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Math 530 Spring 2022, Lecture 4: Cycles,
connectivity

website: https://www.cip.ifi.lmu.de/ grinberg/t/22s

1. Simple graphs (cont’d)

1.1. Walks and paths (cont’d)

Last time, we defined the concepts of walks and paths in a simple graph. Here
are their intuitive meanings:

* A walk of a graph is a way of walking from one vertex to another (or to
the same vertex) by following a sequence of edges.

* A path is a walk whose vertices are distinct (i.e., each vertex appears at
most once in the walk).

1.1.1. The equivalence relation “path-connected”

We can use the concepts of walks and paths to define a certain equivalence
relation on the vertex set V (G) of any graph G:

Definition 1.1.1. Let G be a simple graph. We define a binary relation ~¢ on
the set V (G) as follows: For two vertices 1 and v of G, we shall have u ~¢ v
if and only if there exists a walk from u to v in G.

This binary relation ~; is called “path-connectedness” or just
“connectedness”. When two vertices u and v satisfy u ~c v, we say that
“u and v are path-connected”.

Proposition 1.1.2. Let G be a simple graph. Then, the relation ~¢ is an
equivalence relation.

Proof. We need to show that ~ is symmetric, reflexive and transitive.

e Symmetry: If u ~; v, then v >~ u, because we can take a walk from u to
v and reverse it.

e Reflexivity: We always have u ~¢ u, since the trivial walk (u) is a walk
from u to u.

¢ Transitivity: If u ~; v and v ~; w, then u ~ w, because (as we showed
in Lecture 3) we can take a walk a from u to v and a walk b from v to w
and combine them to form the walk a * b defined in Lecture 3.

]
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Proposition 1.1.3. Let G be a simple graph. Let u and v be two vertices of G.
Then, u ~¢ v if and only if there exists a path from u to v.

Proof. <=: Clear, since any path is a walk.
= This is just saying that if there is a walk from u to v, then there is a path
from u to v. But this follows from the last corollary of Lecture 3. O

Definition 1.1.4. Let G be a simple graph. The equivalence classes of the
equivalence relation ~ are called the connected components (or, for short,
components) of G.

Definition 1.1.5. Let G be a simple graph. We say that G is connected if G
has exactly one component.

Example 1.1.6. Let G be the graph with vertex set {1,2,...,9} and such that
two vertices i and j are adjacent if and only if |i —j| = 3. What are the

components of G ?
The graph G looks like this:

@o

This looks like a jumbled mess, so you might think that all vertices are mu-
tually path-connected. But this is not the case, because edges that cross in
a drawing do not necessarily have endpoints in common. Walks can only
move from one edge to another at a common endpoint. Thus, there are
much fewer walks than the picture might suggest. We have 1 ~g 4 ~5 7
and 2 ~5 5 ~g 8 and 3 ~5 6 ~3 9, but there are no further ~-relations. In
fact, two vertices of G are adjacent only if they are congruent modulo 3 (as
numbers), and therefore you cannot move from one modulo-3 congruence
class to another by walking along edges of G. So the components of G are
{1,4,7} and {2,5,8} and {3,6,9}. The graph G is not connected.

Example 1.1.7. Let G be the graph with vertex set {1,2,...,9} and such that
two vertices i and j are adjacent if and only if |i — j| = 6. This graph looks
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like this:
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What are the components of G ? They are {1,7} and {2,8} and {3,9} and

{4} and {5} and {6}. Note that three of these six components are singleton
sets. The graph G is not connected.

Example 1.1.8. Let G be the graph with vertex set {1,2,...,9} and such that
two vertices 7 and j are adjacent if and only if |i — j| = 3 or |i — j| = 4. This
graph looks like this:

We can take a long walk through G:
(1,4,7,3,6,9,5,2,5,8) .

This walk traverses every vertex of G; thus, any two vertices of G are path-
connected. Hence, G has only one component, namely {1,2,...,9}. Thus, G
is connected.

Example 1.1.9. The complete graph on a nonempty set is connected. The
complete graph on the empty set is not connected, since it has 0 (not 1)
components.

Example 1.1.10. The empty graph on a finite set V has |V| many components
(those are the singleton sets {v} for v € V). Thus, it is connected if and only
if |V] =1.
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The following is not hard to see:

Proposition 1.1.11. Let G be a simple graph. Let C be a component of G.
Then, the induced subgraph of G on the set C is connected.

Proof. Let G [C] be this induced subgraph. We need to show that G [C] is con-
nected. In other words, we need to show that G [C] has exactly 1 component.

Clearly, G [C] has at least one vertex (since C is a component, i.e., an equiv-
alence class of ~, but equivalence classes are always nonempty), thus has at
least 1 component. So we only need to show that G [C] has no more than 1
component. In other words, we need to show that any two vertices of G [C| are
path-connected in G [C].

