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Math 530 Spring 2022, Lecture 6: Hamiltonian
paths

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Simple graphs (cont’d)

1.1. Dominating sets (cont’d)

Last time, we have defined the notion of dominating sets and almost proved
the following theorem:

Theorem 1.1.1 (Brouwer’s dominating set theorem). Let G be a simple graph.
Then, the number of dominating sets of G is odd.

For convenience, let me repeat the almost-proof:

Proof of Brouwer’s dominating set theorem, attempt 1. Write G as (V, E). Recall that
P (V) denotes the set of all subsets of V.

Construct a new graph H with the vertex set P (V) as follows: Two subsets
A and B of V are adjacent as vertices of H if and only if (A, B) is a detached
pair1. (Note that if the original graph G has n vertices, then this graph H has
2n vertices. It is huge!)

I claim that the vertices of H that have odd degree are precisely the subsets
of V that are dominating. In other words:

Claim 1: Let A be a subset of V. Then, the vertex A of H has odd
degree if and only if A is a dominating set of G.

[Proof of Claim 1: We let N (A) denote the set of all vertices of G that have a
neighbor in A. (This may or may not be disjoint from A.)

The neighbors of A (as a vertex in H) are precisely the subsets B of V such
that (A, B) is a detached pair (by the definition of H). In other words, they are
the subsets B of V that are disjoint from A and also have no neighbors in A (by
the definition of a “detached pair”). In other words, they are the subsets B of
V that are disjoint from A and also disjoint from N (A). In other words, they
are the subsets of the set V \ (A ∪ N (A)). Hence, the number of such subsets
B is 2|V\(A∪N(A))|.

The degree of A (as a vertex of H) is the number of neighbors of A in H.
Thus, this degree is 2|V\(A∪N(A))| (because we have just shown that the num-
ber of neighbors of A is 2|V\(A∪N(A))|). But 2k is odd if and only if k = 0.

1Recall that a detached pair means a pair (A, B) of two disjoint subsets A and B of V such
that there exists no edge ab ∈ E with a ∈ A and b ∈ B.

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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Thus, we conclude that the degree of A (as a vertex of H) is odd if and only if
|V \ (A ∪ N (A))| = 0. The condition |V \ (A ∪ N (A))| = 0 can be rewritten as
follows:

(|V \ (A ∪ N (A))| = 0)
⇐⇒ (V \ (A ∪ N (A)) = ∅)

⇐⇒ (V ⊆ A ∪ N (A))

⇐⇒ (V \ A ⊆ N (A))

⇐⇒ (each vertex v ∈ V \ A belongs to N (A))

⇐⇒ (each vertex v ∈ V \ A has a neighbor in A)

⇐⇒ (A is dominating) (by the definition of “dominating”) .

Thus, what we have just shown is that the degree of A (as a vertex of H) is odd
if and only if A is dominating. This proves Claim 1.]

Claim 1 shows that the vertices of H that have odd degree are precisely the
dominating sets of G. But the handshake lemma (the first corollary in Lecture
2) tells us that any simple graph has an even number of vertices of odd degree.
Applying this to H, we conclude that there is an even number of dominating
sets of G.

Huh? We want to show that there is an odd number of dominating sets of G,
not an even number! Why did we just get the opposite result?

So what was the mistake in our reasoning?
The mistake is that our definition of H requires the vertex ∅ of H to be

adjacent to itself (since (∅,∅) is a detached pair); but a vertex of a simple
graph cannot be adjacent to itself. So we need to tweak the definition of H
somewhat:

Correction of the above proof. Define the graph H as above, but do not try to have
∅ adjacent to itself. (This is the only vertex that creates any trouble, because a
detached pair (A, B) cannot satisfy A = B unless both A and B are ∅.)

We WLOG assume that V ̸= ∅ (otherwise, the claim is obvious). Thus, the
empty set ∅ is not dominating.

Our Claim 1 needs to be modified as follows:

Claim 1’: Let A be a subset of V. Then, the vertex A of H has odd
degree if and only if A is empty or a dominating set of G.

