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Math 530 Spring 2022, Lecture 4: Cycles,
connectivity

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Simple graphs (cont’d)

1.1. Walks and paths (cont’d)

Last time, we defined the concepts of walks and paths in a simple graph. Here
are their intuitive meanings:

• A walk of a graph is a way of walking from one vertex to another (or to
the same vertex) by following a sequence of edges.

• A path is a walk whose vertices are distinct (i.e., each vertex appears at
most once in the walk).

1.1.1. The equivalence relation “path-connected”

We can use the concepts of walks and paths to define a certain equivalence
relation on the vertex set V (G) of any graph G:

Definition 1.1.1. Let G be a simple graph. We define a binary relation ≃G on
the set V (G) as follows: For two vertices u and v of G, we shall have u ≃G v
if and only if there exists a walk from u to v in G.

This binary relation ≃G is called “path-connectedness” or just
“connectedness”. When two vertices u and v satisfy u ≃G v, we say that
“u and v are path-connected”.

Proposition 1.1.2. Let G be a simple graph. Then, the relation ≃G is an
equivalence relation.

Proof. We need to show that ≃G is symmetric, reflexive and transitive.

• Symmetry: If u ≃G v, then v ≃G u, because we can take a walk from u to
v and reverse it.

• Reflexivity: We always have u ≃G u, since the trivial walk (u) is a walk
from u to u.

• Transitivity: If u ≃G v and v ≃G w, then u ≃G w, because (as we showed
in Lecture 3) we can take a walk a from u to v and a walk b from v to w
and combine them to form the walk a ∗ b defined in Lecture 3.

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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Proposition 1.1.3. Let G be a simple graph. Let u and v be two vertices of G.
Then, u ≃G v if and only if there exists a path from u to v.

Proof. ⇐=: Clear, since any path is a walk.
=⇒: This is just saying that if there is a walk from u to v, then there is a path

from u to v. But this follows from the last corollary of Lecture 3.

Definition 1.1.4. Let G be a simple graph. The equivalence classes of the
equivalence relation ≃G are called the connected components (or, for short,
components) of G.

Definition 1.1.5. Let G be a simple graph. We say that G is connected if G
has exactly one component.

Example 1.1.6. Let G be the graph with vertex set {1, 2, . . . , 9} and such that
two vertices i and j are adjacent if and only if |i − j| = 3. What are the
components of G ?

The graph G looks like this:
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This looks like a jumbled mess, so you might think that all vertices are mu-
tually path-connected. But this is not the case, because edges that cross in
a drawing do not necessarily have endpoints in common. Walks can only
move from one edge to another at a common endpoint. Thus, there are
much fewer walks than the picture might suggest. We have 1 ≃G 4 ≃G 7
and 2 ≃G 5 ≃G 8 and 3 ≃G 6 ≃G 9, but there are no further ≃G-relations. In
fact, two vertices of G are adjacent only if they are congruent modulo 3 (as
numbers), and therefore you cannot move from one modulo-3 congruence
class to another by walking along edges of G. So the components of G are
{1, 4, 7} and {2, 5, 8} and {3, 6, 9}. The graph G is not connected.

Example 1.1.7. Let G be the graph with vertex set {1, 2, . . . , 9} and such that
two vertices i and j are adjacent if and only if |i − j| = 6. This graph looks
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like this:
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What are the components of G ? They are {1, 7} and {2, 8} and {3, 9} and
{4} and {5} and {6}. Note that three of these six components are singleton
sets. The graph G is not connected.

Example 1.1.8. Let G be the graph with vertex set {1, 2, . . . , 9} and such that
two vertices i and j are adjacent if and only if |i − j| = 3 or |i − j| = 4. This
graph looks like this:
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We can take a long walk through G:

(1, 4, 7, 3, 6, 9, 5, 2, 5, 8) .

This walk traverses every vertex of G; thus, any two vertices of G are path-
connected. Hence, G has only one component, namely {1, 2, . . . , 9}. Thus, G
is connected.

Example 1.1.9. The complete graph on a nonempty set is connected. The
complete graph on the empty set is not connected, since it has 0 (not 1)
components.

Example 1.1.10. The empty graph on a finite set V has |V| many components
(those are the singleton sets {v} for v ∈ V). Thus, it is connected if and only
if |V| = 1.
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The following is not hard to see:

Proposition 1.1.11. Let G be a simple graph. Let C be a component of G.
Then, the induced subgraph of G on the set C is connected.

Proof. Let G [C] be this induced subgraph. We need to show that G [C] is con-
nected. In other words, we need to show that G [C] has exactly 1 component.

Clearly, G [C] has at least one vertex (since C is a component, i.e., an equiv-
alence class of ≃G, but equivalence classes are always nonempty), thus has at
least 1 component. So we only need to show that G [C] has no more than 1
component. In other words, we need to show that any two vertices of G [C] are
path-connected in G [C].

So let u and v be two vertices of G [C]. Then, u, v ∈ C, and therefore u ≃G
v (since C is a component of G). In other words, there exists a walk w =
(w0, w1, . . . , wk) from u to v in G. We shall now prove that this walk w is
actually a walk of G [C]. In other words, we shall prove that all vertices of w
belong to C.

