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Math 530 Spring 2022, Lecture 27: Menger’s
theorems

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. More about paths

In this and the next lecture, we will learn a few more things about paths in
graphs and digraphs.

1.1. Menger’s theorems

We begin with a series of fundamental results known as Menger’s theorems
(named after Karl Menger, who discovered one of them in 1927 as an auxiliary
result in a topological study of curves1).

Imagine you have 4 different ways to get from Philadelphia to NYC, all using
different roads (i.e., no piece of road is used by more than one of your 4 ways).
Then, if 3 arbitrary roads get blocked, then you still have a way to get to NYC.

This is obvious (indeed, each blocked road destroys at most one of your 4
paths, so you still have at least one path left undisturbed after 3 roads have
been blocked). A more interesting question is the converse: If the road network
is sufficiently robust that blocking 3 arbitrary roads will not disconnect you
from NYC, does this mean that you can find 4 different ways to NYC all using
different roads?

Menger’s theorems answer this question (and various questions of this kind)
in the positive, in several different setups. Each of these theorems can be
roughly described as “the maximum number of pairwise independent paths
from some place to another place equals the minimum size of a bottleneck that
separates the former from the latter”. Here, the “places” can be vertices or sets
of vertices; the word “independent” can mean “having no arcs in common”
or “having no intermediate vertices in common” or “having no vertices at all
in common”; and the word “bottleneck” can mean a set of arcs or of vertices
whose removal would disconnect the former place from the latter. Here is a
quick overview of all Menger’s theorems that we will prove:2

1See [Schrij03, §9.6e] for more about its history.
2All undefined terminology used here will be defined further below.

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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• for directed graphs:

Theorem ... the places are ... the paths must be ... the bottleneck consists of ...

1.1.6 vertices arc-disjoint arcs

1.1.10 vertices arc-disjoint arcs of a cut

1.1.18 sets of vertices arc-disjoint arcs of a cut

1.1.32 vertices internally vertex-disjoint vertices ∈ V \ {s, t}

1.1.36 sets of vertices internally vertex-disjoint vertices ∈ V \ (X ∪ Y)

1.1.39 sets of vertices vertex-disjoint vertices ∈ V

• for undirected graphs:

Theorem ... the places are ... the paths must be ... the bottleneck consists of ...

1.1.22 vertices edge-disjoint edges

1.1.25 vertices edge-disjoint edges of a cut

1.1.42 vertices internally vertex-disjoint vertices ∈ V \ {s, t}

1.1.44 sets of vertices internally vertex-disjoint vertices ∈ V \ (X ∪ Y)

1.1.45 sets of vertices vertex-disjoint vertices ∈ V

(I could state more, but I don’t want this to go on forever.)

1.1.1. The arc-Menger theorem for directed graphs

We begin with the most natural setup: a directed graph (one-way roads) with
roads being arcs. The following definitions will help keep the theorems short:

Definition 1.1.1. Two walks p and q in a digraph are said to be arc-disjoint
if they have no arc in common.

Example 1.1.2. The following picture shows two arc-disjoint paths p and q
(they can be told apart by their labels: each arc of p is labelled with a “p”,
and likewise for q):

p
p p

q q

q

.
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The following picture shows two paths r and s that are not arc-disjoint (the
common arc is marked with “r, s”):

r
r, s

s s .

Definition 1.1.3. Let D = (V, A, ψ) be a multidigraph, and let s and t be two
vertices of D. A subset B of A is said to be an s-t-arc-separator if each path
from s to t contains at least one arc from B. Equivalently, a subset B of A
is said to be an s-t-arc-separator if the multidigraph

(
V, A \ B, ψ |A\B

)
has

no path from s to t (in other words, removing from D all arcs contained in B
destroys all paths from s to t).

Example 1.1.4. Let D = (V, A, ψ) be the following multidigraph:

s a

c b

t

ε
α

γδ

β

.

Then, the set {α, γ} is not an s-t-arc-separator (since the path drawn in blue
contains no arc from this set). However, the set {β, γ} is an s-t-arc-separator,
and so is the set {δ, ε}. Of course, any set that contains any of {β, γ} and
{δ, ε} as a subset is therefore an s-t-arc-separator as well.

Example 1.1.5. Let D be a multidigraph. Let s and t be two vertices of D.
Then, the empty set ∅ is an s-t-arc-separator if and only if D has no path
from s to t. This degenerate case should not be forgotten!

We can now state the first Menger’s theorem:

Theorem 1.1.6 (arc-Menger theorem for directed graphs, version 1). Let D =
(V, A, ψ) be a multidigraph, and let s and t be two distinct vertices of D.
Then, the maximum number of pairwise arc-disjoint paths from s to t equals
the minimum size of an s-t-arc-separator.
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Example 1.1.7. Let D be the multidigraph from Example 1.1.4. Then, the min-
imum size of an s-t-arc-separator is 2 (indeed, {β, γ} is an s-t-arc-separator
of size 2, and it is easy to see that there are no s-t-arc-separators of smaller
size). Hence, Theorem 1.1.6 yields that the maximum number of pairwise
arc-disjoint paths from s to t is 2 as well. And indeed, we can easily find
2 arc-disjoint paths from s to t, namely the red and the blue paths in the
following figure:

s a

c b

t
δ

βε
α

γ

.

Before proving Theorem 1.1.6, let me state another variant of this theorem,
which is closer to the proof. First, some notations:

Definition 1.1.8. Let D = (V, A, ψ) be a multidigraph, and let s and t be two
distinct vertices of D.

(a) For each subset S of V, we set S := V \ S and[
S, S

]
:= {a ∈ A | the source of a belongs to S,

and the target of a belongs to S
}

.

(These are the same definitions that we introduced for networks in Lec-
ture 26.)

(b) An s-t-cut means a subset of A that has the form
[
S, S

]
, where S is a

subset of V that satisfies s ∈ S and t /∈ S. (This was just called a “cut”
back in Lecture 26.)

An s-t-cut is called this way because its removal would cut the vertex s from
the vertex t. More precisely:

Remark 1.1.9. Let D = (V, A, ψ) be a multidigraph, and let s and t be two
distinct vertices of D. Then, any s-t-cut is an s-t-arc-separator.

Proof. Let B be an s-t-cut. We must prove that B is an s-t-arc-separator. In other
words, we must prove that each path from s to t contains at least one arc from
B.
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We know that B is an s-t-cut. In other words, B =
[
S, S

]
, where S is a subset

of V that satisfies s ∈ S and t /∈ S. Consider this subset S.
Each path from s to t starts at a vertex in S (since s ∈ S) and ends at a

vertex outside of S (since t /∈ S). Thus, each such path has to escape the set
S at some point – i.e., it must contain an arc whose source is in S and whose
target is outside of S. But such an arc must necessarily belong to

[
S, S

]
(by

the definition of
[
S, S

]
). Thus, each path from s to t must contain an arc from[

S, S
]
. In other words, each path from s to t must contain an arc from B (since

B =
[
S, S

]
). In other words, B is an s-t-arc-separator (by the definition of an

s-t-arc-separator). This proves Remark 1.1.9.

Theorem 1.1.10 (arc-Menger theorem for directed graphs, version 2). Let D =
(V, A, ψ) be a multidigraph, and let s and t be two distinct vertices of D.
Then, the maximum number of pairwise arc-disjoint paths from s to t equals
the minimum size of an s-t-cut.

Example 1.1.11. Let D be the following multidigraph:

s a

b

c

d

e

f

g

t

.

Then, the maximum number of pairwise arc-disjoint paths from s to t is 3.
Indeed, the following picture shows 3 such paths in red, blue and brown,
respectively:

s a

b

c

d

e

f

g

t

.

More than 3 pairwise arc-disjoint paths from s to t cannot exist in D, since
(e.g.) there are only 3 arcs outgoing from s.
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By Theorem 1.1.10, this shows that the minimum size of an s-t-cut in D is
3 as well. There are many s-t-cuts of size 3 (for instance, the “obvious” cut[
{s} , {s}

]
has this property, as does the s-t-cut

[
{s, a, f } , {s, a, f }

]
).

Let us now reverse of the direction of the arc from c to e in D (thus de-
stroying the brown path). The resulting multidigraph D′ looks as follows:

s a

b

c

d

e

f

g

t

.

This digraph D′ has no more than 2 pairwise arc-disjoint paths from s to t.
This can be seen by observing that the s-t-cut

[
{s, c} , {s, c}

]
has size 2 (it

consists of the arc from s to a and the arc from s to b), so that the minimum
size of an s-t-cut is at most 2, and therefore (by Theorem 1.1.10) the maximum
number of pairwise arc-disjoint paths from s to t is at most 2 as well. It is
easy to see that the latter number is exactly 2 (since our red and blue paths
still exist in D′).

To prove the above two arc-Menger theorems, we need one more lemma
about networks. We recall the notations from Lecture 26, and introduce a cou-
ple more:

Definition 1.1.12. Let D = (V, A, ψ) be a multidigraph. Let f , g : A → N be
two maps. Then:

(a) We let f + g denote the map from A to N that sends each arc a ∈ A to
f (a) + g (a). (This is the pointwise sum of f and g.)