This can be proved in the same way as we “proved” Claim 1 above; we just
need to treat the A = ∅ case separately now (but this case is easy: ∅ is adjacent
to all other vertices of H, and thus has degree 2|V| − 1, which is odd).

So we conclude (using the handshake lemma) that the number of empty or
dominating sets is even. Subtracting 1 for the empty set, we conclude that the
number of dominating sets is odd (since the empty set is not dominating). This
proves Brouwer’s theorem.
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There are other ways to prove Brouwer’s theorem as well. A particularly
nice one was found by Irene Heinrich and Peter Tittmann in 2017; they gave
an “explicit” formula for the number of dominating sets that shows that this
number is odd ([HeiTit17, Theorem 8], restated using the language of detached
pairs):

Theorem 1.1.2 (Heinrich–Tittmann formula). Let G = (V, E) be a simple
graph with n vertices. Assume that n > 0.

Let α be the number of all detached pairs (A, B) such that both numbers
|A| and |B| are even and positive.

Let β be the number of all detached pairs (A, B) such that both numbers
|A| and |B| are odd.

Then:

(a) The numbers α and β are even.

(b) The number of dominating sets of G is 2n − 1 + α − β.

Part (a) of this theorem is obvious (recall that if (A, B) is a detached pair, then
so is (B, A)). Part (b) is the interesting part. In [17s, §3.3–§3.4], I give a long but
elementary proof.

More recently ([HeiTit18]), Heinrich and Tittmann have refined their formula
to allow counting dominating sets of a given size. I have posed their main
result as exercise 5 on homework set #2.

1.2. Hamiltonian paths and cycles

1.2.1. Basics

Now to something different. Here is a quick question: Given a simple graph G,
when is there a closed walk that contains each vertex of G ?

The answer is easy: When G is connected. Indeed, if a simple graph G is
connected, then we can label its vertices by v1, v2, . . . , vn arbitrarily, and we
then get a closed walk by composing a walk from v1 to v2 with a walk from
v2 to v3 with a walk from v3 to v4 and so on, ending with a walk from vn to
v1. This closed walk will certainly contain each vertex. Conversely, such a walk
cannot exist if G is not connected.

The question becomes a lot more interesting if we replace “closed walk” by
“path” or “cycle”. The resulting objects have a name:

Definition 1.2.1. Let G = (V, E) be a simple graph.

(a) A Hamiltonian path in G means a walk of G that contains each vertex
of G exactly once. Obviously, it is a path.
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(b) A Hamiltonian cycle in G means a cycle (v0, v1, . . . , vk) of G such that
each vertex of G appears exactly once among v0, v1, . . . , vk−1.

Some graphs have Hamiltonian paths; some don’t. Having a Hamiltonian
cycle is even stronger than having a Hamiltonian path, because if (v0, v1, . . . , vk)
is a Hamiltonian cycle of G, then (v0, v1, . . . , vk−1) is a Hamiltonian path of G.

Convention 1.2.2. In the following, we will abbreviate:

• “Hamiltonian path” as “hamp”;

• “Hamiltonian cycle” as “hamc”.
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Example 1.2.3. Which of the following eight graphs have hamps? Which
have hamcs?

1

23

4

5 6

A =
1

2

3

4

5

6

B =

1

2 3

0

C =

21

3 4

D =

1

23

4

5 6

0E =

1 2 3 4

5 6 7 8

F =

1

2
3

4
5

1′

2′

3′

4′

5′

G = 1

2
3

4
5

1′

2′

3′

4′

5′

H =

Answers:

• The graph A has a hamc (1, 2, 3, 4, 5, 6, 1), and thus a hamp
(1, 2, 3, 4, 5, 6). (Recall that a graph that has a hamc always has a hamp,
since we can simply remove the last vertex from a hamc to obtain a
hamp.)
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• The graph B has a hamp (2, 3, 1, 4, 5, 6), but no hamc. The easiest way
to see that B has no hamc is the following: The edge 14 is a cut-edge
(i.e., removing it renders the graph disconnected), thus a bridge (i.e., an
edge that appears in no cycle); therefore, any cycle must stay entirely
“on one side” of this edge.

