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Math 530 Spring 2022, Lecture 28: More about
paths

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. More about paths (cont’d)

Today, we shall discuss some more obscure properties of paths in digraphs and
graphs.

1.1. The Gallai–Milgram theorem

In order to state the first of these properties, we need the following three defi-
nitions:

Definition 1.1.1. Two vertices u and v of a multidigraph D are said to be
adjacent if they are adjacent in the undirected graph Dund. (In other words,
they are adjacent if and only if D has an arc with source u and target v or an
arc with source v and target u.)

Definition 1.1.2. An independent set of a multidigraph D means a subset
S of V (D) such that no two elements of S are adjacent. In other words, it
means an independent set of the undirected graph Dund.

Definition 1.1.3. A path cover of a multidigraph D means a set of paths of
D such that each vertex of D is contained in exactly one of these paths.

Example 1.1.4. Let D be the following digraph:

1

2

3

4

5 .

Then, {(1, ∗, 5, ∗, 4) , (3, ∗, 2)} is a path cover of D (we are again writing aster-
isks for the arcs, since the arcs of D are uniquely determined by their sources
and their targets). Another path cover of D is {(1, ∗, 3, ∗, 4) , (2) , (5)}. Yet
another path cover of D is {(1) , (2) , (3) , (4) , (5)}. There are many more.

Note that the set {(1, ∗, 5, ∗, 4) , (3, ∗, 2, ∗, 4)} is not a path cover of D, since
the vertex 4 is contained in two (not one) of its paths.

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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Let us draw the three path covers we have mentioned (by simply drawing
the arcs of the paths they contain, while omitting all other arcs of D):

1
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{(1, ∗, 5, ∗, 4) , (3, ∗, 2)} {(1, ∗, 3, ∗, 4) , (2) , (5)} {(1) , (2) , (3) , (4) , (5)}

(Note that we have already seen path covers of a “complete” simple digraph
(V, V × V) in Lecture 11; we called them “path covers of V”.)

Remark 1.1.5. Let D be a digraph. A path cover of D consisting of only 1
path is the same as a Hamiltonian path of D. (More precisely: A single path
p forms a path cover {p} of D if and only if p is a Hamiltonian path.)

Now, the Gallai–Milgram theorem states the following:

Theorem 1.1.6 (Gallai–Milgram theorem). Let D be a loopless digraph. Then,
there exist a path cover P of D and an independent set S of D such that S
has exactly one vertex from each path in P (in other words, for each path
p ∈ P , exactly one vertex of p belongs to S).

Example 1.1.7. Let D be the digraph from Example 1.1.4. Then, Theorem
1.1.6 tells us that there exist a path cover P of D and an independent set S of
D such that S has exactly one vertex from each path in P . For example, we
can take P = {(1, ∗, 5, ∗, 4) , (3, ∗, 2)} and S = {5, 3}.

We will now prove Theorem 1.1.6, following Diestel’s book [Dieste17, Theo-
rem 2.5.1]:

Proof of Theorem 1.1.6. Write the multidigraph D as D = (V, A, φ). We intro-
duce a notation:

• If P is a path cover of D, then a cross-cut of P means a subset S of V that
contains exactly one vertex from each path in P .

Thus, the claim we must prove is saying that there exist a path cover P of D
and an independent cross-cut of P .

We will show something stronger:
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Claim 1: Any minimum-size path cover of D has an independent
cross-cut.

Note that the size of a path cover means the number of paths in it. Thus, a
minimum-size path cover means a path cover with the smallest possible num-
ber of paths.

We will show something even stronger than Claim 1. To state this stronger
claim, we need more notations:

• If P is a path cover, then EndsP means the set of the ending points of all
paths in P . Note that |EndsP| = |P|.

• A path cover P is said to be end-minimal if no proper subset of EndsP
can be written as EndsQ for a path cover Q.

Example 1.1.8. For instance, if D is as in Example 1.1.4, and if

P = {(1, ∗, 5, ∗, 4) , (3, ∗, 2)} ,
Q = {(1, ∗, 3, ∗, 4) , (2) , (5)} ,
R = {(1) , (2) , (3) , (4) , (5)}

are the three path covers from Example 1.1.4, then

EndsP = {4, 2} , EndsQ = {4, 2, 5} , EndsR = {1, 2, 3, 4, 5} ,

which shows immediately that neither Q nor R is end-minimal (since EndsP
is a proper subset of each of EndsQ and EndsR). It is easy to see that P is
end-minimal (and also minimum-size).