(b) We write g ≤ f if and only if each arc a ∈ A satisfies g (a) ≤ f (a).

(c) If g ≤ f , then we let f − g denote the map from A to N that sends each
arc a ∈ A to f (a)− g (a). (This is really a map to N, since g ≤ f entails
g (a) ≤ f (a).)

These notations satisfy the properties that you’d expect: e.g., the pointwise
sum of maps from A to N is associative (meaning that ( f + g) + h = f +
(g + h), so that you can write f + g + h for both sides); inequalities can be
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manipulated in the usual way (e.g., we have f − g ≤ h if and only if f ≤ g + h).
Verifying this all is straightforward.

The following definition codifies the flows that we constructed in Remark
1.1.9 in Lecture 26:

Definition 1.1.13. Let N be a network consisting of a multidigraph D =
(V, A, ψ), a source s ∈ V, a sink t ∈ V and a capacity function c : A → N.
Let p be a path from s to t in D. Then, we define a map fp : A → N by
setting

fp (a) =

{
1, if a is an arc of p;
0, otherwise

for each a ∈ A.

We call this map fp the path flow of p. It is an actual flow of value 1 if all
the arcs of p have capacity ≥ 1.

Example 1.1.14. Consider the following network:

1

2

3

4

5

6

s t

,

where each arc has capacity 1. Then, the path p = (s, 2, 6, t) leads to the
following path flow fp:

1

2

3

4

5

6

s t

0

0

1

0

0

1

0

0

0

1

.

Here, in order not to crowd the picture, we have left out the “of 1” part of
the label of each arc (so you should read the “0”s and the “1”s atop the arcs
as “0 of 1” and “1 of 1”, respectively).
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The path flow thus turns any path from s to t in a network into a flow,
provided that the arcs have enough capacity to carry this flow. If we have m
paths p1, p2, . . . , pm from s to t, then we can add their path flows together,
and obtain a flow fp1 + fp2 + · · · + fpm of value m, provided (again) that the
arcs have enough capacity for it. (In general, we cannot uniquely reconstruct
p1, p2, . . . , pm back from this latter flow, as they might have gotten “mixed to-
gether”.)

Our next lemma can be viewed as a (partial) converse of this observation:
Any flow f of value m “contains” a sum fp1 + fp2 + · · ·+ fpm of m path flows
fp1 , fp2 , . . . , fpm corresponding to m (not necessarily distinct) paths p1, p2, . . . , pm
from s to t. Here, the word “contains” signals that f is not necessarily equal to
fp1 + fp2 + · · ·+ fpm , but only satisfies fp1 + fp2 + · · ·+ fpm ≤ f in general. So
here is the lemma:

Lemma 1.1.15 (flow path decomposition lemma). Let N be a network con-
sisting of a multidigraph D = (V, A, ψ), a source s ∈ V, a sink t ∈ V and a
capacity function c : A → N. Let f be a flow on N that has value m. Then,
there exist m paths p1, p2, . . . , pm from s to t in D such that

fp1 + fp2 + · · ·+ fpm ≤ f .

Proof. We induct on m.
The base case (m = 0) is obvious (since the empty sum fp1 + fp2 + · · ·+ fpm is

the zero flow, and thus is ≤ f because of the capacity constraints).
Induction step: Let m be a positive integer. Assume (as the induction hypoth-

esis) that the lemma holds for m − 1. We must prove the lemma for m.
So we consider a flow f on N that has value m. We need to show that there

exist m paths p1, p2, . . . , pm from s to t in D such that fp1 + fp2 + · · ·+ fpm ≤ f .
We shall first find some path p from s to t such that fp ≤ f .
We shall refer to the arcs a ∈ A satisfying f (a) > 0 as the active arcs. Let

A′ := {a ∈ A | f (a) > 0} be the set of these active arcs. Consider the spanning
subdigraph D′ := (V, A′, ψ |A′) of D.

Let S be the set of all vertices v ∈ V such that D′ has a path from s to v. Then,
s ∈ S (since the trivial path (s) is a path of D′).

We next claim that each arc b ∈
[
S, S

]
satisfies f (b) = 0.

[Proof: Assume the contrary. Thus, some arc b ∈
[
S, S

]
satisfies f (b) ̸= 0.

Consider this b. From f (b) ̸= 0, we obtain f (b) > 0 (since f is a flow), thus
b ∈ A′ (by the definition of A′). Hence, b is an arc of D′ (by the definition of
D′).

Let u be the source of the arc b, and v its target. Since b ∈
[
S, S

]
, we therefore

have u ∈ S and v ∈ S. Since u ∈ S, the digraph D′ has a path p from s to u (by
the definition of S). Consider this path p. Appending the arc b and the vertex
v at the end of this path p, we obtain a walk from s to v in D′ (since b is an arc
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of D′ with source u and target v). Hence, the digraph D′ has a walk from s to
v, thus also a path from s to v (by Corollary 1.2.8 in Lecture 10). This means
that v ∈ S (by the definition of S). But this contradicts v ∈ S = V \ S. This
contradiction shows that our assumption was wrong, qed.]

We thus have proved that each b ∈
[
S, S

]
satisfies f (b) = 0. Therefore,

f
(
S, S

)
= 0 (using the notations of Definition 1.1.5 (d) from Lecture 26). How-

ever, recall that s ∈ S. Thus, if we had t /∈ S, then Proposition 1.2.2 (b) in
Lecture 26 would yield

| f | = f
(
S, S

)︸ ︷︷ ︸
=0

− f
(
S, S

)︸ ︷︷ ︸
≥0

≤ 0 − 0 = 0,

which would contradict | f | = m > 0. Hence, we must have t ∈ S. In other
words, the digraph D′ has a path from s to t (by the definition of S). Let p
be this path. Then, p is also a path in D and satisfies fp ≤ f 3. Therefore,
f − fp is a map from A to N. Moreover, f − fp is again a flow4, and has
value

∣∣ f − fp
∣∣ = m − 1 5. Thus, by the induction hypothesis, we can apply

Lemma 1.1.15 to m − 1 and f − fp instead of m and f . As a result, we conclude
that there exist m − 1 paths p1, p2, . . . , pm−1 from s to t in D such that fp1 +
fp2 + · · ·+ fpm−1 ≤ f − fp. Consider these m − 1 paths p1, p2, . . . , pm−1, and set
pm := p. Then, fp1 + fp2 + · · ·+ fpm−1 ≤ f − fp = f − fpm (since p = pm), so
that fp1 + fp2 + · · ·+ fpm ≤ f .

Thus, we have found m paths p1, p2, . . . , pm from s to t in D such that fp1 +
fp2 + · · ·+ fpm ≤ f . But this is precisely what we wanted. Thus, the induction
step is complete, and Lemma 1.1.15 is proved.

Remark 1.1.16. There exists an alternative proof of Lemma 1.1.15, which is
too nice to leave unmentioned. Here is a quick outline: Consider a new
multidigraph that is obtained from D by replacing each arc a by f (a) many
parallel arcs (if f (a) = 0, this means that a is simply removed). Add m
many arcs from t to s to this new multidigraph. The resulting digraph is
balanced (because of the conservation constraints for f ). It may fail to be

3Proof. We need to prove that each arc a ∈ A satisfies fp (a) ≤ f (a).
So let a ∈ A be an arc. If a is not an arc of p, then the definition of fp yields fp (a) = 0 ≤

f (a) (since f is a flow), so we are done in this case. Hence, assume WLOG that a is an arc of
p. Thus, a is an arc of D′ (since p is a path of D′). In other words, a ∈ A′. By the definition
of A′, this means that f (a) > 0. Since f (a) is an integer, we thus have f (a) ≥ 1 = fp (a)
(since a is an arc of p). In other words, fp (a) ≤ f (a). This is precisely what we wanted to
prove.

4Here, we are using the fact (which is straightforward to prove) that if g and h are two flows
with h ≤ g, then g − h is again a flow.

5Here, we are using the fact (which is straightforward to prove) that if g and h are two flows
satisfying h ≤ g, then |g − h| = |g| − |h|. Applying this fact to g = f and h = fp, we obtain∣∣ f − fp

∣∣ = | f |︸︷︷︸
=m

−
∣∣ fp

∣∣︸︷︷︸
=1

= m − 1.
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weakly connected; however, the vertices s and t belong to the same weak
component of it (as long as m > 0). Hence, applying the directed Euler-
Hierholzer theorem (Theorem 1.4.2 (a) in Lecture 10) to this component, we
see that this component has a Eulerian circuit. Cutting the m arcs from t
to s out of this circuit, we obtain m arc-disjoint walks from s to t. Each of
these m walks contains some path from s to t, and thus we obtain m paths
p1, p2, . . . , pm from s to t in D such that fp1 + fp2 + · · ·+ fpm ≤ f .

Remark 1.1.17. Let N be a network consisting of a multidigraph D =
(V, A, ψ), a source s ∈ V, a sink t ∈ V and a capacity function c : A → N. If
c is a cycle of D, then we can define a map fc : A → N by setting

fc (a) =

{
1, if a is an arc of c;
0, otherwise

for each a ∈ A.