But this is easy: If wi is a vertex of w, then (w0, w1, . . . , wi) is a walk from
u to wi in G, and therefore we have u ≃G wi, so that wi belongs to the same
component of G as u; but that component is C. Thus, we have shown that
each vertex wi of w belongs to C. Therefore, w is a walk of the graph G [C].
Consequently, it shows that u ≃G[C] v.

We have now proved that u ≃G[C] v for any two vertices u and v of G [C].
Hence, the relation ≃G[C] has no more than 1 equivalence class. In other words,
the graph G [C] has no more than 1 component. This completes our proof.

In the following proposition, we are using the notation G [S] for the induced
subgraph of a simple graph G on a subset S of its vertex set.

Proposition 1.1.12. Let G be a simple graph. Let C1, C2, . . . , Ck be all compo-
nents of G (listed without repetition).

Thus, G is isomorphic to the disjoint union G [C1] ⊔ G [C2] ⊔ · · · ⊔ G [Ck].

Proof. Consider the bijection from V (G [C1] ⊔ G [C2] ⊔ · · · ⊔ G [Ck]) to V (G) that
sends each vertex (i, v) of G [C1] ⊔ G [C2] ⊔ · · · ⊔ G [Ck] to the vertex v of G. We
claim that this bijection is a graph isomorphism. In order to prove this, we
need to check that there are no edges of G that join vertices in different com-
ponents. But this is easy: If two vertices in different components of G were
adjacent, then they would be path-connected, and thus would actually belong
to the same component.

The upshot of these results is that every simple graph can be decomposed
into a disjoint union of its components (or, more precisely, of the induced sub-
graphs on its components). Each of these components is a connected graph.
Moreover, this is easily seen to be the only way to decompose the graph into a
disjoint union of connected graphs.
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1.2. Closed walks and cycles

Here are two further kinds of walks:

Definition 1.2.1. Let G be a simple graph.

(a) A closed walk of G means a walk whose first vertex is identical with
its last vertex. In other words, it means a walk (w0, w1, . . . , wk) with
w0 = wk. Sometimes, closed walks are also known as circuits (but
many authors use this latter word for something slightly different).

(b) A cycle of G means a closed walk (w0, w1, . . . , wk) such that k ≥ 3 and
such that the vertices w0, w1, . . . , wk−1 are distinct.

Example 1.2.2. Let G be the simple graph

({1, 2, 3, 4, 5, 6} , {12, 23, 34, 45, 56, 61, 13}) .

This graph looks as follows (we have already seen it in Lecture 3):

1

23

4

5 6

Then:

• The sequence (1, 3, 2, 1, 6, 5, 6, 1) is a closed walk of G. But it is very
much not a cycle.

• The sequences (1, 2, 3, 1) and (1, 3, 4, 5, 6, 1) and (1, 2, 3, 4, 5, 6, 1) are cy-
cles of G. You can get further cycles by rotating these sequences (in a
proper sense of this word – e.g., rotating (1, 2, 3, 1) gives (2, 3, 1, 2) and
(3, 1, 2, 3)) and by reversing them. Every cycle of G can be obtained in
this way.

• The sequences (1) and (1, 2, 1) are closed walks, but not cycles of G
(since they fail the k ≥ 3 condition).

• The sequence (1, 2, 3) is a walk, but not a closed walk, since 1 ̸= 3.
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Authors have different opinions about whether (1, 2, 3, 1) and (1, 3, 2, 1) count
as different cycles. Fortunately, this matters only if you want to count cycles,
but not for the existence or non-existence of cycles.

We have now defined paths (in an arbitrary graph) and also path graphs Pn;
we have also defined cycles (in an arbitrary graph) and also cycle graphs Cn.
Besides their similar names, are they related? The answer is “yes”:

Proposition 1.2.3. Let G be a simple graph.

(a) If (p0, p1, . . . , pk) is a path of G, then there is a subgraph of
G isomorphic to the path graph Pk+1, namely the subgraph
({p0, p1, . . . , pk} , {pi pi+1 | 0 ≤ i < k}). (If this subgraph is actually
an induced subgraph of G, then the path (p0, p1, . . . , pk) is called an
“induced path”.)

Conversely, any subgraph of G isomorphic to Pk+1 gives a path of G.

(b) Now, assume that k ≥ 3. If (c0, c1, . . . , ck) is a cycle of G, then there is a
subgraph of G isomorphic to the cycle graph Ck, namely the subgraph
({c0, c1, . . . , ck} , {cici+1 | 0 ≤ i < k}). (If this subgraph is actually an
induced subgraph of G, then the cycle (c0, c1, . . . , ck) is called an “in-
duced cycle”.)

Conversely, any subgraph of G isomorphic to Ck gives a cycle of G.

Proof. Straightforward.

Certain graphs contain cycles; other graphs don’t. For instance, the complete
graph Kn contains a lot of cycles (when n ≥ 3), whereas the path graph Pn
contains none. Let us try to find some criteria for when a graph can and when
it cannot have cycles1:

Proposition 1.2.4. Let G be a simple graph. Let w be a walk of G such that no
two adjacent edges of w are identical. (By “adjacent edges”, we mean edges
of the form wi−1wi and wiwi+1, where wi−1, wi, wi+1 are three consecutive
vertices of w.)