Back to the general case. Clearly, any minimum-size path cover of D is also
end-minimal1. Thus, the following claim is stronger than Claim 1:

Claim 2: Any end-minimal path cover of D has an independent
cross-cut.

It is Claim 2 that we will be proving.2

[Proof of Claim 2: We proceed by induction on |V|.
Base case: Claim 2 is obvious when |V| = 0 (since ∅ is an independent cross-

cut in this case).
Induction step: Consider a multidigraph D = (V, A, ψ) with |V| = N. Assume

(as the induction hypothesis) that Claim 2 is already proved for any multidi-
graph with N − 1 vertices.

1Proof. Let P be a minimum-size path cover of D. If P was not end-minimal, then there would
be a path cover Q with |EndsQ| < |EndsP| and therefore |Q| = |EndsQ| < |EndsP| =
|P|; but this would contradict the fact that P is minimum-size. Hence, P is end-minimal.

2On a sidenote: Is Claim 2 really stronger than Claim 1? Yes, because it can happen that
some end-minimal path cover fails to be minimum-size. For example, the path cover
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Let P be an end-minimal path cover of D. We must show that P has an
independent cross-cut.

Let p1, p2, . . . , pk be the paths in P (listed without repetitions), and let v1, v2, . . . , vk
be their respective ending points. Thus, {v1, v2, . . . , vk} = EndsP and k =
|EndsP|.

Recall that we must find an independent cross-cut of P . If the set {v1, v2, . . . , vk}
is independent, then we are done (since this set {v1, v2, . . . , vk} is clearly a cross-
cut of P). Thus, we WLOG assume that this is not the case. Hence, there is
an arc from some vertex vi to some vertex vj. These two vertices vi and vj are
distinct (because D is loopless). Since we can swap our paths p1, p2, . . . , pk (and
thus their ending points v1, v2, . . . , vk) at will, we can thus WLOG assume that
i = 2 and j = 1. Assume this. Thus, there is an arc from v2 to v1. We shall refer
to this arc as the blue arc, and we will draw it accordingly:3

v1

v2

v3

v4

.

We can extend the path p2 beyond its ending point v2 by inserting the blue
arc and the vertex v1 at its end. This results in a new path, which we denote by
p2 + v1; this path has ending point v1.

{(1, ∗, 2, ∗, 3) , (4)} in the digraph

1

2

3

4

has this property.
3This picture illustrates just one representative case, with k = 4. The four columns (from left

to right) are the four paths p1, p2, p3, p4. Of course, the digraph D can have many more arcs
than we have drawn on this picture, but we are not interested in them right now.
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If v1 is the only vertex on the path p1 (that is, if the path p1 has length 0), then
we can therefore replace the path p2 by p2 + v1 and remove the length-0 path
p1 from our path cover P , and we thus obtain a new path cover Q such that
EndsQ is a proper subset of EndsP . But this is impossible, since we assumed
that P is end-minimal. Therefore, v1 is not the only vertex on p1.

Thus, let v be the second-to-last vertex on p1 (that is, the vertex that is im-
mediately followed by v1). Then, the path p1 contains an arc from v to v1. We
shall refer to this arc as the red arc, and we will draw it accordingly:

v

v1

v2

v3

v4

.

Let D′ be the digraph D \ v1 (that is, the digraph obtained from D by re-
moving the vertex v1 and all arcs that have v1 as source or target). Let p′

1 be
the result of removing the vertex v1 and the red arc from the path p1. Then,
P ′ := {p′

1, p2, p3, . . . , pk} is a path cover of D′. Note that the path p′
1 has

ending point v (since it is obtained from p1 by removing the last vertex and
the last arc, but we know that the second-to-last vertex on p1 is v), whereas
the paths p2, p3, . . . , pk have ending points v2, v3, . . . , vk. Thus, Ends (P ′) =
{v, v2, v3, . . . , vk}. Here is an illustration of the digraph D′ = D \ v1 and its
path cover P ′:

v v2

v3

v4

.