So let u and v be two vertices of G [C]. Then, u,v € C, and therefore u ~¢
v (since C is a component of G). In other words, there exists a walk w =
(wo, w1, ..., wg) from u to v in G. We shall now prove that this walk w is
actually a walk of G [C]. In other words, we shall prove that all vertices of w
belong to C.

But this is easy: If w; is a vertex of w, then (wg, w1,...,w;) is a walk from
u to w; in G, and therefore we have u ~¢ w;, so that w; belongs to the same
component of G as u; but that component is C. Thus, we have shown that
each vertex w; of w belongs to C. Therefore, w is a walk of the graph G [C].
Consequently, it shows that u ~gc) v.

We have now proved that u ~¢j¢) v for any two vertices u and v of G [C].
Hence, the relation ~c| has no more than 1 equivalence class. In other words,
the graph G [C| has no more than 1 component. This completes our proof. [

In the following proposition, we are using the notation G [S] for the induced
subgraph of a simple graph G on a subset S of its vertex set.

Proposition 1.1.12. Let G be a simple graph. Let C;,Cy, ..., C be all compo-
nents of G (listed without repetition).
Thus, G is isomorphic to the disjoint union G [C1] UG [Co] U - - - U G [Cy].

Proof. Consider the bijection from V (G [C1] UG [Cp] U -+ - UG [Cy]) to V (G) that
sends each vertex (i,v) of G [C1] UG [Co] U - - - UG [Cg] to the vertex v of G. We
claim that this bijection is a graph isomorphism. In order to prove this, we
need to check that there are no edges of G that join vertices in different com-
ponents. But this is easy: If two vertices in different components of G were
adjacent, then they would be path-connected, and thus would actually belong
to the same component. [

The upshot of these results is that every simple graph can be decomposed
into a disjoint union of its components (or, more precisely, of the induced sub-
graphs on its components). Each of these components is a connected graph.
Moreover, this is easily seen to be the only way to decompose the graph into a
disjoint union of connected graphs.
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1.2. Closed walks and cycles

Here are two further kinds of walks:
Definition 1.2.1. Let G be a simple graph.

(@) A closed walk of G means a walk whose first vertex is identical with
its last vertex. In other words, it means a walk (wg, w1, ..., wy) with
wyg = wy. Sometimes, closed walks are also known as circuits (but
many authors use this latter word for something slightly different).

(b) A cycle of G means a closed walk (wp, w1, ..., wy) such that k > 3 and
such that the vertices wy, w1, ..., wy_q are distinct.

Example 1.2.2. Let G be the simple graph
({1,2,3,4,5,6}, {12, 23, 34, 45, 56, 61, 13}).

This graph looks as follows (we have already seen it in Lecture 3):

Then:

e The sequence (1,3,2,1,6,5,6,1) is a closed walk of G. But it is very
much not a cycle.

e The sequences (1,2,3,1) and (1,3,4,5,6,1) and (1,2,3,4,5,6,1) are cy-
cles of G. You can get further cycles by rotating these sequences (in a
proper sense of this word - e.g., rotating (1,2,3,1) gives (2,3,1,2) and
(3,1,2,3)) and by reversing them. Every cycle of G can be obtained in
this way.

* The sequences (1) and (1,2,1) are closed walks, but not cycles of G
(since they fail the k > 3 condition).

e The sequence (1,2,3) is a walk, but not a closed walk, since 1 # 3.
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Authors have different opinions about whether (1,2,3,1) and (1,3,2,1) count
as different cycles. Fortunately, this matters only if you want to count cycles,
but not for the existence or non-existence of cycles.

We have now defined paths (in an arbitrary graph) and also path graphs Py;
we have also defined cycles (in an arbitrary graph) and also cycle graphs C,.
Besides their similar names, are they related? The answer is “yes”:

Proposition 1.2.3. Let G be a simple graph.

@ If (po,p1,.-.,px) is a path of G, then there is a subgraph of
G isomorphic to the path graph P,;, namely the subgraph
{po,p1,-- - pr}, {pipis1 | 0 <i <k}). (If this subgraph is actually
an induced subgraph of G, then the path (po, p1,...,px) is called an
“induced path”.)

Conversely, any subgraph of G isomorphic to Py gives a path of G.

(b) Now, assume that k > 3. If (cg,cq,...,ck) is a cycle of G, then there is a
subgraph of G isomorphic to the cycle graph Ci, namely the subgraph
({co,c1,---, ¢k}, {cicix1 | 0 <i < k}). (If this subgraph is actually an
induced subgraph of G, then the cycle (co,cy,...,ck) is called an “in-
duced cycle”.)

Conversely, any subgraph of G isomorphic to Ci gives a cycle of G.

Proof. Straightforward. O

Certain graphs contain cycles; other graphs don’t. For instance, the complete
graph K, contains a lot of cycles (when n > 3), whereas the path graph P,
contains none. Let us try to find some criteria for when a graph can and when
it cannot have cyclesﬂ

Proposition 1.2.4. Let G be a simple graph. Let w be a walk of G such that no
two adjacent edges of w are identical. (By “adjacent edges”, we mean edges
of the form w;_jw; and w;w;,1, where w; 1, w;, w;1 are three consecutive
vertices of w.)