We call this map fc the cycle flow of c. It is an actual flow of value 0 if all the
arcs of c have capacity ≥ 1.

Now, the conclusion of Lemma 1.1.15 can be improved as follows: There
exist m paths p1, p2, . . . , pm from s to t in D as well as a (possibly empty)
collection of cycles c1, c2, . . . , ck of D such that

f =
(

fp1 + fp2 + · · ·+ fpm

)
+ ( fc1 + fc2 + · · ·+ fck) .

Proving this improved claim is a bit harder than proving Lemma 1.1.15,
but not by too much (in particular, the argument in Remark 1.1.16 can be
adapted, since a walk becomes a path if we successively remove all cycles
from it).

Proof of Theorem 1.1.10. We make D into a network N (with source s and sink
t) by assigning the capacity 1 to each arc a ∈ A. Clearly, a cut of this network
is the same as what we call an s-t-cut. Moreover, the capacity c

(
S, S

)
of a cut[

S, S
]

is simply the size of this cut (since each arc has capacity 1).
The max-flow-min-cut theorem (Theorem 1.3.3 in Lecture 26) tells us that

the maximum value of a flow equals the minimum capacity of a cut, i.e., the
minimum size of an s-t-cut (because, as we just explained, a cut is the same
as an s-t-cut, and its capacity is simply its size). It thus remains to show that
the maximum value of a flow is the maximum number of pairwise arc-disjoint
paths from s to t. But this is easy by now:

• If you have a flow f of value m, then you can find m pairwise arc-disjoint
paths from s to t (because Lemma 1.1.15 gives you m paths p1, p2, . . . , pm
such that fp1 + fp2 + · · ·+ fpm ≤ f , and the latter inequality tells you that
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these m paths p1, p2, . . . , pm are arc-disjoint6). Thus,

(the maximum number of pairwise arc-disjoint paths from s to t)
≥ (the maximum value of a flow) . (1)

• Conversely, if you have m pairwise arc-disjoint paths p1, p2, . . . , pm from
s to t, then you obtain a flow of value m (namely, fp1 + fp2 + · · ·+ fpm is

6Proof. Assume the contrary. Thus, these m paths are not arc-disjoint. In other words, there
exists an arc a that is used by two paths pi and pj with i ̸= j. Consider this arc a and
the corresponding indices i and j. Since a is used by pi, we have fpi (a) = 1. Likewise,
fpj (a) = 1. However, fp1 + fp2 + · · ·+ fpm ≤ f , so that(

fp1 + fp2 + · · ·+ fpm

)
(a) ≤ f (a) ≤ c (a) (by the capacity constraints)

= 1 (since each arc has capacity 1) .

Thus,

1 ≥
(

fp1 + fp2 + · · ·+ fpm

)
(a) = fp1 (a) + fp2 (a) + · · ·+ fpm (a)

≥ fpi (a)︸ ︷︷ ︸
=1

+ fpj (a)︸ ︷︷ ︸
=1


since fpi (a) and fpj (a) are two distinct addends

of the sum fp1 (a) + fp2 (a) + · · ·+ fpm (a)
(because i ̸= j), and since all the remaining

addends are ≥ 0 (since fp (a) ≥ 0 for each path p)


= 1 + 1 > 1,

which is absurd. This contradiction shows that our assumption was false, qed.
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such a flow7). Thus,

(the maximum value of a flow)

≥ (the maximum number of pairwise arc-disjoint paths from s to t) .

Combining this last inequality with (1), we obtain

(the maximum number of pairwise arc-disjoint paths from s to t)
= (the maximum value of a flow)

= (the minimum size of an s-t-cut) (as we have proved before) .

Thus, Theorem 1.1.10 is proved.

Theorem 1.1.10 can also be proved without using network flows (see, e.g.,
[Schrij17, Corollary 4.1b] for such a proof).

Proof of Theorem 1.1.6. Let x denote the maximum number of pairwise arc-disjoint
paths from s to t.

Let nc denote the minimum size of an s-t-cut.
Let ns denote the minimum size of an s-t-arc-separator.8

Theorem 1.1.10 says that x = nc. Our goal is to prove that x = ns.

7Proof. First, we observe that the map fp1 + fp2 + · · · + fpm satisfies the conservation con-
straints (because it is the sum of the functions fp1 , fp2 , . . . , fpm , each of which satisfies the
conservation constraints). Let us now check that it satisfies the capacity constraints.

Indeed, let a ∈ A be an arc. Then, a belongs to at most one of the m paths p1, p2, . . . , pm
(since these m paths are arc-disjoint). In other words, at most one of the m numbers
fp1 (a) , fp2 (a) , . . . , fpm (a) equals 1; all the remaining numbers equal 0. Hence, the sum
fp1 (a) + fp2 (a) + · · ·+ fpm (a) of these m numbers equals either 1 or 0; in either case, we
thus have fp1 (a) + fp2 (a) + · · ·+ fpm (a) ∈ {0, 1}. Now,(

fp1 + fp2 + · · ·+ fpm

)
(a) = fp1 (a) + fp2 (a) + · · ·+ fpm (a) ∈ {0, 1} ,

so that
0 ≤

(
fp1 + fp2 + · · ·+ fpm

)
(a) ≤ 1 = c (a)

(since each arc has capacity 1). Since we have proved this for each arc a ∈ A, we thus have
shown that the map fp1 + fp2 + · · ·+ fpm satisfies the capacity constraints. Hence, this map
is a flow (since it also satisfies the conservation constraints).

It remains to show that the value of this flow is m. But this is easy: For any flows
g1, g2, . . . , gk, we have |g1 + g2 + · · ·+ gk| = |g1|+ |g2|+ · · ·+ |gk| (this is straightforward
to see from the definition of value). Thus,

∣∣ fp1 + fp2 + · · ·+ fpm

∣∣ = ∣∣ fp1

∣∣+ ∣∣ fp2

∣∣+ · · ·+
∣∣ fpm

∣∣ = m

∑
k=1

∣∣ fpk

∣∣︸︷︷︸
=1

=
m

∑
k=1

1 = m.

In other words, the value of the flow fp1 + fp2 + · · ·+ fpm is m.
8If you are wondering why we chose the baroque notations “x”, “nc” and “ns” for these

three numbers: The letter “x” appears in “maximum”, whereas the letter “n” appears in
“minimum”. The subscripts “c” and “s” should be reasonably clear.



Lecture 27, version April 4, 2025 page 13

Remark 1.1.9 shows that any s-t-cut is an s-t-arc-separator. Thus, ns ≤ nc.
The inequality x ≤ ns follows easily from the pigeonhole principle9. Com-

bining this with ns ≤ nc = x (since x = nc), we obtain x = ns. Thus, Theorem
1.1.6 is proved.

We can also extend the arc-Menger theorem to paths between different pairs
of vertices:

Theorem 1.1.18 (arc-Menger theorem for directed graphs, multi-terminal ver-
sion). Let D = (V, A, ψ) be a multidigraph, and let X and Y be two disjoint
subsets of V.

A path from X to Y shall mean a path whose starting point belongs to X
and whose ending point belongs to Y.

An X-Y-cut shall mean a subset of A that has the form
[
S, S

]
, where S is a

subset of V that satisfies X ⊆ S and Y ⊆ S.
Then, the maximum number of pairwise arc-disjoint paths from X to Y

equals the minimum size of an X-Y-cut.

Example 1.1.19. Here is an example of a digraph D = (V, A, ψ), with two
disjoint subsets X and Y of V drawn as ovals:

X

Y .

9Proof. We know that there exist x pairwise arc-disjoint paths from s to t (by the definition of
x). Let p1, p2, . . . , px be these x paths.

We know that there exists an s-t-arc-separator of size ns (by the definition of ns). Let B
be this s-t-arc-separator. Thus, each path from s to t contains at least one arc from B (by
the definition of an s-t-arc-separator). Hence, in particular, each of the x paths p1, p2, . . . , px
contains at least one arc from B. These altogether x arcs must be distinct (since the x paths
p1, p2, . . . , px are arc-disjoint); thus, we have found at least x arcs that belong to B. This
shows that |B| ≥ x. However, B has size ns; in other words, we have |B| = ns. Thus,
ns = |B| ≥ x, so that x ≤ ns.
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In this digraph D, the maximum number of pairwise arc-disjoint paths from
X to Y is 2; here are two such paths (marked in red and blue):

X

Y .

According to Theorem 1.1.18, the minimum size of an X-Y-cut must thus
also be 2. And indeed, here is such an X-Y-cut:

X

Y

S S

.

Proof of Theorem 1.1.18. We transform our digraph D = (V, A, ψ) into a new
multidigraph D′ = (V′, A′, ψ′) as follows:

• We replace all the vertices in X by a single (new) vertex s, and replace all
the vertices in Y by a single (new) vertex t. (Thus, formally speaking, we
set V′ = (V \ (X ∪ Y)) ∪ {s, t}, where s and t are two objects not in V.)
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For any vertex p ∈ V, we define a vertex p′ ∈ V′ by

p′ =


s, if p ∈ X;
t, if p ∈ Y;
p, otherwise.