Then, w either is a path or contains a cycle (i.e., there exists a cycle of G
whose edges are edges of w).

Example 1.2.5. Let G be as in Example 1.2.2. Then, (2, 1, 3, 2, 1, 6) is a walk
w of G such that no two adjacent edges of w are identical (even though the
edge 21 appears twice in this walk). On the other hand, (2, 1, 3, 1, 6) is not
such a walk (since its two adjacent edges 13 and 31 are identical).

1Mantel’s theorem already gives such a criterion for cycles of length 3 (because a cycle of
length 3 is the same as a triangle).
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Proof of Proposition 1.2.4. We assume that w is not a path. We must then show
that w contains a cycle.

Write w as w = (w0, w1, . . . , wk). Since w is not a path, two of the vertices
w0, w1, . . . , wk must be equal. In other words, there exists a pair (i, j) of integers
i and j with i < j and wi = wj. Among all such pairs, we pick one with
minimum difference j − i. We shall show that the walk

(
wi, wi+1, . . . , wj

)
is a

cycle.
First, this walk is clearly a closed walk (since wi = wj). It thus remains to

show that j − i ≥ 3 and that the vertices wi, wi+1, . . . , wj−1 are distinct. The
distinctness of wi, wi+1, . . . , wj−1 follows from the minimality of j − i. To show
that j − i ≥ 3, we assume the contrary. Thus, j − i is either 1 or 2 (since i < j).
But j − i cannot be 1, since the endpoints of an edge cannot be equal (since our
graph is a simple graph). So j − i must be 2. Thus, wi = wi+2. Therefore, the
two edges wiwi+1 and wi+1wi+2 are identical. But this contradicts the fact that
no two adjacent edges of w are identical. Contradiction, qed.

Corollary 1.2.6. Let G be a simple graph. Assume that G has a closed walk
w of length > 0 such that no two adjacent edges of w are identical. Then, G
has a cycle.

Proof. This follows from Proposition 1.2.4, since w is not a path.

Theorem 1.2.7. Let G be a simple graph. Let u and v be two vertices in G.
Assume that there are two distinct paths from u to v. Then, G has a cycle.

Proof. More generally, we shall prove this theorem with the word “path” re-
placed by “backtrack-free walk”, where a “backtrack-free walk” means a walk
w such that no two adjacent edges of w are identical. This is a generalization
of the theorem, since every path is a backtrack-free walk (why?).

So we claim the following:

Claim 1: Let p and q be two distinct backtrack-free walks that start
at the same vertex and end at the same vertex. Then, G has a cycle.

We shall prove Claim 1 by induction on the length of p. So we fix an integer
N, and we assume that Claim 1 is proved in the case when the length of p is
N − 1. We must now show that it is also true when the length of p is N.

So let p = (p0, p1, . . . , pa) and q = (q0, q1, . . . , qb) be two distinct backtrack-
free walks that start at the same vertex and end at the same vertex and satisfy
a = N. We must find a cycle.

The walks p and q are distinct but start at the same vertex, so they cannot
both be trivial2. If one of them is trivial, then the other is a closed walk (because
a trivial walk is a closed walk), and then our goal follows from Corollary 1.2.6

2We say that a walk is trivial if it has length 0.
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in this case (because we have a nontrivial closed backtrack-free walk). Hence,
from now on, we WLOG assume that neither of the two walks p and q is
trivial. Thus, each of these two walks has a last edge. The last edge of p is
pa−1pa, whereas the last edge of q is qb−1qb.

Two cases are possible:
Case 1: We have pa−1pa = qb−1qb.
Case 2: We have pa−1pa ̸= qb−1qb.
Let us consider Case 1 first. In this case, the last edges pa−1pa and qb−1qb of

the two walks p and q are identical, so the second-to-last vertices of these two
walks must also be identical. Thus, if we remove these last edges from both
walks, then we obtain two shorter backtrack-free walks (p0, p1, . . . , pa−1) and
(q0, q1, . . . , qb−1) that again start at the same vertex and end at the same vertex,
but the length of the first of them is a − 1 = N − 1. Hence, by the induction
hypothesis, we can apply Claim 1 to these two shorter walks (instead of p and
q), and we conclude that G has a cycle. So we are done in Case 1.

Let us now consider Case 2. In this case, we combine the two walks p and q
(more precisely, p and the reversal of q) to obtain the closed walk

(p0, p1, . . . , pa−1, pa = qb, qb−1, . . . , q0) .

This closed walk is backtrack-free (since (p0, p1, . . . , pa) and (q0, q1, . . . , qb) are
backtrack-free, and since pa−1pa ̸= qb−1qb) and has length > 0 (since it contains
at least the edge pa−1pa). Hence, Corollary 1.2.6 entails that G has a cycle.

We have thus found a cycle in both Cases 1 and 2. This completes the induc-
tion step. Thus, we have proved Claim 1. As we said, Theorem 1.2.7 follows
from it.
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