Lecture 26, version June 6, 2025 page 1

Math 530 Spring 2022, Lecture 26: Networks and
flows

website: https://www.cip.ifi.lmu.de/ grinberg/t/22s

1. Networks and flows

Today I will give an introduction to network flows and their optimization.
This is a topic of great interest to logisticians, as even the simplest results have
obvious applications to scheduling trains and trucks. It also has lots of purely
mathematical consequences; in particular, we will use network flows to finally
prove the Hall-Kénig matching theorem (and thus the HMT, Konig’s theorem,
and their many consequences).

I will follow my notes [17s-lec16], which are a good place to look up the
details of some proofs that I will only sketch. That said, I will be using multidi-
graphs instead of simple digraphs, so some adaptations will be necessary (since
[17s-lec16] only works with simple digraphs). These adaptations are generally
easy.

I will only cover the very basics of network flow optimization, leading to a
proof of the max-flow-min-cut theorem (for integer-valued flows) and to a proof
of the Hall-Kénig matching theorem. For the deeper reaches of the theory,
see [ForFul74] (a classical textbook written by the inventors of the subject),
[Schrij17, Chapter 4] and [Schrij03, Part IJ.

1.1. Definition
Recall that we use the notation N = {0,1,2,...}.

Definition 1.1.1. A network consists of
e a multidigraph D = (V, A, ¢);

e two distinct vertices s € V and t € V, called the source and the sink,
respectively;

e a function ¢ : A — IN, called the capacity function.

https://www.cip.ifi.lmu.de/~grinberg/t/22s

Lecture 26, version June 6, 2025 page 2

Example 1.1.2. Here is an example of a network:

Here, the multidigraph D is the one we drew (it is a simple digraph, so we
have not labeled its arcs); the vertices s and t are the vertices labeled s and
t; the values of the function ¢ on the arcs of D are written on top of these
respective arcs (e.g., we have ¢ ((s,p)) =3 and ¢ ((u,q)) = 1).

Remark 1.1.3. The digraph D in Example has no cycles and satisfies
deg™ s = deg't = 0. This is not required in the definition of a network,
although it is satisfied in many basic applications.

Also, all capacities ¢ (a) in Example were positive. This, too, is not
required; however, arcs with capacity 0 do not contribute anything useful to
the situation, so they could just as well be absent.

Remark 1.1.4. The notion of “network” we just defined is just one of a myriad
notions of “network” that can be found all over mathematics. Most of them
can be regarded as graphs with “some extra structures”; apart from this, they
don’t have much in common.

Definition 1.1.5. Let N be a network consisting of a multidigraph D =
(V,A,¢), asource s € V, asink t € V and a capacity function c : A — IN.
Then:

(@) For any arc a € A, we call the number ¢ (2) € IN the capacity of the arc
a.

(b) For any subset S of V, we let S denote the subset V' \ S of V.

() If P and Q are two subsets of V, then [P, Q] shall mean the set of all
arcs of D whose source belongs to P and whose target belongs to Q.
That is,

[P,Q]:={ac A | ¢(a) e PxQ}.

(d) If P and Q are two subsets of V, and if d : A — N is any function, then
the number d (P, Q) € N is defined by

d(P,Q):= Y d(a).

ac[P,Q

Lecture 26, version June 6, 2025 page 3

(In particular, we can apply this to d = ¢, and then get ¢ (P,Q) =
Y c(a))

a€[P,Q]

Example 1.1.6. Let us again consider the network from Example For
the subset {s,u} of V, we have {s,u} = {p,v,q,t} and

s} {5 u3| = {sp, uo, ug}

(recall that our D is a simple digraph, so an arc is just a pair of two vertices)
and

cl({s,u},{s,u}l) = Z c(a) =c(sp)+c(uv)+c(uq)
<) ae[{s,u},m] \;,3_/ \;,1_/ ;;,14
=3+1+1=05.

We can make this visually clearer if we draw a “border” between the sets
{s,u} and {s,u}:

Then, [{s, u},{s, u}] is the set of all arcs that cross this border from {s, 1} to

{s,u}. (Of course, this visualization works only for sums of the form d (P, P),
not for the more general case of d (P, Q) where P and Q can have elements
in common. But the d (P, P) are the most useful sums.)

Let us now define flows on a network:

Definition 1.1.7. Let N be a network consisting of a multidigraph D =
(V,A,¢), asource s € V,asink t € V and a capacity function c: A — IN.