• The graph C has a hamp (0, 1, 2, 3), but no hamc. The argument for the
non-existence of a hamc is the same as for B: The edge 01 is a bridge.

• The graph D has neither a hamp nor a hamc, because it is not con-
nected. Only a connected graph can have a hamp.

• The graph E has a hamp (0, 3, 2, 1, 6, 5, 4), but no hamc (checking this
requires some work, though).

• The graph F has a hamc (1, 2, 3, 4, 8, 7, 6, 5, 1), thus also a hamp.

• The graph G has a hamc (1, 2, 3, 4, 5, 5′, 4′, 3′, 2′, 1′, 1), thus also a hamp.

• The graph H (which, by the way, is isomorphic to the Petersen graph)
has a hamp (1, 3, 5, 2, 4, 4′, 3′, 2′, 1′, 5′), but no hamc (but this is not ob-
vious! see the Wikipedia article for an argument).

In general, finding a hamp or a hamc, or proving that none exists, is a hard
problem. It can always be solved by brute force (i.e., by trying all lists of distinct
vertices and checking if there is a hamp among them, and likewise for hamcs),
but this quickly becomes forbiddingly laborious as the size of the graph in-
creases. Some faster algorithms exist (in particular, there is one of running time
O
(
n22n), where n is the number of vertices), but no polynomial-time algorithm

is known. The problem (both in its hamp version and in its hamc version)
is known to be NP-hard (in the language of complexity theory). In practice,
hamps and hamcs can often be found with some wit and perseverance; proofs
of their non-existence can often be obtained with some logic and case analysis
(see the above example for some sample arguments). See the Wikipedia page
for “Hamiltonian path problem” for more information.

The problem of finding hamps is related to the so-called “traveling salesman
problem” (TSP), which asks for a hamp with “minimum weight” in a weighted
graph (each edge has a number assigned to it, which is called its “weight”, and
the weight of a hamp is the sum of the weights of the edges it uses). There is a
lot of computer-science literature about this problem.

1.2.2. Sufficient criteria: Ore and Dirac

We shall now show some necessary criteria and some sufficient criteria (but no
necessary-and-sufficient criteria) for the existence of hamps and hamcs. Here

https://en.wikipedia.org/wiki/Petersen_graph#Hamiltonian_paths_and_cycles
https://en.wikipedia.org/wiki/Hamiltonian path problem
https://en.wikipedia.org/wiki/Hamiltonian path problem
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is the most famous sufficient criterion:

Theorem 1.2.4 (Ore). Let G = (V, E) be a simple graph with n vertices, where
n ≥ 3.

Assume that deg x + deg y ≥ n for any two non-adjacent distinct vertices
x and y.

Then, G has a hamc.

There are various proofs of this theorem scattered around; see [Harju14, The-
orem 3.6] or [Guicha16, Theorem 5.3.2]. We shall give another proof (following
the “Algorithm” section on the Wikipedia page for “Ore’s theorem”):

Proof of Theorem 1.2.4. A listing (of V) shall mean a list of elements of V that
contains each element exactly once. It must clearly be an n-tuple.

The hamness of a listing (v1, v2, . . . , vn) will mean the number of all i ∈
{1, 2, . . . , n} such that vivi+1 ∈ E. Here, we set vn+1 = v1. (Visually, it is best
to represent a listing (v1, v2, . . . , vn) by drawing the vertices v1, v2, . . . , vn on a
circle in this order. Its hamness then counts how often two successive vertices
on the circle are adjacent in the graph G.) Note that the hamness of a listing
(v1, v2, . . . , vn) does not change if we cyclically rotate the listing (i.e., transform
it into (v2, v3, . . . , vn, v1)).