Then, w either is a path or contains a cycle (i.e., there exists a cycle of G
whose edges are edges of w).

Example 1.2.5. Let G be as in Example Then, (2,1,3,2,1,6) is a walk
w of G such that no two adjacent edges of w are identical (even though the
edge 21 appears twice in this walk). On the other hand, (2,1,3,1,6) is not
such a walk (since its two adjacent edges 13 and 31 are identical).

!Mantel’s theorem already gives such a criterion for cycles of length 3 (because a cycle of
length 3 is the same as a triangle).
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Proof of Proposition We assume that w is not a path. We must then show
that w contains a cycle.

Write w as w = (wp, w1, ..., wg). Since w is not a path, two of the vertices
wo, W1, . . ., Wi must be equal. In other words, there exists a pair (i, j) of integers
iand j with i < j and w; = w;. Among all such pairs, we pick one with
minimum difference j — i. We shall show that the walk (w;, wiy1,...,w;) is a
cycle.

First, this walk is clearly a closed walk (since w; = wj). It thus remains to
show that j —i > 3 and that the vertices w;, w;,1,...,w;_1 are distinct. The
distinctness of w;, w1, ..., w;1 follows from the minimality of j —i. To show
that j —i > 3, we assume the contrary. Thus, j — i is either 1 or 2 (since i < j).
But j — i cannot be 1, since the endpoints of an edge cannot be equal (since our
graph is a simple graph). So j —i must be 2. Thus, w; = w;;,. Therefore, the
two edges w;w; 1 and w;; w;, are identical. But this contradicts the fact that
no two adjacent edges of w are identical. Contradiction, qed. O

Corollary 1.2.6. Let G be a simple graph. Assume that G has a closed walk
w of length > 0 such that no two adjacent edges of w are identical. Then, G
has a cycle.

Proof. This follows from Proposition since w is not a path. O

Theorem 1.2.7. Let G be a simple graph. Let u and v be two vertices in G.
Assume that there are two distinct paths from u to v. Then, G has a cycle.

Proof. More generally, we shall prove this theorem with the word “path” re-
placed by “backtrack-free walk”, where a “backtrack-free walk” means a walk
w such that no two adjacent edges of w are identical. This is a generalization
of the theorem, since every path is a backtrack-free walk (why?).

So we claim the following:

Claim 1: Let p and q be two distinct backtrack-free walks that start
at the same vertex and end at the same vertex. Then, G has a cycle.

We shall prove Claim 1 by induction on the length of p. So we fix an integer
N, and we assume that Claim 1 is proved in the case when the length of p is
N — 1. We must now show that it is also true when the length of p is N.

So let p = (po,p1,---,Pa) and q = (40,91, - --,qp) be two distinct backtrack-
free walks that start at the same vertex and end at the same vertex and satisfy
a = N. We must find a cycle.

The walks p and q are distinct but start at the same vertex, so they cannot
both be trivial“| If one of them is trivial, then the other is a closed walk (because
a trivial walk is a closed walk), and then our goal follows from Corollary

2We say that a walk is trivial if it has length 0.
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in this case (because we have a nontrivial closed backtrack-free walk). Hence,
from now on, we WLOG assume that neither of the two walks p and q is
trivial. Thus, each of these two walks has a last edge. The last edge of p is
Pa—1Pa, Whereas the last edge of q is g,_14.

Two cases are possible:

Case 1: We have p,_1pa = 9p—-195-

Case 2: We have p,_1p. # qp_19p-

Let us consider Case 1 first. In this case, the last edges p,_1p, and gq,_14 of
the two walks p and q are identical, so the second-to-last vertices of these two
walks must also be identical. Thus, if we remove these last edges from both
walks, then we obtain two shorter backtrack-free walks (po, p1,-..,pa—1) and
(90,91, - - -, qp—1) that again start at the same vertex and end at the same vertex,
but the length of the first of them is a —1 = N — 1. Hence, by the induction
hypothesis, we can apply Claim 1 to these two shorter walks (instead of p and
q), and we conclude that G has a cycle. So we are done in Case 1.

Let us now consider Case 2. In this case, we combine the two walks p and q
(more precisely, p and the reversal of q) to obtain the closed walk

(pO/ Pl/ ey paflz Pa - I]b, qbfl/ e IqO) .

This closed walk is backtrack-free (since (po, p1,--.,pa) and (qo,q1,---,qp) are
backtrack-free, and since p,_1pa # qp—19p) and has length > 0 (since it contains
at least the edge p,_1pa). Hence, Corollary entails that G has a cycle.

We have thus found a cycle in both Cases 1 and 2. This completes the induc-
tion step. Thus, we have proved Claim 1. As we said, Theorem follows
from it. [
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