A flow (on the network N) means a function f : A — IN with the following
properties:

e We have 0 < f (a) < c(a) for each arc a € A. This condition is called

Lecture 26, version June 6, 2025 page 4

the capacity constraints (we are using the plural form, since there is
one constraint for each arc a € A).

e For any vertex v € V' \ {s,t}, we have
fr () =f"(v),

where we set

frlo)= 3} fla) and frlo)= 3} fla).

acA is an arc acA is an arc
with target v with source v

This is called the conservation constraints.

If f: A— INisaflowand a € A is an arc, then the nonnegative integer
f (a) will be called the arc flow of f on a.

Example 1.1.8. To draw a flow f on a network N, we draw the network
N, with one little tweak: Instead of writing the capacity c (a) atop each arc
a € A, we write “f (a) of ¢ (a)” atop each arc a € A. For example, here is a
flow f on the network N from Example

(so, for example, f (su) =2, f (pg) = 1 and f (qv) = 0).
For another example, here is a different flow g on the same network N:

There are several intuitive ways to think of a network N and of a flow on it:

* We can visualize N as a collection of one-way roads: Each arca € A is a
one-way road, and its capacity c (a) is how much traffic it can (maximally)

Lecture 26, version June 6, 2025 page 5

handle per hour. A flow f on N can then be understood as traffic flow-
ing through these roads, where f (a) is the amount of traffic that travels
through the arc a in an hour. The conservation constraints say that the
traffic out of a given vertex v equals the traffic into v unless v is one of s
and t. (We imagine that traffic can arbitrarily materialize or dematerialize
ats and t.)

* We can visualize N as a collection of pipes: Each arc a € A is a pipe,
and its capacity c (a) is how much water it can maximally transport in a
second. A flow f on N can then be viewed as water flowing through the
pipes, where f (a) is the amount of water traveling through a pipe a in a
second. The capacity constraints say that no pipe is over its capacity or
carries a negative amount of water. The conservation constraints say that
at every vertex v other than s and ¢, the amount of water coming in (that
is, f~ (v)) equals the amount of water moving out (that is, f* (v)); that
is, there are no leaks and no water being injected into the system other
than at s and t. This is why s is called the “source” and ¢ is the “sink”. A
slightly counterintuitive aspect of this visualization is that each pipe has
a direction, and water can only flow in that one direction (from source to
target). That said, you can always model an undirected pipe by having
two pipes of opposite directions.

* We can regard N as a money transfer scheme: Each vertex v € V is a bank
account, and the goal is to transfer some money from s to t. All other
vertices v act as middlemen. Each arc a € A corresponds to a possibility
of transfer from its source to its target; the maximum amount that can be
transferred on this arc is ¢ (a). A flow describes a way in which money
is transferred such that each middleman vertex v € V \ {s,t} ends up
receiving exactly as much money as it gives away.

Needless to say, these visualizations have been chosen for their intuitive
grasp; the real-life applications of network flows are somewhat different.

Remark 1.1.9. Flows on a network N can be viewed as a generalization of
paths on the underlying digraph D. Indeed, if p is a path from s to t on the
digraph D = (V, A,) underlying a network N, then we can define a flow
fp on N as follows:

f, (a) = {1, if a is an arc of p; for each a € A,

0, otherwise

provided that all arcs of p have capacity > 1. An example of such a flow is

the flow g in Example

Next, we define certain numbers related to any flow on a network:

Lecture 26, version June 6, 2025 page 6

Definition 1.1.10. Let N be a network consisting of a multidigraph D =
(V,A,¢), asource s € V, asink t € V and a capacity function c : A — IN.
Let f : A — N be an arbitrary map (e.g., a flow on N). Then:

(@) For each vertex v € V, we set

frl):= 3 fla) and frlop= 3 fla).

acA is an arc acA is an arc
with target v with source v

We call f~ (v) the inflow of f into v, and we call f* (v) the outflow of
f from v.

(b) We define the value of the map f to be the number f* (s) — f~ (s). This
value is denoted by |f|.

Example 1.1.11. The flow f in Example satisfies

fr(s) =3, f~(s) =0,
fru)=f(u)=2
ffp=f (=1
ff)=f (0)=1,
ffla)=Ff =2,
fr) =0, fr()=3

and has value |f| = 3. The flow g in Example has value |g| = 1. More
generally, the flow fp in Remark always has value |fp| = 1.