Clearly, if we can find a listing (v1, v2, . . . , vn) of hamness ≥ n, then all of
v1v2, v2v3, . . . , vnv1 are edges of G, and thus (v1, v2, . . . , vn, v1) is a hamc of G.
Thus, we need to find a listing of hamness ≥ n.

To do so, I will show that if you have a listing of hamness < n, then you can
slightly modify it to get a listing of larger hamness. In other words, I will show
the following:

Claim 1: Let (v1, v2, . . . , vn) be a listing of hamness k < n. Then,
there exists a listing of hamness larger than k.

[Proof of Claim 1: Since the listing (v1, v2, . . . , vn) has hamness k < n, there
exists some i ∈ {1, 2, . . . , n} such that vivi+1 /∈ E. Pick such an i. Thus, the
vertices vi and vi+1 of G are non-adjacent (and distinct). The “deg x + deg y ≥
n” assumption of the theorem thus yields deg (vi) + deg (vi+1) ≥ n.

However,

deg (vi) = |{w ∈ V | viw ∈ E}|
=

∣∣{j ∈ {1, 2, . . . , n} | vivj ∈ E
}∣∣

=
∣∣{j ∈ {1, 2, . . . , n} \ {i} | vivj ∈ E

}∣∣

https://en.wikipedia.org/wiki/Ore's theorem
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(because j = i could not satisfy vivj ∈ E anyway) and

deg (vi+1) = |{w ∈ V | vi+1w ∈ E}|
=

∣∣{j ∈ {1, 2, . . . , n} | vi+1vj+1 ∈ E
}∣∣(

since (v2, v3, . . . , vn+1) is a listing of V
(because vn+1 = v1)

)
=

∣∣{j ∈ {1, 2, . . . , n} \ {i} | vi+1vj+1 ∈ E
}∣∣

(because j = i could not satisfy vi+1vj+1 ∈ E anyway). In light of these two
equalities, we can rewrite the inequality deg (vi) + deg (vi+1) ≥ n as∣∣{j ∈ {1, 2, . . . , n} \ {i} | vivj ∈ E

}∣∣
+

∣∣{j ∈ {1, 2, . . . , n} \ {i} | vi+1vj+1 ∈ E
}∣∣ ≥ n.

Thus, the two subsets
{

j ∈ {1, 2, . . . , n} \ {i} | vivj ∈ E
}

and{
j ∈ {1, 2, . . . , n} \ {i} | vi+1vj+1 ∈ E

}
of the (n − 1)-element set {1, 2, . . . , n} \

{i} have total size ≥ n (that is, the sum of their sizes is ≥ n). Hence, these two
subsets must overlap (i.e., have an element in common). In other words, there
exists a j ∈ {1, 2, . . . , n} \ {i} that satisfies both vivj ∈ E and vi+1vj+1 ∈ E. Pick
such a j.

Now, consider a new listing obtained from the old listing (v1, v2, . . . , vn) as
follows:

• First, cyclically rotate the old listing so that it begins with vi+1. Thus, you
get the listing (vi+1, vi+2, . . . , vn, v1, v2, . . . , vi).

• Then, reverse the part of the listing starting at vi+1 and ending at vj. Thus,
you get the new listing

vj, vj−1, . . . , vi+1︸ ︷︷ ︸
This is the reversed part;

it may or may not “wrap around”
(i.e., contain ...,v1,vn,... somewhere).

, vj+1, vj+2, . . . , vi︸ ︷︷ ︸
This is the part that
was not reversed.


.

This is the new listing we want.

I claim that this new listing has hamness larger than k. Indeed, rotating the
old listing clearly did not change its hamness. But reversing the part from vi+1
to vj clearly did: After the reversal, the edges vivi+1 and vjvj+1 no longer count
towards the hamness (if they were edges to begin with), but the edges vivj and
vi+1vj+1 started counting towards the hamness. This is a good bargain, because
it means that the hamness gained +2 from the newly-counted edges vivj and
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vi+1vj+1 (which, as we know, both exist), while only losing 0 or 1 (since the
edge vivi+1 did not exist, whereas the edge vjvj+1 may or may not have been
lost). Thus, the hamness of the new listing is larger than the hamness of the
old listing either by 1 or 2. In other words, it is larger than m by at least 1 or 2.
This proves Claim 1.]