Consider the path cover P ′ of D′. If we can find an independent cross-
cut of P ′, then we will be done, because any such cross-cut will also be an
independent cross-cut of our original path cover {p1, p2, . . . , pk} = P . Since
the digraph D \ v1 has N − 1 vertices4, we can find such an independent cross-

4because the digraph D has |V| = N vertices
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cut by our induction hypothesis if we can prove that the path cover P ′ is end-
minimal (as a path cover of D′).

So let us prove this now. Indeed, assume the contrary. Thus, D′ has a path
cover Q′ such that Ends (Q′) is a proper subset of Ends (P ′). Consider this Q′.
Note that5

Ends
(
Q′) ⊊ Ends

(
P ′) = {v, v2, v3, . . . , vk} .

As a consequence, |Ends (Q′)| < |{v, v2, v3, . . . , vk}| = k.
Now, we are in one of the following three cases:
Case 1: We have v ∈ Ends (Q′).
Case 2: We have v /∈ Ends (Q′) but v2 ∈ Ends (Q′).
Case 3: We have v /∈ Ends (Q′) and v2 /∈ Ends (Q′).
Let us consider these cases one by one:

• We first consider Case 1. In this case, we have v ∈ Ends (Q′). In other
words, some path p ∈ Q′ ends at v. Let us extend this path p beyond v
by inserting the red arc and the vertex v1 at its end. Thus, we obtain a
path of D, which we call p + v1. Replacing p by p + v1 in Q′, we obtain a
path cover Q of D such that EndsQ is a proper subset of EndsP 6. But
this contradicts the fact that P is end-minimal. Thus, we have obtained a
contradiction in Case 1.

• Next, we consider Case 2. In this case, we have v /∈ Ends (Q′) but v2 ∈
Ends (Q′). Combining Ends (Q′) ⊆ {v, v2, v3, . . . , vk} with v /∈ Ends (Q′),
we obtain

Ends
(
Q′) ⊆ {v, v2, v3, . . . , vk} \ {v} = {v2, v3, . . . , vk} .

From v2 ∈ Ends (Q′), we see that some path p ∈ Q′ ends at v2. Let us
extend this path p beyond v2 by inserting the blue arc and the vertex v1 at
its end. Thus, we obtain a path of D, which we call p+ v1. Replacing p by
p + v1 in Q′, we obtain a path cover Q of D such that EndsQ is a proper

5The symbol “⊊” (note that the stroke only crosses the straight line, not the curved one) means
“proper subset of”.

6Proof. We obtained Q from Q′ by replacing p by p+ v1. As a consequence of this replacement,
the ending point v of p has been replaced by the ending point v1 of p + v1. Thus,

EndsQ =
(
Ends

(
Q′) \ {v}

)︸ ︷︷ ︸
⊆{v2,v3,...,vk}

(since Ends(Q′)⊆{v,v2,v3,...,vk})

∪ {v1}

⊆ {v2, v3, . . . , vk} ∪ {v1} = {v1, v2, . . . , vk} = EndsP .

For the same reason, we have |EndsQ| = |Ends (Q′)| < k = |EndsP|, so that EndsQ ̸=
EndsP . Combining this with EndsQ ⊆ EndsP , we conclude that EndsQ is a proper subset
of EndsP .
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subset of EndsP 7. But this contradicts the fact that P is end-minimal.
Thus, we have obtained a contradiction in Case 2.

• Finally, we consider Case 3. In this case, we have v /∈ Ends (Q′) and
v2 /∈ Ends (Q′). Combining this with Ends (Q′) ⊆ {v, v2, v3, . . . , vk}, we
obtain

Ends
(
Q′) ⊆ {v, v2, v3, . . . , vk} \ {v, v2} = {v3, v4, . . . , vk} ,

so that |Ends (Q′)| ≤ |{v3, v4, . . . , vk}| = k − 2. Now, adding the trivial
path (v1) to Q′ yields a path cover Q of D such that EndsQ is a proper
subset of EndsP 8. But this contradicts the fact that P is end-minimal.
Thus, we have found a contradiction in Case 3.