Example 1.1.12. For any network N, we can define the zero flow on N. This
is the flow 04 : A — IN that sends each arc a € A to 0. This flow has value

04] = 0.

Now we can state an important optimization problem, known as the maxi-
mum flow problem: Given a network N, how can we find a flow of maximum
possible value?

Example 1.1.13. Finding a maximum matching in a bipartite graph is a par-
ticular case of the maximum flow problem.
Indeed, let (G, X,Y) be a bipartite graph. Then, we can transform this

graph into a network N as follows:

e Add two new vertices s and t.

Lecture 26, version June 6, 2025 page 7

¢ Turn each edge e of G into an arc ¢ whose source is the X-endpoint of
e (that is, the endpoint of e that belongs to X) and whose target is the
Y-endpoint of e (that is, the endpoint of e that belongs to Y).

e Add an arc from s to each vertex in X.
e Add an arc from each vertex in Y to t.
¢ Assign to each arc the capacity 1.

Here is an example of a bipartite graph (G, X,Y) (as usual, drawn with
the X-vertices on the left and with the Y-vertices on the right) and the corre-
sponding network N:

2L\ & E— \ —
O—© A
G

N

(we are not showing the capacities of the arcs, since they are all equal to 1).
The flows of this network N are in bijection with the matchings of G.
Namely, if f is a flow on N, then the set

{ecE(©G) | F(¥) =1}

is a matching of G. Conversely, if M is a matching of G, then we obtain a flow
f on N by assigning the arc flow 1 to all arcs of the form @ where e € M, as
well as assigning the arc flow 1 to every new arc that joins s or ¢ to a vertex
matched in M. All other arcs are assigned the arc flow 0. For instance, in our
above example, the matching {15, 36} corresponds to the following flow:

Lecture 26, version June 6, 2025 page 8

where we are using the convention that an arc a4 with f (a) = 0 is drawn
dashed whereas an arc a with f (a) = 1 is drawn boldfaced (thankfully, the
only possibilities for f (a) are 0 and 1, because all capacities are 1).

One nice property of this bijection is that if a flow f corresponds to a
matching M, then |f| = |M]|. Thus, finding a flow of maximum value means
finding a matching of maximum size.

(See [17s-lec16, Proposition 1.36 till Proposition 1.40] for details and proofs;
that said, the proofs are straightforward and you will probably “see” them
just by starting at an example.)

1.2. Basic properties of flows

Before we approach the maximum flow problem, let us prove some simple
observations about flows:

Proposition 1.2.1. Let N be a network consisting of a multidigraph D =
(V,A,¢), asource s € V, asink t € V and a capacity function c : A — IN.
Let f : A — IN be a flow on N. Then,

fl=F"(s)=f (5)
=f (B =fT).

Proof. We have

Y ffw)=), Y, f(a) since f* (v) is definedas) f(a)

veV veV acAisanarc a€A is an arc
with source v with source v
BV a -
=Y
acA
=) f(a)
acA

(note that this is a generalization of the familiar fact that Y deg™ v = |A|).
veV

Similarly, Y f~ (v) = ¥ f (a). Hence,
veV acA

Y (fFo—f) =Y f @©-Y f(v)=0. (1)

veV veV B QEV

=Y fa) =Y f(@

acA acA

However, by the conservation constraints, we have f~ (v) = f* (v) for each
v € V\ {s,t}. In other words, f~ (v) — f* (v) =0 for eachv € V'\ {s, t}. Thus,

Lecture 26, version June 6, 2025 page 9

in the sum Y (f~ (v) — f* (v)), all addends are 0 except for the addends for
veV
v = s and for v = t. Hence, the sum boils down to these two addends:

LU @=fT@) = (&)= ())+(f (1) -f ().

veV
Comparing this with (I)), we obtain
(fE&=fr)+ O-f 1) =0
so that
fFO-frO==(6)=f ()=, 06)=f (6)=If
(by the definition of |f|). This proves Proposition [1.2.1] O

Proposition 1.2.2. Let N be a network consisting of a multidigraph D =
(V,A,¢), asource s € V, asink t € V and a capacity function c : A — IN.
Let f : A — IN be a flow on N. Let S be a subset of V. Then:

(a) We have B B
F(S8)=f(58) =Y (f (@—f (v)).
veS
(Recall that we are using Definition here, so that f (P, Q) means
[%Q]f (a).)
ac|rt,

(b) Assume thats € Sand t ¢ S. Then,
fI=£(S5)=f(55).
(c) Assume thats € Sand t ¢ S. Then,
fl<c(s,8).
(d) Assume thats € Sand t ¢ S. Then, |f| = ¢ (S, S) if and only if

(f (a) =0foralla € [S,5])

and
(f (1) =c(a) foralla € [S,S]).