Now, we can start with any listing of V and keep modifying it using Claim
1, increasing its hamness each time, until its hamness becomes ≥ n. But once
its hamness is ≥ n, we have found a hamc (as explained above). Theorem 1.2.4
is thus proven.

Corollary 1.2.5 (Dirac). Let G = (V, E) be a simple graph with n vertices,
where n ≥ 3.

Assume that deg x ≥ n
2

for each vertex x ∈ V.
Then, G has a hamc.

Proof. Follows from Ore’s theorem, since any two vertices x and y of G satisfy
deg x︸ ︷︷ ︸
≥

n
2

+deg y︸ ︷︷ ︸
≥

n
2

≥ n
2
+

n
2
= n.

1.2.3. A necessary criterion

So much for sufficient criteria. What about necessary criteria?

Proposition 1.2.6. Let G = (V, E) be a simple graph.
For each subset S of V, we let G \ S be the induced subgraph of G on the

set V \ S. (In other words, this is the graph obtained from G by removing all
vertices in S and removing all edges that have at least one endpoint in S.)

(For example, if

1

23

4

5 6

0G =

and S = {3, 6}, then

1

2

4

5

0G \ S =

.)
Also, we let b0 (H) denote the number of connected components of a sim-

ple graph H.
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(a) If G has a hamc, then every nonempty S ⊆ V satisfies b0 (G \ S) ≤ |S|.

(b) If G has a hamp, then every S ⊆ V satisfies b0 (G \ S) ≤ |S|+ 1.

For example, part (a) of this proposition shows that the graph E from Exam-
ple 1.2.3 has no hamc, because if we take S to be {3, 6}, then b0 (G \ S) = 3
whereas |S| = 2. Thus, the proposition can be used to rule out the existence of
hamps and hamcs in some cases.

Proof of Proposition 1.2.6. (a) Let S ⊆ V be a nonempty set. If we cut |S| many
vertices out of a cycle, then the cycle splits into at most |S| paths:

††

†

†

remove the vertices
marked with daggers→

Of course, our graph G itself may not be a cycle, but if it has a hamc, then the
removal of the vertices in S will split the hamc into at most |S| paths (according
to the preceding sentence), and thus the graph G \ S will have ≤ |S| many
components (just using the surviving edges of the hamc alone). Taking into
account all the other edges of G can only decrease the number of components.

(b) This is analogous to part (a).

This proposition often (but not always) gives a quick way of convincing your-
self that a graph has no hamc or hamp. Alas, its converse is false. Case in point:
The Petersen graph has no hamc, but it does satisfy the “every nonempty S ⊆ V
satisfies b0 (G \ S) ≤ |S|” condition of Proposition 1.2.6 (a).

1.2.4. Hypercubes

Now, let us move on to a concrete example of a graph that has a hamc.

Definition 1.2.7. Let n ∈ N. The n-hypercube Qn (more precisely, the n-th
hypercube graph) is the simple graph with vertex set

{0, 1}n = {(a1, a2, . . . , an) | each ai belongs to {0, 1}}

and edge set defined as follows: A vertex (a1, a2, . . . , an) ∈ {0, 1}n is adjacent
to a vertex (b1, b2, . . . , bn) ∈ {0, 1}n if and only if there exists exactly one



Lecture 6, version April 15, 2025 page 11

i ∈ {1, 2, . . . , n} such that ai ̸= bi. (For example, in Q4, the vertex (0, 1, 1, 0) is
adjacent to (0, 1, 0, 0).)

The elements of {0, 1}n are often called bitstrings (or binary words), and
their entries are called their bits (or letters). So two bitstrings are adjacent in
Qn if and only if they differ in exactly one bit.