So we have obtained a contradiction in each case. Thus, our assumption
was false. This shows that the path cover P ′ is end-minimal. As we already
said above, this allows us to apply the induction hypothesis to D′ instead of
D, and conclude that the end-minimal path cover P ′ of D′ has an independent
cross-cut. This independent cross-cut is clearly an independent cross-cut of P
as well, and thus we have shown that P has an independent cross-cut. This
proves Claim 2.]

As explained above, this completes the proof of Theorem 1.1.6.

Here are two simple applications of the Gallai–Milgram theorem:

• Remember the Easy Rédei theorem, which we proved in Lecture 12. It
says that each tournament has a Hamiltonian path.

We can now prove it again using the Gallai–Milgram theorem:

7Proof. We obtained Q from Q′ by replacing p by p+ v1. As a consequence of this replacement,
the ending point v2 of p has been replaced by the ending point v1 of p + v1. Thus,

EndsQ =
(
Ends

(
Q′) \ {v2}

)︸ ︷︷ ︸
⊆{v3,v4,...,vk}

(since Ends(Q′)⊆{v2,v3,...,vk})

∪ {v1}

⊆ {v3, v4, . . . , vk} ∪ {v1} = {v1, v3, v4, . . . , vk}
⊊ {v1, v2, . . . , vk} = EndsP .

In other words, EndsQ is a proper subset of EndsP .
8Proof. We obtained Q from Q′ by adding the trivial path (v1), whose ending point is v1.

Thus,

EndsQ = Ends
(
Q′)︸ ︷︷ ︸

⊆{v3,v4,...,vk}

∪ {v1} ⊆ {v3, v4, . . . , vk} ∪ {v1} = {v1, v3, v4, . . . , vk}

⊊ {v1, v2, . . . , vk} = EndsP .

In other words, EndsQ is a proper subset of EndsP .
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New proof of the Easy Rédei theorem: Indeed, let D be a tournament. The
Gallai–Milgram theorem shows that D has a path cover with an indepen-
dent cross-cut9. Consider this path cover and this cross-cut. But since
D is a tournament, any independent set of D has size ≤ 1. Thus, our
independent cross-cut must have size ≤ 1. Hence, our path cover must
consist of 1 path only (because the size of the path cover equals the size
of its cross-cut). But this means that it is a Hamiltonian path (or, more
precisely, it consists of a single path, which is necessarily a Hamiltonian
path). Hence, D has a Hamiltonian path. So we have proved the Easy
Rédei theorem again.

• Less obviously, Hall’s Marriage Theorem (Theorem 1.3.4 in Lecture 24)
and the Hall-König matching theorem (Theorem 1.4.7 in Lecture 24) can
be proved again using Gallai–Milgram. Here is how:

New proof of the Hall-König matching theorem: Let (G, X, Y) be a bipartite
graph.

Let D be the digraph obtained from G by directing each edge so that it
goes from X to Y (in other words, each edge with endpoints x ∈ X and
y ∈ Y becomes an arc with source x and target y). Thus, in the digraph
D, no vertex can simultaneously be the source of some arc and the target
of some arc. Thus, any path of D has length ≤ 1. Here is an illustration
of a bipartite graph (G, X, Y) (drawn as agreed in Lecture 24) and the
corresponding digraph D:

1

2

3

4

5

6

7 8

9

1

2

3

4

5

6

7 8

9

G D

.

9See the above proof of Theorem 1.1.6 for the definition of a “cross-cut”.
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As we said, any path of D has length ≤ 1. Thus, any path of D corre-
sponds either to a vertex of G or to an edge of G (depending on whether
its length is 0 or 1). Hence, any path cover P of D necessarily consists of
length-0 paths (corresponding to vertices of G) and length-1 paths (cor-
responding to edges of G); moreover, the edges of P (that is, the edges
corresponding to the length-1 paths in P) form a matching of G, and the
vertices of P (that is, the vertices corresponding to length-0 paths in P)
are precisely the vertices that are not matched in this matching.

Now, Theorem 1.1.6 shows that there exist a path cover P of D and an
independent cross-cut S of P . Consider these P and S. For the purpose
of illustration, let us draw a path cover P (by marking the arcs in red) and
an independent cross-cut S of P (by drawing each vertex s ∈ S as a blue
diamond instead of a green circle):

1

5

6

7

2

3

4

8

9
.