We refer to this vertex p′ as the projection of p.

• We keep all the arcs of D around, but we replace all their endpoints (i.e.,
sources and targets) by their projections (thus, any endpoint in X gets
replaced by s, and any endpoint in Y gets replaced by t, while an endpoint
that belongs neither to X nor to Y stays unchanged). For example, an arc
with source in X becomes an arc with source in s. (Formally speaking,
this means the following: We set A′ = A and we define the map ψ′ :
A′ → V′ × V′ as follows: For any a ∈ A′ = A, we set ψ′ (a) = (u′, v′),
where (u, v) = ψ (a).)

For instance, if D is the digraph from Example 1.1.19, then D′ looks as fol-
lows:

s t

.

Now, Theorem 1.1.10 (applied to D′ = (V′, A′, ψ′) instead of D = (V, A, ψ))
shows that the maximum number of pairwise arc-disjoint paths from s to t in
D′ equals the minimum size of an s-t-cut in D′.

Let us now connect this with the claim that we want to prove. It is easy to
see that the minimum size of an s-t-cut in D′ equals the minimum size of an
X-Y-cut in D (indeed, the s-t-cuts in D′ are precisely the X-Y-cuts in D 10).
If we can also show that the maximum number of pairwise arc-disjoint paths
from s to t in D′ equals the maximum number of pairwise arc-disjoint paths

10In more detail:

• Any s-t-cut in D′ has the form
[
S, S

]
for some subset S of V′ satisfying s ∈ S and

t /∈ S; it is therefore equal to the set
[
S′, S′

]
, where S′ is the subset of V given by

S′ := (S \ {s}) ∪ X. Therefore, it is an X-Y-cut in D.

• Conversely, any X-Y-cut in D has the form
[
S, S

]
for some subset S of V satisfying

X ⊆ S and Y ⊆ S; it is therefore equal to the set
[
S′, S′

]
, where S′ is the subset of V′

given by S′ := (S \ X) ∪ {s}. Therefore, it is an s-t-cut in D′.
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from X to Y in D, then the result of the preceding paragraph will thus become
the claim of Theorem 1.1.18, so we will be done.

So how can we show that the maximum number of pairwise arc-disjoint
paths from s to t in D′ equals the maximum number of pairwise arc-disjoint
paths from X to Y in D ? It would be easy if there was a well-behaved bijection
between the former paths and the latter paths that preserves the arcs of any
path, but this is not quite the case. Each path from X to Y in D becomes a walk
from s to t in D′ if we replace each of its vertices by its projection. However, the
latter walk is not necessarily a path, since different vertices can have the same
projection.

Fortunately, this is easy to fix. If we have k pairwise arc-disjoint paths from
X to Y in D, then we can turn them into k pairwise arc-disjoint walks from s to
t in D′, and then we also obtain k pairwise arc-disjoint paths from s to t in D′

(since any walk from s to t contains a path from s to t). Thus,(
the maximum number of pairwise arc-disjoint paths from s to t in D′)
≥ (the maximum number of pairwise arc-disjoint paths from X to Y in D) .

Conversely, if we have k pairwise arc-disjoint paths from s to t in D′, then
we can “lift” these k paths back to the digraph D (preserving the arcs, and
replacing the vertices s and t by appropriate vertices in X and Y to make them
belong to the right arcs), and thus obtain k pairwise arc-disjoint paths from X
to Y in D. Thus,

(the maximum number of pairwise arc-disjoint paths from X to Y in D)

≥
(
the maximum number of pairwise arc-disjoint paths from s to t in D′) .

Combining these two inequalities, we obtain(
the maximum number of pairwise arc-disjoint paths from s to t in D′)
= (the maximum number of pairwise arc-disjoint paths from X to Y in D) .

As explained above, this completes the proof of Theorem 1.1.18.

1.1.2. The edge-Menger theorem for undirected graphs

We shall now state analogues of Theorem 1.1.6 and Theorem 1.1.10 for undi-
rected graphs. First, the unsurprising definitions:

Definition 1.1.20. Two walks p and q in a graph are said to be edge-disjoint
if they have no edge in common.

Definition 1.1.21. Let G = (V, E, φ) be a multigraph, and let s and t be two
vertices of G. A subset B of E is said to be an s-t-edge-separator if each path
from s to t contains at least one edge from B. Equivalently, a subset B of E is
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said to be an s-t-edge-separator if the multigraph
(

V, E \ B, φ |E\B

)
has no

path from s to t (in other words, removing from G all edges contained in B
destroys all paths from s to t).

Now comes the analogue of Theorem 1.1.6:

Theorem 1.1.22 (edge-Menger theorem for undirected graphs, version 1).
Let G = (V, E, φ) be a multigraph, and let s and t be two distinct vertices of
G. Then, the maximum number of pairwise edge-disjoint paths from s to t
equals the minimum size of an s-t-edge-separator.

To state the analogue of Theorem 1.1.10, we need to first adopt Definition
1.1.8 to undirected graphs:

Definition 1.1.23. Let G = (V, E, φ) be a multigraph, and let s and t be two
distinct vertices of G.

(a) For each subset S of V, we set S := V \ S and[
S, S

]
und := {e ∈ E | one endpoint of e belongs to S,

while the other belongs to S
}

.

(b) An (undirected) s-t-cut means a subset of E that has the form
[
S, S

]
und,

where S is a subset of V that satisfies s ∈ S and t /∈ S.

The following remark is an analogue of Remark 1.1.9:

Remark 1.1.24. Let G = (V, E, φ) be a multigraph, and let s and t be two
distinct vertices of G. Then, any (undirected) s-t-cut is an s-t-edge-separator.

Proof. Analogous to the proof of Remark 1.1.9.

And here is the analogue of Theorem 1.1.10:

Theorem 1.1.25 (edge-Menger theorem for undirected graphs, version 2).
Let G = (V, E, φ) be a multigraph, and let s and t be two distinct vertices of
G. Then, the maximum number of pairwise edge-disjoint paths from s to t
equals the minimum size of an (undirected) s-t-cut.

Proof of Theorem 1.1.25. We shall not prove this from scratch, but rather derive
this from the directed version (Theorem 1.1.10).
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Namely, we apply Theorem 1.1.10 to11 D = Gbidir. We thus see that the
maximum number of pairwise arc-disjoint paths from s to t (in Gbidir) equals
the minimum size of an s-t-cut (in Gbidir). This is similar to the claim that
we want to prove, but not quite the same statement, because Gbidir is not G.
To obtain the claim that we want to prove, we must prove the following two
claims:

Claim 1: The maximum number of pairwise arc-disjoint paths from s
to t (in Gbidir) equals the maximum number of pairwise edge-disjoint
paths from s to t (in G).

Claim 2: The minimum size of a directed s-t-cut12 (in Gbidir) equals
the minimum size of an (undirected) s-t-cut (in G).

Claim 2 is very easy to verify, since the directed s-t-cuts in Gbidir are essen-
tially the same as the undirected s-t-cuts in G 13.

It remains to verify Claim 1. The simplest approach is to argue that each path
from s to t in Gbidir becomes a path from s to t in G (just replace each arc of
the path by the corresponding undirected edge). Unfortunately, this alone does
not suffice, since two arc-disjoint paths in Gbidir won’t necessarily become edge-
disjoint paths in G. Here is an example of how this can go wrong (imagine that
the two arcs between u and v come from the same edge of G, and the two paths
are marked red and blue):

s u v t

. (2)

If we replace each arc by the corresponding edge here, then the two paths will
no longer be edge-disjoint (since the edge between u and v will be used by both
paths).

11Recall that Gbidir is the multidigraph obtained from G by replacing each edge by two arcs in
opposite directions. (If the edge has endpoints u and v, then one of the two arcs has source
u and target v, while the other has source v and target u.) See Definition 1.1.1 in Lecture 10
for a formal definition.

12A “directed s-t-cut” here simply means an s-t-cut in a digraph.
13In more detail: If S is a subset of V that satisfies s ∈ S and t /∈ S, then the directed s-t-cut[

S, S
]

in Gbidir and the undirected s-t-cut
[
S, S

]
und in G have the same size (because each

edge in
[
S, S

]
und corresponds to exactly one arc in

[
S, S

]
). Thus, the sizes of the directed s-t-

cuts in Gbidir are exactly the sizes of the undirected s-t-cuts in G. In particular, the minimum
size of a former cut equals the minimum size of a latter cut. This proves Claim 2.



Lecture 27, version April 4, 2025 page 19

However, this kind of situation can be averted. To do this, we let k be the
maximum number of pairwise arc-disjoint paths from s to t in Gbidir. We now
choose k pairwise arc-disjoint paths p1, p2, . . . , pk from s to t in Gbidir in such
a way that their total length (i.e., the sum of the lengths of p1, p2, . . . , pk) is as
small as possible. Then, it is easy to see that these paths p1, p2, . . . , pk become
edge-disjoint paths in G when we replace each arc by the corresponding edge.