We often write a bitstring (a1, a2, . . . , an) as a1a2 · · · an. (For example, we
write (0, 1, 1, 0) as 0110.)
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Example 1.2.8. Here is how the n-hypercubes Qn look like for n = 1, 2, 3:

0

1

Q1 =

00

01

10

11

Q2 =

000

001

010

011

100

101

110

111

Q3 =

This should explain the name “hypercube”. The 0-hypercube Q0 is a graph
with just one vertex (namely, the empty bitstring ()).

Theorem 1.2.9 (Gray). Let n ≥ 2. Then, the graph Qn has a hamc.

Such hamcs are known as Gray codes. They are circular lists of bitstrings of
length n such that two consecutive bitstrings in the list always differ in exactly
one bit. See the Wikipedia article on “Gray codes” for applications.

Proof of Theorem 1.2.9. We will show something stronger:

Claim 1: For each n ≥ 1, the n-hypercube Qn has a hamp from
00 · · · 0 to 100 · · · 0.

(Keep in mind that 00 · · · 0 and 100 · · · 0 are bitstrings, not numbers:

00 · · · 0 =

0, 0, . . . , 0︸ ︷︷ ︸
n zeroes

 ; 100 · · · 0 =

1, 0, 0, . . . , 0︸ ︷︷ ︸
n−1 zeroes

 .

)

https://en.wikipedia.org/wiki/Gray code
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[Proof of Claim 1: We induct on n.
Induction base: A look at Q1 reveals a hamp from 0 to 1.
Induction step: Fix N ≥ 2. We assume that Claim 1 holds for n = N − 1. In

other words, QN−1 has a hamp from 00 · · · 0︸ ︷︷ ︸
N−1 zeroes

to 1 00 · · · 0︸ ︷︷ ︸
N−2 zeroes

. Let p be such a

hamp.
By attaching a 0 to the front of each bitstring (= vertex) in p, we obtain a path

q from 00 · · · 0︸ ︷︷ ︸
N zeroes

to 01 00 · · · 0︸ ︷︷ ︸
N−2 zeroes

in QN.

By attaching a 1 to the front of each bitstring (= vertex) in p, we obtain a path
r from 1 00 · · · 0︸ ︷︷ ︸

N−1 zeroes

to 11 00 · · · 0︸ ︷︷ ︸
N−2 zeroes

in QN.

Now, we assemble a hamp from 00 · · · 0︸ ︷︷ ︸
N zeroes

to 1 00 · · · 0︸ ︷︷ ︸
N−1 zeroes

in QN as follows:

• Start at 00 · · · 0︸ ︷︷ ︸
N zeroes

, and follow the path q to its end (i.e., to 01 00 · · · 0︸ ︷︷ ︸
N−2 zeroes

).

• Then, move to the adjacent vertex 11 00 · · · 0︸ ︷︷ ︸
N−2 zeroes

.

• Then, follow the path r backwards, ending up at 1 00 · · · 0︸ ︷︷ ︸
N−1 zeroes

.

This shows that Claim 1 holds for n = N, too.]
Claim 1 tells us that the n-hypercube Qn has a hamp from 00 · · · 0 to 100 · · · 0.

Since its starting point 00 · · · 0 and its ending point 100 · · · 0 are adjacent, we
can turn this hamp into a hamc by appending the starting point 00 · · · 0 again
at the end. This proves Theorem 1.2.9.

1.2.5. Cartesian products

Theorem 1.2.9 can in fact be generalized. To state the generalization, we define
the Cartesian product of two graphs:

Definition 1.2.10. Let G = (V, E) and H = (W, F) be two simple graphs.
The Cartesian product G × H of these two graphs is defined to be the graph
(V × W, E′ ∪ F′), where

E′ := {(v1, w) (v2, w) | v1v2 ∈ E and w ∈ W} and

F′ := {(v, w1) (v, w2) | w1w2 ∈ F and v ∈ V} .