We have |S| = |X ∩ S| + |Y ∩ S| (since the set S is the union of its two
disjoint subsets X ∩ S and Y ∩ S).

The set S is an independent set of the digraph D, thus also an independent
set of the graph Dund = G. From this, we easily obtain N (X ∩ S) ⊆ Y \ S
(since (G, X, Y) is a bipartite graph)10. Therefore, |N (X ∩ S)| ≤ |Y \ S|, so

10Proof. Let v ∈ N (X ∩ S). Thus, v is a vertex with a neighbor in X ∩ S. Let x be this neighbor.
Then, x ∈ X ∩ S ⊆ X, so that the vertex v has a neighbor in X (namely, x). Since (G, X, Y) is
a bipartite graph, this entails that v ∈ Y. Furthermore, we have x ∈ X ∩ S ⊆ S. If we had
v ∈ S, then the set S would contain two adjacent vertices (namely, v and x), which would
contradict the fact that S is an independent set of G. Thus, we have v /∈ S. Combining v ∈ Y
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that |Y \ S| ≥ |N (X ∩ S)|. Hence,

|Y| = |Y \ S|︸ ︷︷ ︸
≥|N(X∩S)|

+ |Y ∩ S| ≥ |N (X ∩ S)|+ |Y ∩ S|︸ ︷︷ ︸
=|S|−|X∩S|

(since |S|=|X∩S|+|Y∩S|)

= |N (X ∩ S)|+ |S| − |X ∩ S| . (1)

Now, let M be the set of edges of G corresponding to the length-1 paths
in our path cover P . As we already mentioned, this set M is a matching
of G (since two paths in P cannot have a vertex in common). The vertices
that are not matched in M are precisely the vertices that don’t belong to
any of the length-1 paths in P ; in other words, they are the vertices that
belong to length-0 paths in P (since P is a path cover, and any path has
length ≤ 1). We let p be the number of such vertices that lie in X, and we
let q be the number of such vertices that lie in Y.

Thus, our path cover P contains exactly p + q length-0 paths: namely, p
length-0 paths consisting of a vertex in X and q length-0 paths consisting
of a vertex in Y. Hence, the path cover P consists of |M| + p + q paths
in total (since it contains |M| many length-1 paths). The set S contains
exactly one vertex from each of these |M|+ p + q paths (since S is a cross-
cut of P); therefore,

|S| = |M|+ p + q. (2)

Each vertex y ∈ Y that is matched in M belongs to exactly one M-edge
(namely, to its M-edge), and conversely, each M-edge contains exactly one
vertex in Y (which, of course, is matched in M). Thus, the map

{vertices in Y that are matched in M} → M,
y 7→ (the M-edge of y)

is a bijection. Hence, the bijection principle yields

(# of vertices in Y that are matched in M) = |M| . (3)

On the other hand, the set Y contains exactly q vertices that are not
matched in M (by the definition of q). Therefore, Y contains exactly |Y| − q
vertices that are matched in M. In other words,

(# of vertices in Y that are matched in M) = |Y| − q.

Comparing this with (3), we obtain |M| = |Y| − q. In other words,

|M|+ q = |Y| . (4)

with v /∈ S, we obtain v ∈ Y \ S.
Forget that we fixed v. We thus have shown that v ∈ Y \ S for each v ∈ N (X ∩ S). In

other words, N (X ∩ S) ⊆ Y \ S.
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The same argument (but applied to X and p instead of Y and q) yields

|M|+ p = |X| . (5)

Now, from (4), we obtain

|M|+ q = |Y|
≥ |N (X ∩ S)|+ |S|︸︷︷︸

=|M|+p+q
(by (2))

− |X ∩ S| (by (1))

= |N (X ∩ S)|+ |M|+ p + q − |X ∩ S|
= |M|+ p︸ ︷︷ ︸

=|X|
(by (5))

+ |N (X ∩ S)| − |X ∩ S|+ q

= |X|+ |N (X ∩ S)| − |X ∩ S|+ q.