[Proof: Assume the contrary. Thus, two of these paths p1, p2, . . . , pk end up sharing
an edge when we replace each arc by the corresponding edge. Let pi and pj be these
two paths (where i ̸= j, of course). Let e be the edge that they end up sharing, and let
u and v be the two endpoints of e, in the order in which they appear on pi. Hence, the
path pi uses the edge e (or, more precisely, one of the two arcs of Gbidir corresponding
to e) to get from u to v.

Since the paths pi and pj are arc-disjoint, they cannot both use the edge e in the same
direction (because this would mean that pi and pj share the same arc of Gbidir). Hence,
the path pj uses the edge e to get from v to u (since the path pi uses the edge e to get
from u to v). Hence, the paths pi and pj have the following forms:

pi = (. . . , u, e1, v, . . .) ;
pj = (. . . , v, e2, u, . . .) ,

where e1 and e2 are the two arcs of Gbidir that correspond to the edge e. Now, let us
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replace the two paths pi and pj by two new walks14

p′
i =

 . . .︸︷︷︸
the part of pi

before u

, u, . . .︸︷︷︸
the part of pj

after u

 and

p′
j =

 . . .︸︷︷︸
the part of pj

before v

, v, . . .︸︷︷︸
the part of pi

after v

 .

These walks p′
i and p′

j are two walks from s to t, and they don’t use any arcs that
were not already used by pi or pj. Thus, they are arc-disjoint from all of the paths
p1, p2, . . . , pk except for pi and pj. Moreover, they are arc-disjoint from each other (since
pi and pj were arc-disjoint, and since the arcs of any path are distinct). Furthermore,
their total length is smaller by 2 than the total length of pi and pj (since they use all
the arcs of pi and pj except for e1 and e2). They are not necessarily paths, but we can
turn them into paths from s to t by successively removing cycles (as in the proof of
Corollary 1.2.8 in Lecture 10). If we do this, we end up with two paths p′′

i and p′′
j from

s to t that are arc-disjoint from each other and from all of the paths p1, p2, . . . , pk except
for pi and pj, and whose total length is smaller by at least 2 than the total length of pi
and pj.

Thus, if we replace pi and pj by these two paths p′′
i and p′′

j (while leaving the
remaining k − 2 of our k paths p1, p2, . . . , pk unchanged), then we obtain k mutually

14Here is an illustration:

pi (in red) and pj (in blue):

s

u

v

te1 e2

p′
i (in red) and p′

j (in blue):

s

u

v

t

.

(The wavy arrows stand not for single arcs, but for sequences of multiple arcs.)
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arc-disjoint paths from s to t whose total length is smaller than the total length of our
original k paths p1, p2, . . . , pk. However, this is absurd, because we chose our original k
pairwise arc-disjoint paths p1, p2, . . . , pk from s to t in such a way that their total length
is as small as possible. This contradiction shows that our assumption was wrong. Thus,
we have proved that the paths p1, p2, . . . , pk become edge-disjoint paths in G when we
replace each arc by the corresponding edge.]

Hence, we have found k pairwise edge-disjoint paths from s to t in G (namely,
the k paths that are obtained from the paths p1, p2, . . . , pk when we replace each
arc by the corresponding edge). This shows that

(the maximum number of pairwise edge-disjoint paths from s to t in G)

≥ k

=
(

the maximum number of pairwise arc-disjoint paths from s to t in Gbidir
)

(by the definition of k). Conversely, we can easily see that(
the maximum number of pairwise arc-disjoint paths from s to t in Gbidir

)
≥ (the maximum number of pairwise edge-disjoint paths from s to t in G)

(since there is an obvious way to transform paths in G into paths in Gbidir (just
replace each edge by one of the two corresponding arcs of Gbidir), and apply-
ing this transformation to edge-disjoint paths of G yields arc-disjoint paths of
Gbidir). Combining these two inequalities, we obtain(

the maximum number of pairwise arc-disjoint paths from s to t in Gbidir
)

= (the maximum number of pairwise edge-disjoint paths from s to t in G) .

This proves Claim 1. As we explained, this concludes the proof of Theorem
1.1.25.

Proof of Theorem 1.1.22. This can be derived from Theorem 1.1.25 and Remark
1.1.24 in the same way as we derived Theorem 1.1.6 from Theorem 1.1.10 and
Remark 1.1.9.

1.1.3. The vertex-Menger theorem for directed graphs

The Menger theorems we have seen so far have been concerned with paths not
having arcs in common. What if we want to avoid common vertices too?

Definition 1.1.26. Let p be a path of some graph or digraph. Then, an inter-
mediate vertex of p shall mean a vertex of p that is neither the starting point
nor the ending point of p.
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Definition 1.1.27. Two paths p and q in a graph or digraph are said to be
internally vertex-disjoint if they have no common intermediate vertices.

Example 1.1.28. The two paths p and q in Example 1.1.2 are arc-disjoint, but
not internally vertex-disjoint.

Here are two internally vertex-disjoint paths p and q:

p
p

p

q
q .

One trivial case of internally vertex-disjoint paths is a path of length ≤ 1:
Namely, a path of length ≤ 1 is internally vertex-disjoint from any path,
including itself (since it has no intermediate vertices).

Definition 1.1.29. Let D = (V, A, ψ) be a multidigraph, and let s and t be
two vertices of D. A subset W of V \ {s, t} is said to be an internal s-t-
vertex-separator if each path from s to t contains at least one vertex from
W. Equivalently, a subset W of V \ {s, t} is said to be an internal s-t-vertex-
separator if the induced subdigraph of D on the set V \ W has no path from
s to t (in other words, removing from D all vertices contained in W destroys
all paths from s to t).

Example 1.1.30. Let D = (V, A, ψ) be the following multidigraph:

s a

c b

t

.

Then, the sets {a, b} and {a, c} are internal s-t-vertex-separators (indeed, re-
moving the vertices a and b cuts off s from the rest of the digraph, whereas
removing the vertices a and c does the same to t), but the sets {a} and {b, c}
are not (since the path from s to t via c and b avoids a, whereas the path from
s to t via a avoids b and c).

Example 1.1.31. Let D = (V, A, ψ) be a multidigraph. Let s and t be two
distinct vertices of D. Then:

(a) The empty set ∅ is an internal s-t-vertex-separator if and only if D has
no path from s to t.
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(b) If D has no arc with source s and target t, then the set V \ {s, t} is an
internal s-t-vertex-separator (since any path from s to t contains at least
one intermediate vertex, and such a vertex must belong to V \ {s, t}).

(c) If D has an arc with source s and target t, then there exists no internal s-
t-vertex-separator (since the “direct” length-1 path from s to t contains
no vertices besides s and t).

Now, we state the analogue of Theorem 1.1.6 and Theorem 1.1.10 for inter-
nally vertex-disjoint paths:

Theorem 1.1.32 (vertex-Menger theorem for directed graphs). Let D =
(V, A, ψ) be a multidigraph, and let s and t be two distinct vertices of D.
Assume that D has no arc with source s and target t. Then, the maximum
number of pairwise internally vertex-disjoint paths from s to t equals the
minimum size of an internal s-t-vertex-separator.

Example 1.1.33. Let D be the following multidigraph:

s

a

b

c

d

e

f

t

.

Then, the maximum number of pairwise internally vertex-disjoint paths from
s to t is 2. Indeed, the following picture shows 2 such paths in red and blue,
respectively:

s

a

b

c

d

e

f

t

.

Why can there be no 3 such paths? This is not obvious from a quick look,
but can be easily derived from Theorem 1.1.32. Indeed, Theorem 1.1.32 yields
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that the maximum number of pairwise internally vertex-disjoint paths from
s to t equals the minimum size of an internal s-t-vertex-separator. Thus, if
the former number was larger than 2, then so would be the latter number.
But this cannot be the case, since the 2-element set {a, f } is easily checked to
be an internal s-t-vertex-separator. Hence, we see that both of these numbers
are 2.

Example 1.1.34. Consider again the digraph D from Example 1.1.11. In that
example, we found 3 pairwise arc-disjoint paths from s to t. These 3 paths
are not internally vertex-disjoint (in fact, the brown path has non-starting
and non-ending vertices in common with both the red and the blue path).
However, there do exist 3 pairwise internally vertex-disjoint paths from s to
t. Can you find them?

Proof of Theorem 1.1.32. We will again derive this from the arc-Menger theorem
(Theorem 1.1.10), applied to an appropriate multidigraph D′ = (V′, A′, ψ′).

What is this multidigraph D′ ? The idea is to modify the digraph D in such
a way that paths having a common vertex become paths having a common arc.
The most natural way to achieve this is to “stretch out” each vertex v of D into a
little arc. In order to do this in a systematic manner, we replace each vertex v of
D by two distinct vertices vi and vo (the notations stand for “v-in” and “v-out”,
and we can think of vi as the “entrance” to v while vo is the “exit” from v) and
an arc vio that goes from vi to vo. Any existing arc a of D becomes a new arc
aoi of D, whose source and target are specified as follows: If a has source u and
target v, then aoi will have source uo and target vi.

