, 3, c, 1, a, 2); then, rotating it one more time, we obtain (3, c, 1, a, 2, b, 3).

Clearly, by rotating a closed walk several times, we can make it start at any of its vertices.
Moreover, if we rotate a closed trail, then we obtain a closed trail.
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The handshake lemma for multigraphs (which we proved in Lecture 7) shows
that the number of vertices of G having odd degree is even. Furthermore, this
number is at most 2 (since all but at most two vertices of G have even degree).
So this number is even, positive and at most 2. Thus, this number is 2. In other
words, the multigraph G has exactly two vertices having odd degree. Let u and
v be these two vertices.

Add a new edge e that has endpoints u and v to the multigraph G (do this
even if there already is such an edge!3). Let G′ denote the resulting multigraph.
Then, in G′, each vertex has even degree (since the newly added edge e has
increased the degrees of u and v by 1, thus turning them from odd to even).
Moreover, G′ is still connected (since G was connected, and the newly added
edge e can hardly take that away). Thus, we can apply Theorem 1.1.1 (a) to G′

instead of G. As a result, we conclude that G′ has an Eulerian circuit. Cutting
the newly added edge e out of this Eulerian circuit4, we obtain a Eulerian walk
of G. Hence, G has a Eulerian walk. Thus, the “⇐=” direction of Theorem 1.1.1
(b) is proven.

Note: If you look closely at the above proof, you will see hidden in it an
algorithm for finding Eulerian circuits and walks.5

2. Digraphs and multidigraphs

2.1. Definitions

We have so far seen two concepts of graphs: simple graphs and multigraphs.
For all their differences, these two concepts have one thing in common: The

two endpoints of an edge are equal in rights. Thus, when defining walks, each
edge serves as a “two-way road”. Hence, such graphs are good at modelling
symmetric relations between things.

We shall now introduce two analogous versions of “graphs” in which the
edges have directions. These versions are known as directed graphs (short:

3This is a time to be grateful for the notion of a multigraph. We could not do this with simple
graphs!

4More precisely: We rotate this circuit until e becomes its last edge, and then we remove this
last edge to obtain a walk.

5You might be skeptical about this. After all, in order to apply Lemma 1.1.5, we need a longest
trail, so you might wonder how we can find a longest trail to begin with.

Fortunately, we don’t need to take Lemma 1.1.5 this literally. Our above proof of Lemma
1.1.5 can be used even if w is not a longest trail. In this case, however, instead of showing
that w is a closed walk, this proof may show us a way how to make w longer. In other
words, by following this proof, we may discover a trail longer than w. In this case, we can
replace w by this longer trail, and then apply Lemma 1.1.5 again. We can repeat this over
and over again, until we do end up with a closed walk. (This will eventually happen, since
we know that a trail cannot be longer than the total number of edges of G.)
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digraphs). In such directed graphs, each edge will have a specified starting
point (its “source”) and a specified ending point (its “target”). Correspondingly,
we will draw these edges as arrows, and we will only allow using them in one
direction (viz., from source to target) when we walk down the graph. Here are
the definitions in detail:

Definition 2.1.1. A simple digraph is a pair (V, A), where V is a finite set,
and where A is a subset of V × V.

Definition 2.1.2. Let D = (V, A) be a simple digraph.

(a) The set V is called the vertex set of D; it is denoted by V (D).

Its elements are called the vertices (or nodes) of D.

(b) The set A is called the arc set of D; it is denoted by A (D).

Its elements are called the arcs (or directed edges) of D.

When u and v are two elements of V, we will occasionally use uv as
a shorthand for the pair (u, v). Note that this means an ordered pair
now!

(c) If (u, v) is an arc of D (or, more generally, a pair in V × V), then u is
called the source of this arc, and v is called the target of this arc.

(d) We draw D as follows: We represent each vertex of D by a point, and
each arc uv by an arrow that goes from the point representing u to the
point representing v.

(e) An arc (u, v) is called a loop (or self-loop) if u = v. (In other words, an
arc is a loop if and only if its source is its target.)

Example 2.1.3. For each n ∈ N, we define the divisibility digraph on
{1, 2, . . . , n} to be the simple digraph (V, A), where V = {1, 2, . . . , n} and

A = {(i, j) ∈ V × V | i divides j} .
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For example, for n = 6, this digraph looks as follows:

1

23

4

5 6

. (1)

Note that simple digraphs (unlike simple graphs) are allowed to have loops
(i.e., arcs of the form (v, v)).

Definition 2.1.4. A multidigraph is a triple (V, A, ψ), where V and A are
two finite sets, and ψ : A → V × V is a map.

Definition 2.1.5. Let D = (V, A, ψ) be a multidigraph.

(a) The set V is called the vertex set of D; it is denoted by V (D).

Its elements are called the vertices (or nodes) of D.

(b) The set A is called the arc set of D; it is denoted by A (D).

Its elements are called the arcs (or directed edges) of D.

(c) If a is an arc of D, and if ψ (a) = (u, v), then the vertex u is called the
source of a, and the vertex v is called the target of a.