Cancelling q, we obtain

|M| ≥ |X|+ |N (X ∩ S)| − |X ∩ S|
= |N (X ∩ S)|+ |X| − |X ∩ S| . (6)

Thus, we have found a matching M of G and a subset U of X (namely,
U = X ∩ S) such that |M| ≥ |N (U)| + |X| − |U|. This proves the Hall-
König matching theorem (once again).

New proof of Hall’s Marriage Theorem: Proceed as in the proof of the Hall-
König matching theorem that we just gave. But now assume that our bi-
partite graph (G, X, Y) satisfies the Hall condition (i.e., we have |N (A)| ≥
|A| for each subset A of X). Hence, in particular, |N (X ∩ S)| ≥ |X ∩ S|.
Therefore, (6) becomes

|M| ≥ |N (X ∩ S)|︸ ︷︷ ︸
≥|X∩S|

+ |X| − |X ∩ S| ≥ |X| .

Hence, Proposition 1.3.1 (e) in Lecture 24 shows that the matching M is X-
complete. Thus, G has an X-complete matching (namely, M). This proves
Hall’s Marriage Theorem (once again).

1.2. Path-missing sets

We move on to less well-trodden ground.
Menger’s theorem (one of the many) is from 1927; the Gallai–Milgram theo-

rem is from 1960. One might think that everything that can be said about paths
in graphs has been said long ago.
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Apparently, this is not the case. In 2017, when trying to come up with a
homework exercise for a previous iteration of this course, I was experimenting
with paths in Python. Specifically, I was looking at digraphs D = (V, A, ψ) with
two distinct vertices s and t selected. Inspired by the arc-Menger theorems, I
was looking at the subsets B of A that could be removed without disconnecting
s from t (more precisely, without destroying all paths from s to t). I noticed
that the number of such subsets B seemed to be even whenever D has a cycle
or a “useless arc” (i.e., an arc that is used by no path from s to t) 11, and odd
otherwise.

I could not prove this observation. Soon after, Joel Brewster Lewis and Lukas
Katthän came up with a proof and multiple stronger results. The proofs can
now be found in a joint preprint [GrKaLe21], although I believe that they are
far from optimal (this is one reason we have not submitted the preprint to a
journal yet).

The first way to strengthen the observation is to replace the parity claim (i.e.,
the claim that the number is even or odd depending on cycles and useless arcs)
by a stronger claim about an alternating sum. This is an instance of a general
phenomenon, in which a statement of the form “the number of some class of
things is even” can often be replaced by a stronger statement of the form “we
can assign a plus or minus sign to each of these things, and then the total
number of plus signs equals the total number of minus signs”. The stronger
statement is as follows:

Theorem 1.2.1 (Grinberg–Lewis–Katthän). Let D = (V, A, ψ) be a multidi-
graph. Let s and t be two distinct vertices of D. A subset B of A will be
called path-missing if D has a path from s to t that does not use any of the
arcs in B (that is, a path from s to t that would not be destroyed if we remove
all arcs in B from D). (In the terminology of Lecture 27, this is the same as
saying that B is not an s-t-arc-separator.)

Let M be the set of all path-missing subsets of A.

(a) If D has an arc that is not used by any path from s to t (this is what we
call a “useless arc”), then

∑
B∈M

(−1)|B| = 0

(and thus |M| is even).

(b) If D has a cycle, then

∑
B∈M

(−1)|B| = 0

(and thus |M| is even).

11With one exception: If A = ∅, then it is odd.
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(c) If A = ∅, then
∑

B∈M
(−1)|B| = 0

(and thus |M| is even).

(d) In all other cases, we have

∑
B∈M

(−1)|B| = (−1)|A|−|V′| ,

where V′ is the set of all vertices of D that have outdegree > 0 (and
thus |M| is odd).

Example 1.2.2. Let D = (V, A, φ) be the following digraph:

s

t

1 2

3

a

e d

c

f

b

.

Let s and t be the vertices labelled s and t here. Then, D has neither a cycle
nor a “useless arc”, and its arc set A is nonempty; thus, Theorem 1.2.1 (d)
applies. The path-missing subsets of A are the three sets {a, b, c, d}, {c, e}
and {d, e, f } as well as all their subsets (such as {b, c, d}). In other words,

M = {all subsets of {a, b, c, d}} ∪ {all subsets of {c, e}}
∪ {all subsets of {d, e, f }}

= {∅, {a} , {b} , {c} , {d} , {a, b} , {a, c} , {a, d} , {b, c} , {b, d} ,
{c, d} , {a, b, c} , {a, b, d} , {a, c, d} , {b, c, d} , {a, b, c, d} ,
{e} , {c, e} , { f } , {d, e} , {e, f } , {d, f } , {d, e, f }}.