Here is an example: If

s

x y

z w

tD =

a

b

d

e

f

c

g

h

i

,
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then

so

xo yo

zo wo

to

si

xi yi

zi wi

ti

D′ =

aoi

boi

doi

eoi

f oi

coi

goi

hoi

ioisio

xio yio

zio wio

tio

(where all arcs of the form aoi for a ∈ A have been colored blue, whereas all arcs
of the form vio for v ∈ V have been colored red). This D′ satisfies the property
that we want it to satisfy: For instance, the two paths

(s, a, x, d, y, g, t) and
(s, b, z, i, y, e, w, h, t)

of D have the vertex y in common, so the corresponding two paths(
so, aoi, xi, xio, xo, doi, yi, yio, yo, goi, ti

)
and(

so, boi, zi, zio, zo, ioi, yi, yio, yo, eoi, wi, wio, wo, hoi, ti
)

of D′ have the arc yio in common. If you think of D as a railway network with
the vertices being train stations and the arcs being train rides, then D′ is a more
detailed version of this network that records a change of platforms as an arc as
well.

Here is a formal definition of the multidigraph D′ = (V′, A′, ψ′) in full gen-
erality:
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• We replace each vertex v of D by two new vertices vi and vo. We call vi an
“in-vertex” and vo an “out-vertex”. The vertex set of D′ will be the set

V′ :=
{

vi | v ∈ V
}

︸ ︷︷ ︸
in-vertices

∪ {vo | v ∈ V}︸ ︷︷ ︸
out-vertices

.

• Each arc a ∈ A is replaced by a new arc aoi, which is defined as follows:
If the arc a ∈ A has source u and target v, then we replace it by a new
arc aoi, which has source uo and target vi. This arc aoi will be called an
“arc-arc” of D′ (since it originates from an arc of D).

• For any vertex v ∈ V of D, we introduce a new arc vio, which has source
vi and target vo. This arc vio will be called a “vertex-arc” of D′ (since it
originates from a vertex of D).

• The arc set of D′ will be the set

A′ :=
{

aoi | a ∈ A
}

︸ ︷︷ ︸
the arc-arcs

∪
{

vio | v ∈ V
}

︸ ︷︷ ︸
the vertex-arcs

.

The map ψ′ : A′ → V′ × V′ is defined as we already explained:

– For any arc-arc aoi ∈ A, we let ψ′ (aoi) :=
(
uo, vi), where (u, v) =

ψ (a).

– For any vertex-arc vio ∈ V, we let ψ′ (vio) :=
(
vi, vo).

Note that D′ is something like a “bipartite digraph”: Each of its arcs goes
either from an out-vertex to an in-vertex or vice versa. Namely, each arc-arc
goes from an out-vertex to an in-vertex, whereas each vertex-arc goes from an
in-vertex to an out-vertex. Thus, on any walk of D′, the arc-arcs and the vertex-
arcs have to alternate.

If p = (v0, a1, v1, a2, v2, . . . , ak, vk) is any nontrivial15 path of D, then we can
define a corresponding path poi of D′ by

poi :=
(

vo
0, aoi

1 , vi
1, vio

1 , vo
1, aoi

2 , vi
2, vio

2 , vo
2, . . . , aoi

k , vi
k

)
.

This path poi is obtained from p by

• replacing the starting point v0 by vo
0;

• replacing the ending point vk by vi
k;

• replacing each other vertex vj by the sequence vi
j, vio

j , vo
j ;

15We say that a path is nontrivial if it has length > 0.



Lecture 27, version April 4, 2025 page 27

• replacing each arc aj by aoi
j .

Informally speaking, this simply means that we stretch out each intermediate
vertex of p to the corresponding arc.

If p is a path from s to t in D, then poi is a path from so to ti in D′. Conversely,
any path from so to ti in D′ must have the form poi, where p is some path from
s to t in D (because on any walk of D′, the arc-arcs and the vertex-arcs have to
alternate). Therefore, the map

{paths from s to t in D} →
{

paths from so to ti in D′
}

,

p 7→ poi (3)

is a bijection. Moreover, two paths p and q of D are internally vertex-disjoint if
and only if the paths poi and qoi are arc-disjoint (since each vertex of a path p
except for its starting and ending points is represented by an arc in poi).

Now, let k be the maximum number of pairwise arc-disjoint paths from so

to ti in D′. Thus, D′ has k pairwise arc-disjoint paths from so to ti. Applying
the inverse of the bijection (3) to these k paths, we obtain k pairwise internally
vertex-disjoint paths from s to t in D (because two paths p and q of D are
internally vertex-disjoint if and only if the paths poi and qoi are arc-disjoint).
Hence,

(the maximum number of pairwise internally vertex-disjoint
paths from s to t in D)

≥ k. (4)

Our next goal is to find an internal s-t-vertex-separator W ⊆ V \ {s, t} of size
|W| ≤ k.

First, we simplify our setting a bit.
A path from s to t cannot contain a loop; nor can it contain an arc with

source t and target s (since the vertices of a path must be distinct). Hence,
we can remove such arcs (i.e., loops as well as arcs with source t and target s)
from D without affecting the meaning of the claim we are proving. Thus, we
WLOG assume that the digraph D has no such arcs. Since we also know (by
assumption) that D has no arc with source s and target t, we thus conclude that
D has no arc with source ∈ {s, t} and target ∈ {s, t} (because each such arc
would either have source s and target t, or have source t and target s, or be a
loop). In other words, each arc of D has at least one endpoint16 distinct from
both s and t.

However, k is the maximum number of pairwise arc-disjoint paths from so to
ti in D′. Therefore, by Theorem 1.1.10 (applied to D′ = (V′, A′, ψ′), so and ti

instead of D = (V, A, ψ), s and t), this number k equals the minimum size of an

16An endpoint of an arc means a vertex that is either the source or the target of this arc.
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so-ti-cut in D′. Hence, there exists an so-ti-cut
[
S, S

]
in D′ such that

∣∣[S, S
]∣∣ = k.

Consider this so-ti-cut
[
S, S

]
. Since

[
S, S

]
is an so-ti-cut, we have S ⊆ V′ and

so ∈ S and ti /∈ S.
Let B :=

[
S, S

]
. Then, |B| =

∣∣[S, S
]∣∣ = k. Moreover, it is easy to see that

sio /∈ B 17 and tio /∈ B 18.
To each vertex w ∈ V′ of D′, we assign a vertex β (w) ∈ V of D as follows: If

w = vi or w = vo for some v ∈ V, then we set β (w) := v. In other words, β (w)
is the vertex v such that w ∈

{
vi, vo}. We shall call β (w) the base of the vertex

w.
For each arc b ∈ B, there exists at least one endpoint w of b such that β (w) ∈

V \ {s, t} 19. We choose such an endpoint w arbitrarily, and we denote its
base β (w) by β (b). We shall call β (b) the basepoint of the arc b. Thus, by
definition, we have

β (b) ∈ V \ {s, t} for each b ∈ B. (5)

We let β (B) denote the set {β (b) | b ∈ B}. Clearly, |β (B)| ≤ |B| = k.

17Proof. If we had sio ∈
[
S, S

]
, then we would have si ∈ S and so ∈ S; however, so ∈ S would

contradict so ∈ S. Thus, we cannot have sio ∈
[
S, S

]
. In other words, we cannot have sio ∈ B

(since B =
[
S, S

]
). Hence, sio /∈ B.

18Proof. If we had tio ∈
[
S, S

]
, then we would have ti ∈ S and to ∈ S; however, ti ∈ S would

contradict ti ∈ S. Thus, we cannot have tio ∈
[
S, S

]
. In other words, we cannot have tio ∈ B

(since B =
[
S, S

]
). Hence, tio /∈ B.

19Proof: Let b ∈ B be an arc. We must prove that there exists at least one endpoint w of b such
that β (w) ∈ V \ {s, t}.

The arc b is either a vertex-arc or an arc-arc. Thus, we are in one of the following two
cases:

Case 1: The arc b is a vertex-arc.
Case 2: The arc b is an arc-arc.
Let us first consider Case 1. In this case, the arc b is a vertex-arc. In other words, b = vio

for some v ∈ V. Consider this v. Then, vio = b ∈ B. Hence, v ̸= s (since v = s would
entail vio = sio /∈ B, which would contradict vio ∈ B) and v ̸= t (since v = t would entail
vio = tio /∈ B, which would contradict vio ∈ B). Therefore, v ∈ V \ {s, t}. Also, clearly, vi

is an endpoint of b and satisfies β
(
vi) = v ∈ V \ {s, t}. Hence, there exists at least one

endpoint w of b such that β (w) ∈ V \ {s, t} (namely, w = vi). Thus, our proof is complete
in Case 1.

Let us now consider Case 2. In this case, the arc b is an arc-arc. In other words, b = aoi

for some a ∈ A. Consider this a. Now, a is an arc of D (since a ∈ A), and thus has at least
one endpoint distinct from both s and t (since we have shown above that each arc of D has
at least one endpoint distinct from both s and t). Let x be this endpoint. Then, x ∈ V \ {s, t}
(since x is distinct from both s and t).