(d) We draw D as follows: We represent each vertex of D by a point, and
each arc a by an arrow that goes from the point representing u to the
point representing v, where (u, v) = ψ (a).
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Example 2.1.6. Here is a multidigraph:

1

2 3

45

D =

a

c

b

e

h

d

f

g

. (2)

Formally speaking, this multidigraph is the triple (V, A, ψ), where V =
{1, 2, 3, 4, 5} and A = {a, b, c, d, e, f , g, h} and ψ (a) = (1, 2) and ψ (b) = (2, 5)
and so on.

Thus, simple digraphs and multidigraphs are analogues of simple graphs
and multigraphs, respectively, in which the edges have been replaced by arcs
(“edges endowed with a direction”). The analogy is perfect but for the fact
that simple graphs forbid loops but simple digraphs allow loops (but different
authors have different opinions on this).

Convention 2.1.7. The word “digraph” means either “simple digraph” or
“multidigraph”, depending on the context.

The word “digraph” was originally a shorthand for “directed graph”, but
by now it is a technical term that is perfectly understood by everyone in the
subject. (It is also understood by linguists, but in a rather different way.)

2.2. Outdegrees and indegrees

What can we do with digraphs? Many of the things we have done with graphs
can be modified to work with digraphs (although not all their properties will
still hold). For example, the notion of the degree of a vertex in a graph has the
following two counterpart notions for digraphs:

Definition 2.2.1. Let D be a digraph with vertex set V. (This can be either a
simple digraph or a multidigraph.) Let v ∈ V be any vertex. Then:

(a) The outdegree of v denotes the number of arcs of D whose source is v.
This outdegree is denoted deg+ v.

(b) The indegree of v denotes the number of arcs of D whose target is v.
This indegree is denoted deg− v.
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Example 2.2.2. In the divisibility digraph on {1, 2, 3, 4, 5, 6} (see (1) for a
drawing), we have

deg+ 1 = 6, deg− 1 = 1, deg+ 2 = 3, deg− 2 = 2,

deg+ 3 = 2, deg− 3 = 2, deg+ 4 = 1, deg− 4 = 3,

deg+ 5 = 1, deg− 5 = 2, deg+ 6 = 1, deg− 6 = 4.

Here is an analogue of the fact that in a graph, the sum of all degrees is twice
the number of edges:

Proposition 2.2.3 (diEuler). Let D be a digraph with vertex set V and arc set
A. Then,

∑
v∈V

deg+ v = ∑
v∈V

deg− v = |A| .

Proof. By the definition of an outdegree, we have

deg+ v = (the number of arcs of D whose source is v)

for each v ∈ V. Thus,

∑
v∈V

deg+ v = ∑
v∈V

(the number of arcs of D whose source is v)

= (the number of all arcs of D)(
since each arc of D has exactly one source,

and thus is counted exactly once in the sum

)
= |A| .

Similarly, ∑
v∈V

deg− v = |A|.

(“diEuler” is not a real mathematician; I just gave that moniker to the above
proposition to stress its analogy with Euler’s 1736 result.)

2.3. Subdigraphs

Just as we defined subgraphs of a multigraph, we can define subdigraphs (or
“submultidigraphs”, to be very precise) of a digraph:

Definition 2.3.1. Let D = (V, A, ψ) be a multidigraph.

(a) A submultidigraph (or, for short, subdigraph) of D means a multi-
digraph of the form E = (W, B, χ), where W ⊆ V and B ⊆ A and



Lecture 9, version May 27, 2023 page 9

χ = ψ |B. In other words, a submultidigraph of D means a multidi-
graph E whose vertices are vertices of D and whose arcs are arcs of D
and whose arcs have the same sources and targets in E as they have in
D.

(b) Let S be a subset of V. The induced subdigraph of D on the set S
denotes the subdigraph (

S, A′, ψ |A′
)

of D, where

A′ := {a ∈ A | both the source and the target of a belong to S} .

In other words, it denotes the subdigraph of D whose vertices are the el-
ements of S, and whose arcs are precisely those arcs of D whose sources
and targets both belong to S. We denote this induced subdigraph by
D [S].

(c) An induced subdigraph of D means a subdigraph of D that is the
induced subdigraph of D on S for some S ⊆ V.

2.4. Conversions

2.4.1. Multidigraphs to multigraphs

Any multidigraph D can be turned into an (undirected) graph G by “removing
the arrowheads” (aka “forgetting the directions of the arcs”):

Definition 2.4.1. Let D be a multidigraph. Then, Dund will denote the multi-
graph obtained from D by replacing each arc with an edge whose endpoints
are the source and the target of this arc. Formally, this is defined as follows:
If D = (V, A, ψ), then Dund = (V, A, φ), where the map φ : A → P1,2 (V)
sends each arc a ∈ A to the set of the entries of ψ (a) (that is, to the set
consisting of the source of a and the target of a).

For example, if D is the multidigraph from (2), then Dund is the following
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multigraph:

1

2 3

45

Dund =

a

c

b

e

h

d

f

g

.

Conversely, any multigraph can be turned into a multidigraph by “dupli-
cating” each edge and making it go in both directions. More about this next
time.
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