Hence, the sum ∑
B∈M

(−1)|B| has 11 addends equal to −1 and 12 ad-

dends equal to 1; thus, this sum equals to 1. This is precisely the value
(−1)|A|−|V′| = (−1)6−4 = 1 predicted by Theorem 1.2.1 (d).

Proof of Theorem 1.2.1. See [GrKaLe21, Theorem 1.3] (where M is denoted by
PM (D), and where arcs are called “edges”). Of course, part (c) is obvious,
and part (a) is easy (since inserting a useless arc into a set B ∈ M or removing
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it from a set B ∈ M always results in a set in M). Parts (b) and (d) are the
interesting ones. The proof in [GrKaLe21, Theorem 1.3] relies on a recursive
argument (“deletion-contraction”) in which we pick an arc with source s and
consider the two smaller digraphs D \ a and D⧸a obtained (respectively) by
deleting the arc a from D and by “contracting” a “to a point”.

Further levels of strength can be reached by treating M as a topological
space. Indeed, M is not just a random collection of sets of arcs, but actually
a simplicial complex (since any subset of a path-missing subset of A is again
path-missing). Simplicial complexes are known to be a combinatorial model
for topological spaces, and in particular they have homology groups, homo-
topy types, etc.. Thus, in particular, we can ask ourselves how the topological
space corresponding to the simplicial complex M looks like. This, too, has been
answered in [GrKaLe21, Theorem 1.3]: It is homotopic to a sphere or a ball
(depending on the existence of cycles or “useless arcs”); its dimension can also
be determined explicitly. (The sum ∑

B∈M
(−1)|B| discussed above is, of course,

its reduced Euler characteristic.)

1.3. Elser’s sums

We now return to undirected (multi)graphs. Here is a result found by Veit Elser
in 1984 ([Elser84, Lemma 1]), as a lemma for his work in statistical mechanics:12

Theorem 1.3.1 (Elser’s theorem, in my version). Let G = (V, E, φ) be a multi-
graph with at least one edge. Fix a vertex v ∈ V.

If F ⊆ E, then an F-path shall mean a path of G such that all edges of this
path belong to F. In other words, it means a path of the spanning subgraph
(V, F, φ |F).

If e ∈ E is an edge and F ⊆ E is a subset, then we say that F infects e
if there exists an F-path from v to some endpoint of e. (The terminology
is inspired by the idea that some infectious disease starts at v and spreads
along the F-edges.)

(Note that if an edge e contains the vertex v, then any subset F of E (even
the empty set) infects e, because (v) is a trivial F-path from v to v.)

Then,
∑

F⊆E infects
every edge e∈E

(−1)|F| = 0.

12I have restated the result beyond recognition; see [Grinbe21, Remark 1.4] for why Theorem
1.3.1 actually implies [Elser84, Lemma 1].

https://en.wikipedia.org/wiki/Simplicial_complex
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Example 1.3.2. Let G = (V, E, φ) be the following graph:

v

p q

w

1

2

3

4 ,

and let v be the vertex labelled v. Then, the subsets of E that infect every
edge are

{1, 2} , {1, 4} , {3, 4} , {1, 2, 3} , {1, 3, 4} , {1, 2, 4} , {2, 3, 4} , {1, 2, 3, 4} .

Thus,

∑
F⊆E infects

every edge e∈E

(−1)|F|

= (−1)2 + (−1)2 + (−1)2 + (−1)3 + (−1)3 + (−1)3 + (−1)3 + (−1)4

= 0,

exactly as predicted by Theorem 1.3.1.

Remark 1.3.3. It might appear more natural to study subsets F ⊆ E infecting
vertices rather than edges. However, Theorem 1.3.1 would be false if we
replaced “every edge e ∈ E” by “every vertex v ∈ V”. The graph in Example
1.3.2 provides a counterexample.