But x is an endpoint of a. In other words, x is either the source or the target of a.
Hence, the arc aoi of D′ either has source xo or has target xi (by the definition of aoi). In
other words, the arc b of D′ either has source xo or has target xi (since b = aoi). Since
β (xo) = x ∈ V \ {s, t} and β

(
xi) = x ∈ V \ {s, t}, we thus conclude that the arc b of D′ has

at least one endpoint w such that β (w) ∈ V \ {s, t} (namely, w = xo if b has source xo, and
w = xi if b has target xi). This completes our proof in Case 2.

Thus, we are done in both Cases 1 and 2, so that our proof is complete.



Lecture 27, version April 4, 2025 page 29

Now, we claim that

every path from s to t (in D) contains a vertex in β (B) . (6)

[Proof of (6): Let p be a path from s to t (in D). We must prove that p contains a
vertex in β (B).

Recall that we have assigned a path poi of D′ to the path p of D. The definition of
poi shows that the base of any vertex of poi is a vertex of p (indeed, if v0, v1, . . . , vk are
the vertices of p, then the vertices of poi are vo

0, vi
1, vo

1, vi
2, vo

2, . . . , vi
k−1, vo

k−1, vi
k, and their

respective bases are v0, v1, v1, v2, v2, . . . , vk−1, vk−1, vk).
The path poi is a path from so to ti (since p is a path from s to t). Hence, it starts at

a vertex in S (since so ∈ S) and ends at a vertex that is not in S (since ti /∈ S). Thus,
this path poi must cross from S into S somewhere. In other words, there exists an arc b
of poi such that the source of b belongs to S but the target of b belongs to S. Consider
this arc b. Thus, b ∈

[
S, S

]
= B, so that β (b) ∈ β (B) (by the definition of β (B)). Both

endpoints of b are vertices of poi (since b is an arc of poi).
Now, consider the basepoint β (b) of this arc b. This basepoint β (b) is the base of an

endpoint of b (by the definition of β (b)). Thus, β (b) is the base of a vertex of poi (since
both endpoints of b are vertices of poi). Hence, β (b) is a vertex of p (since the base of
any vertex of poi is a vertex of p). In other words, the path p contains the vertex β (b).
Since β (b) ∈ β (B), we thus conclude that p contains a vertex in β (B). This proves (6).]

Now, the set β (B) is a subset of V \ {s, t} (since β (b) ∈ V \ {s, t} for each
b ∈ B) and has the property that every path from s to t contains a vertex in
β (B) (by (6)). In other words, β (B) is a subset W ⊆ V \ {s, t} such that every
path from s to t contains a vertex in W. In other words, β (B) is an internal s-t-
vertex-separator (by the definition of an “internal s-t-vertex-separator”). Thus,

(the minimum size of an internal s-t-vertex-separator)
≤ |β (B)| = k
≤ (the maximum number of pairwise internally vertex-disjoint

paths from s to t in D)

(by (4)).
On the other hand, we have

(the minimum size of an internal s-t-vertex-separator)
≥ (the maximum number of pairwise internally vertex-disjoint

paths from s to t in D)

(by the pigeonhole principle20). Combining this inequality with the preceding

20Proof in more detail: Let n be the minimum size of an internal s-t-vertex-separator. Let x be
the maximum number of pairwise internally vertex-disjoint paths from s to t in D. We must
show that n ≥ x.
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one, we obtain

(the minimum size of an internal s-t-vertex-separator)
= (the maximum number of pairwise internally vertex-disjoint

paths from s to t in D) .

This proves Theorem 1.1.32.

There is also a variant of the vertex-Menger theorem similar to what Theorem
1.1.18 did for the arc-Menger theorem. Again, we need some notations first:

Definition 1.1.35. Let D = (V, A, ψ) be a multidigraph, and let X and Y be
two subsets of V.

(a) A path from X to Y shall mean a path whose starting point belongs to
X and whose ending point belongs to Y.

(b) A subset W of V is said to be an X-Y-vertex-separator if each path from
X to Y contains at least one vertex from W. Equivalently, a subset W
of V is said to be an X-Y-vertex-separator if the induced subdigraph of
D on the set V \ W has no path from X to Y (in other words, removing
from D all vertices contained in W destroys all paths from X to Y).

(c) An X-Y-vertex-separator W is said to be internal if it is a subset of
V \ (X ∪ Y) (that is, if it is disjoint from X and from Y).

Assume the contrary. Thus, n < x.
The definition of n shows that there exists an internal s-t-vertex-separator W that has size

n.
The set W is an internal s-t-vertex-separator. In other words, W is a subset of V \ {s, t}

such that every path from s to t contains a vertex in W. Moreover, W has size n; thus,
|W| = n < x.

The definition of x shows that there exist x pairwise internally vertex-disjoint paths from
s to t in D. Let p1, p2, . . . , px be these x paths. Each of these x paths p1, p2, . . . , px must
contain at least one vertex in W (since every path from s to t contains a vertex in W). Since
|W| < x, we thus conclude by the pigeonhole principle that at least two of the x paths
p1, p2, . . . , px must contain the same vertex in W. In other words, there exist two distinct
elements i, j ∈ {1, 2, . . . , x} such that pi and pj contain the same vertex in W. Let w be the
latter vertex. Thus, w ∈ W ⊆ V \ {s, t}. Hence, w is distinct from both s and t. Therefore,
w is an intermediate vertex of pi (since the path pi has starting point s and ending point t).
Likewise, w is an intermediate vertex of pj.

However, the paths pi and pj are internally vertex-disjoint, and thus have no common
intermediate vertex. This contradicts the fact that w is an intermediate vertex of both paths
pi and pj. This contradiction shows that our assumption was false. Hence, n ≥ x is proved,
qed.
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Theorem 1.1.36 (vertex-Menger theorem for directed graphs, multi-terminal
version 1). Let D = (V, A, ψ) be a multidigraph, and let X and Y be two
disjoint subsets of V. Assume that D has no arc with source in X and target
in Y.

Then, the maximum number of pairwise internally vertex-disjoint paths
from X to Y equals the minimum size of an internal X-Y-vertex-separator.

Example 1.1.37. Let D be the following multidigraph:

X
Y

a

b

c .

Then, the maximum number of pairwise internally vertex-disjoint paths from
X to Y is 2; here are two such paths (drawn in red and blue):

X
Y

a

b

c

(there are other choices, of course). The minimum size of an internal X-Y-
vertex-separator is 2 as well; indeed, {a, b} is such an internal X-Y-vertex-
separator. These two numbers are equal, just as Theorem 1.1.36 predicts.

Proof of Theorem 1.1.36. We define a new multidigraph D′ = (V′, A′, ψ′) as in
the proof of Theorem 1.1.18. Then, D′ has no arc with source s and target t
(since D has no arc with source in X and target in Y).

Hence, Theorem 1.1.32 (applied to D′ = (V′, A′, ψ′) instead of D = (V, A, ψ))
shows that the maximum number of pairwise internally vertex-disjoint paths
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from s to t in D′ equals the minimum size of an internal s-t-vertex-separator in
D′.

Let us now see what this result means for our original digraph D. Indeed:

• The minimum size of an internal s-t-vertex-separator in D′ equals the min-
imum size of an internal X-Y-vertex-separator in D (indeed, the internal
s-t-vertex-separators in D′ are precisely the internal X-Y-vertex-separators
in D 21).

• The maximum number of pairwise internally vertex-disjoint paths from
s to t in D′ equals the maximum number of pairwise internally vertex-
disjoint paths from X to Y in D 22.

21Proof. We recall the definitions of internal s-t-vertex-separators in D′ and of internal X-Y-
vertex-separators in D:

– An internal s-t-vertex-separator in D′ is a subset W of V′ \ {s, t} such that each path from
s to t contains at least one vertex from W.

– An internal X-Y-vertex-separator in D is a subset W of V \ (X ∪ Y) such that each path
from X to Y contains at least one vertex from W.

These two definitions describe the same object, because of the following two reasons:

– We have V′ \ {s, t} = V \ (X ∪ Y).

– The paths from s to t are in bijection with the paths from X to Y (indeed, any path of the
latter kind can be transformed into a path of the former kind by replacing the starting
point by s and replacing the ending point by t). This bijection preserves the intermediate
vertices (i.e., the vertices other than the starting point and the ending point). Thus, a path
p from s to t contains at least one vertex from W if and only if the corresponding path
from X to Y (that is, the image of p under our bijection) contains at least one vertex from
W.

Thus, the internal s-t-vertex-separators in D′ are precisely the internal X-Y-vertex-
separators in D.

22Proof. We make the following two observations:

Observation 1: Let k ∈ N. If D′ has k pairwise internally vertex-disjoint paths from
s to t, then D has k pairwise internally vertex-disjoint paths from X to Y.

[Proof of Observation 1: Assume that D′ has k pairwise internally vertex-disjoint paths from
s to t. We can “lift” these k paths to k paths from X to Y in D (preserving the arcs, and
replacing the vertices s and t by appropriate vertices in X and Y to make them belong to the
right arcs). The resulting k paths from X to Y in D are still pairwise internally vertex-disjoint
(since our “lifting” operation has not changed the intermediate vertices of our paths). Thus,
D has k pairwise internally vertex-disjoint paths from X to Y. This proves Observation 1.]

Observation 2: Let k ∈ N. If D has k pairwise internally vertex-disjoint paths from
X to Y, then D′ has k pairwise internally vertex-disjoint paths from s to t.