In other words, it is the graph whose vertices are pairs (v, w) ∈ V × W
consisting of a vertex of G and a vertex of H, and whose edges are of the
forms

(v1, w) (v2, w) where v1v2 ∈ E and w ∈ W
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and
(v, w1) (v, w2) where w1w2 ∈ F and v ∈ V.

For example, the Cartesian product G × P2 of a simple graph G with the
2-path graph P2 can be constructed by overlaying two copies of G and addi-
tionally joining each vertex of the first copy to the corresponding vertex of the
second copy by an edge. (The vertices of the first copy are the (v, 1), whereas
the vertices of the second copy are the (v, 2).) In particular, it is easy to see the
following:

Proposition 1.2.11. We have Qn ∼= Qn−1 × P2 for each n ≥ 1.

Now, we claim the following:

Theorem 1.2.12. Let G and H be two simple graphs. Assume that each of the
two graphs G and H has a hamp. Then:

(a) The Cartesian product G × H has a hamp.

(b) Now assume furthermore that at least one of the two numbers |V (G)|
and |V (H)| is even, and that both numbers |V (G)| and |V (H)| are
larger than 1. Then, the Cartesian product G × H has a hamc.

Proof. See the solution to Exercise 1 on homework set #2 from Spring 2017.

Now, Theorem 1.2.9 can be reproved (again by inducting on n) using Theo-
rem 1.2.12 (b) and Proposition 1.2.11, since P2 has a hamp and since |V (P2)| = 2
is even. (Convince yourself that this works!)

1.2.6. Subset graphs

The n-hypercube Qn can be reinterpreted in terms of subsets of {1, 2, . . . , n}.
Namely: Let n ∈ N. Let Gn be the simple graph whose vertex set is the
powerset P ({1, 2, . . . , n}) of {1, 2, . . . , n} (that is, the vertices are all 2n subsets
of {1, 2, . . . , n}), and whose edges are determined as follows: Two vertices S
and T are adjacent if and only if one of the two sets S and T is obtained from
the other by inserting an extra element (i.e., we have either S = T ∪ {s} for
some s /∈ T, or T = S ∪ {t} for some t /∈ S). Then, Gn ∼= Qn, since the map

{0, 1}n → P ({1, 2, . . . , n}) ,
(a1, a2, . . . , an) 7→ {i ∈ {1, 2, . . . , n} | ai = 1}

is a graph isomorphism from Qn to Gn.
Thus, Theorem 1.2.9 shows that for each n ≥ 2, the graph Gn has a hamc. In

other words, for each n ≥ 2, we can list all subsets of {1, 2, . . . , n} in a circular

https://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
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list in such a way that each subset on this list is obtained from the previous one
by inserting or removing a single element. For example, for n = 3, here is such
a list:

∅, {1} , {1, 2} , {2} , {2, 3} , {1, 2, 3} , {1, 3} , {3} .

A long-standing question only resolved a few years ago asked whether the

same can be done with the subsets of {1, 2, . . . , n} having size
n ± 1

2
when n is

odd. For example, for n = 3, we can do it as follows:

{1} , {1, 2} , {2} , {2, 3} , {3} , {1, 3} .

In other words, if n ≥ 3 is odd, and if G′
n is the induced subgraph of Gn on the

set of all subsets J of {1, 2, . . . , n} that satisfy |J| ∈
{

n − 1
2

,
n + 1

2

}
, then does

G′
n have a hamc?
Since Gn ∼= Qn, we can restate this question equivalently as follows: If n ≥ 3

is odd, and if Q′
n is the induced subgraph of Qn on the set{
a1a2 · · · an ∈ {0, 1}n |

n

∑
i=1

ai ∈
{

n − 1
2

,
n + 1

2

}}
,

then does Q′
n have a hamc?

In 2014, Torsten Mütze proved that the answer is “yes”. See [Mutze14] for his
truly nontrivial proof, and [Mutze22] for a recent survey of similar questions.
(Cf. also change ringing.)
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