However, if we go further and replace F ⊆ E by W ⊆ V, then we get
something true again – see Theorem 1.3.4 below.

Proof of Theorem 1.3.1. Elser’s proof is somewhat complicated. I give a different
proof in [Grinbe21, Theorem 1.2], which is elementary and nice if I may say so
myself.

My proof should also be not very hard to discover, once you have the follow-
ing hint: It suffices to prove the equality

∑
F⊆E does not infect

every edge e∈E

(−1)|F| = 0

(because the total sum ∑
F⊆E

(−1)|F| is known to be 0). In order to prove this

equality, we equip the set E with some total order (it doesn’t matter how; we
can just rank the edges arbitrarily), and we make the following definition: If
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F ⊆ E is a subset that does not infect every edge e ∈ E, then we let ε (F) be
the smallest (with respect to our chosen total order) edge that is not infected
by F. Now, you can show that if F ⊆ E is a subset that does not infect every
edge e ∈ E, then the set13 F′ := F △ {ε (F)} (that is, the set obtained from F
by inserting ε (F) if ε (F) /∈ F and by removing ε (F) if ε (F) ∈ F) has the same
property (viz., it does not infect every edge e ∈ E) and satisfies ε (F′) = ε (F).
This entails that the addends in the sum ∑

F⊆E does not infect
every edge e∈E

(−1)|F| cancel each

other in pairs (namely, the addend for a given set F cancels the addend for the
set F′ = F △ {ε (F)}), and thus the whole sum is 0.

Elser’s theorem, too, can be generalized and strengthened. The strengthen-
ing is similar to what we did with Theorem 1.2.1: We treat the set of all “non-
pandemic-causing subsets” (i.e., of all subsets F ⊆ E that don’t infect every
edge) as a simplicial complex (since a subset of a non-pandemic-causing sub-
set is again non-pandemic-causing), and analyze this complex as a topological
space. The claim of Theorem 1.3.1 then says that the reduced Euler characteris-
tic of this space is 0; but we can actually show that this space is contractible (i.e.,
homotopy-equivalent to a point). Even better, we can prove that the simplicial
complex of all non-pandemic-causing subsets is collapsible (a combinatorial
property that is stronger than contractibility of the corresponding space). See
[Grinbe21, §5] for definitions and proofs.

We can furthermore generalize the theorem. One way to do so is to replace
our “patient zero” v by a set of vertices. This leads to a much less trivial
situation. The recent paper [DHLetc19] by Dorpalen-Barry, Hettle, Livingston,
Martin, Nasr, Vega and Whitlatch proves some results and asks some questions
(that are still open as of 2022).

A different direction in which Elser’s theorem can be generalized is more fun-
damental: It turns out that the theorem is not really about graphs and edges.
Instead, there is a general structure that I call a “shade map”, which always
leads to a certain sum being 0. See [Grinbe21, §4] for the details of this gen-
eralization. I will not explain it here, but I will state one more particular case
of it ([Grinbe21, Theorem 3.2]), which replaces edges by vertices throughout
Theorem 1.3.1:

Theorem 1.3.4 (vertex-Elser’s theorem). Let G = (V, E, φ) be a multigraph
with at least two vertices. Fix a vertex v ∈ V.

13The symbol △ stands for the symmetric difference of two sets. Recall its definition: If X and
Y are two sets, then their symmetric difference X △ Y is defined to be the set

(X ∪ Y) \ (X ∩ Y) = (X \ Y) ∪ (Y \ X)

= {all elements that belong to exactly one of X and Y} .
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If W ⊆ V, then a W-vertex-path shall mean a path p such that all interme-
diate vertices of p belong to W. (Recall that the “intermediate vertices of p”
mean all vertices of p except for the starting and ending points of p.) (Note
that any path of length ≤ 1 is automatically a W-vertex-path, since it has no
intermediate vertices.)

If w ∈ V \ {v} is any vertex, and W ⊆ V \ {v} is any subset, then we say
that W vertex-infects w if there exists a W-vertex-path from v to w. (This is
always true when w is a neighbor of v.)

Then,
∑

W⊆V\{v} vertex-infects
every vertex w∈V\{v}

(−1)|W| = 0.
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