[Proof of Observation 2: Assume that D has k pairwise internally vertex-disjoint paths from
X to Y. We can replace these k paths by k pairwise internally vertex-disjoint walks from s
to t in D′ (by replacing their starting points with s and replacing their ending points with
t). Thus, D′ has k pairwise internally vertex-disjoint walks from s to t. Therefore, D′ has
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Hence, the result of the preceding paragraph is precisely the claim of Theorem
1.1.36, and our proof is thus complete.

Another variant of this result can be stated for vertex-disjoint (as opposed to
internally vertex-disjoint) paths. These are even easier to define:

Definition 1.1.38. Two paths p and q in a graph or digraph are said to be
vertex-disjoint if they have no common vertices.

Theorem 1.1.39 (vertex-Menger theorem for directed graphs, multi-terminal
version 2). Let D = (V, A, ψ) be a multidigraph, and let X and Y be two
subsets of V.

Then, the maximum number of pairwise vertex-disjoint paths from X to Y
equals the minimum size of an X-Y-vertex-separator.

Example 1.1.40. Let D be the following multidigraph:

X Y

u

y

.

Then, the maximum number of pairwise vertex-disjoint paths from X to Y is

k pairwise internally vertex-disjoint paths from s to t as well (since each walk contains a
path, and of course we don’t lose internal vertex-disjointness if we restrict our walk to a
path contained in it). This proves Observation 2.]

Observation 2 shows that the maximum number of pairwise internally vertex-disjoint
paths from s to t in D′ is ≥ to the maximum number of pairwise internally vertex-disjoint
paths from X to Y in D. But Observation 1 shows the reverse inequality (i.e., it shows that
the former number is ≤ to the latter number). Thus, the inequality is an equality, i.e., the
two numbers are equal. Qed.
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2. Here are two such paths (drawn in red and blue):

X Y

u

y

.

If we were only looking for internally vertex-disjoint paths, then we could
add a third path to these two (namely, the path that starts at the topmost
vertex of X and ends at the topmost vertex of Y). However, this path and our
red paths are only internally vertex-disjoint, not vertex-disjoint. A little bit
of thought shows that D has no more than 2 vertex-disjoint paths from X to
Y.

The minimum size of an X-Y-vertex-separator is 2 as well; indeed, {u, y} is
such an X-Y-vertex-separator. This number equals the maximum number of
pairwise vertex-disjoint paths from X to Y, just as Theorem 1.1.39 predicts.

Proof of Theorem 1.1.39. We will reduce this to Theorem 1.1.32, again by tweak-
ing our digraph appropriately. This time, the tweak is pretty simple: We add
two new vertices s and t to D, and we furthermore add an arc from s to each
x ∈ X and an arc from each y ∈ Y to t (thus, we add a total of |X|+ |Y| new
arcs). We denote the resulting digraph by D′. In more detail, the definition of
D′ is as follows:

• We introduce two new vertices s and t, and we set V′ := V ∪ {s, t}. This
set V′ will be the vertex set of D′.

• For each x ∈ X, we introduce a new arc ax, which shall have source s and
target x.

• For each y ∈ Y, we introduce a new arc by, which shall have source y and
target t.

• We let A′ := A ∪ {ax | x ∈ X} ∪
{

by | y ∈ Y
}

. This set A′ will be the arc
set of D′.
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• We extend our map ψ : A → V × V to a map ψ′ : A′ → V′ × V′ by setting

ψ′ (ax) = (s, x) for each x ∈ X

and
ψ′ (by

)
= (y, t) for each y ∈ Y

(and, of course, ψ′ (c) = ψ (c) for each c ∈ A).

• We define D′ to be the multidigraph (V′, A′, ψ′).

For instance, if D is the multidigraph from Example 1.1.40, then D′ looks as
follows:

X Y

s

u

y

t

.

(The arcs ax are drawn in red; the arcs by are drawn in blue.)
By its construction, the digraph D′ has no arc with source s and target t.

Hence, Theorem 1.1.32 (applied to D′ = (V′, A′, ψ′) instead of D = (V, A, ψ))
yields that the maximum number of pairwise internally vertex-disjoint paths
from s to t equals the minimum size of an internal s-t-vertex-separator. How-
ever, it is easy to see the following two claims:

Claim 1: The maximum number of pairwise internally vertex-disjoint
paths from s to t equals the maximum number of pairwise vertex-
disjoint paths from X to Y (in D).

Claim 2: The minimum size of an internal s-t-vertex-separator equals
the minimum size of an X-Y-vertex-separator (in D).

[Proof of Claim 1 (sketched): Given any path p from s to t, we can remove the
starting point and the ending point of this path; the result will always be a path
from X to Y (in D). Let us denote the latter path by p. Thus, we obtain a map

{paths from s to t} → {paths from X to Y (in D)} ,
p 7→ p.
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This map is easily seen to be a bijection (indeed, if q is a path from X to Y
(in D), then we can easily extend it to a path p from s to t by inserting the
appropriate arc ax at its beginning and the appropriate arc by at its end; this
latter path p will then satisfy p = q). Moreover, two paths p and q from s to
t are internally vertex-disjoint if and only if the corresponding paths p and q
are vertex-disjoint (because the intermediate vertices of p are the vertices of p,
whereas the intermediate vertices of q are the vertices of q). This proves Claim
1.]

[Proof of Claim 2 (sketched): It is easy to see that the internal s-t-vertex-separators
are precisely the X-Y-vertex-separators (in D). (To show this, compare the def-
initions of these two objects using the bijection from the proof of Claim 1, and
observe that V′ \ {s, t} = V.) From this, Claim 2 follows.]

Recall that the maximum number of pairwise internally vertex-disjoint paths
from s to t equals the minimum size of an internal s-t-vertex-separator. In view
of Claim 1 and Claim 2, we can rewrite this as follows: The maximum number
of pairwise vertex-disjoint paths from X to Y equals the minimum size of an
X-Y-vertex-separator. Thus, Theorem 1.1.39 is proved.

We note that Hall’s Marriage Theorem (see Lecture 24) can be easily derived
from any of the directed Menger theorems (exercise!). I have heard that this
can also be done in reverse. This places the Menger theorems in the cluster of
theorems equivalent to Hall’s Marriage Theorem (such as König’s theorem).

1.1.4. The vertex-Menger theorem for undirected graphs

Vertex-Menger theorems also exist for undirected graphs. Here are the undi-
rected analogues of Theorem 1.1.32, Theorem 1.1.36 and Theorem 1.1.39, along
with the definitions they rely on:

Definition 1.1.41. Let G = (V, E, φ) be a multigraph, and let s and t be
two vertices of G. A subset W of V \ {s, t} is said to be an internal s-t-
vertex-separator if each path from s to t contains at least one vertex from
W. Equivalently, a subset W of V \ {s, t} is said to be an internal s-t-vertex-
separator if the induced subgraph of G on the set V \ W has no path from s
to t (in other words, removing from G all vertices contained in W destroys
all paths from s to t).

Theorem 1.1.42 (vertex-Menger theorem for undirected graphs). Let G =
(V, E, φ) be a multigraph, and let s and t be two distinct vertices of G.
Assume that G has no edge with endpoints s and t. Then, the maximum
number of pairwise internally vertex-disjoint paths from s to t equals the
minimum size of an internal s-t-vertex-separator.
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Definition 1.1.43. Let G = (V, E, φ) be a multigraph, and let X and Y be two
subsets of V.

(a) A path from X to Y shall mean a path whose starting point belongs to
X and whose ending point belongs to Y.

(b) A subset W of V is said to be an X-Y-vertex-separator if each path from
X to Y contains at least one vertex from W. Equivalently, a subset W
of V is said to be an X-Y-vertex-separator if the induced subgraph of
G on the set V \ W has no path from X to Y (in other words, removing
from G all vertices contained in W destroys all paths from X to Y).

(c) An X-Y-vertex-separator W is said to be internal if it is a subset of
V \ (X ∪ Y) (that is, if it is disjoint from X and from Y).

Theorem 1.1.44 (vertex-Menger theorem for undirected graphs, multi-termi-
nal version 1). Let G = (V, E, φ) be a multigraph, and let X and Y be two
disjoint subsets of V. Assume that G has no edge with one endpoint in X
and the other endpoint in Y.

Then, the maximum number of pairwise internally vertex-disjoint paths
from X to Y equals the minimum size of an internal X-Y-vertex-separator.

Theorem 1.1.45 (vertex-Menger theorem for undirected graphs, multi-termi-
nal version 2). Let G = (V, E, φ) be a multigraph, and let X and Y be two
subsets of V.

Then, the maximum number of pairwise vertex-disjoint paths from X to Y
equals the minimum size of an X-Y-vertex-separator.

Theorem 1.1.42, Theorem 1.1.44 and Theorem 1.1.45 follow immediately by
applying the analogous theorems for directed graphs (i.e., Theorem 1.1.32, The-
orem 1.1.36 and Theorem 1.1.39) to the digraph Gbidir instead of D (since the
paths of G are in bijection with the paths of Gbidir).
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