Proof. Let me first make these claims intuitive in terms of the “money transfer
scheme” model for our network. Consider S as a country. Then, f (S,S) is the
“export” from this country S (that is, the total wealth exported from S), whereas

Lecture 26, version June 6, 2025 page 10

f(S,8) is the “import” into this country S (that is, the total wealth imported
into S). Thus, part (a) of the proposition is saying that the “net export” of S (that
is, the export from S minus the import into S) can be computed by summing
the “outflow minus inflow” values of all accounts in S. This should match
the intuition for exports and imports (in particularly, any transfers that happen
within S should cancel out when we sum the “outflow minus inflow” values of
all accounts in S). Part (b) says that if the country S contains the source s but
not the sink ¢ (that is, the goal of the network is to transfer money out of the
country), then the total value transferred is actually the net export of S. Part (c)
claims that this total value is no larger than the total “export capacity” ¢ (S, S)
(that is, the total capacity of the “export arcs” a € [S,S]). Part (d) says that if
equality holds in this inequality (i.e., if the total value equals the total export
capacity), then each “import arc” a € [S, S] is unused (i.e., nothing is imported
into S), whereas each “export arc” a € [S,S] is used to its full capacity.

I hope this demystifies all claims of the proposition. But for the sake of
completeness, here are rigorous proofs (though rather terse ones, since I assume
you have seen enough manipulations of sum to fill in the details):

(a) This follows from

LU @)=L @-Lf @

vES vES veES
=f(SV) =f(V.S5)
(why?) (why?)
= f(5V) — f(V,8)
‘\/_/ B (. :
=f(5,5)+f(S/5) =£(5,5)+f(5,5)

(since V' is the union of the (since V is the union of the
two disjoint sets S and S) two disjoint sets S and S)

— F(S,5)+£(5,5) ~ (F(5,5)+F(55) =F(5,5) ~ £ (5.5).
(b) We have S\ {s} C V' \ {s,t} (since t ¢ S). From part (a), we obtain

F(58)=f(55) =YL (f (@) —f (v))

vES
= (ff(s)=f(s) +) (f* (0) = f (v)) (since s € S)
B veS\{s} ~
(by the deﬁl‘ﬂim of f]) (by the CODSEI‘V;ngI’I constraints,
since v€S\{s} CV\{s,t})
= |f].

This proves part (b).

(c) The capacity constraints yield that f (a) < c(a) for each arc 4 € A. Summing
up these inequalities over all a € [S,S], we obtain f (5,5) < ¢(S,S). The capacity
constraints furthermore yield that f (a) > 0 for each arc 2 € A. Summing up these
inequalities over all a € [S, S], we obtain f (S,S) > 0. Hence, part (b) yields

fI={(55)-f(5)<e(s5).

<c(sg) =0

Lecture 26, version June 6, 2025 page 11

This proves part (c).

(d) We must characterize the equality case in part (c). However, recall the proof
of part (c): We obtained the inequality |f| < ¢ (S,S) by summing up the inequalities
f(a) < c(a)overallarcsa € [S,S] and subtracting the sum of the inequalities f (a) > 0
over all arcs a € [S,S]. Hence, in order for the inequality |f| < ¢ (S,5) to become
an equality, it is necessary and sufficient that all the inequalities involved - i.e., the
inequalities f (a) < c(a) for all arcs a € [S, 5] as well as the inequalities f (a) > 0 for
all arcs a € [§, S] — become equalities. In other words, it is necessary and sufficient
that we have

(f(a)=0foralla € [S,S])

and
(f (a) =c(a) foralla e [S,S]).
This proves Proposition (d). O

1.3. The max-flow-min-cut theorem
One more definition, before we get to the hero of this story:

Definition 1.3.1. Let N be a network consisting of a multidigraph D =
(V,A,), asource s € V, asink t € V and a capacity function c : A — IN.
Then:

(@) A cut of N shall mean a subset of A that has the form [S,g} , where S
is a subset of V satisfyings € Sand t ¢ S.

(b) The capacity of a cut [S,S] is defined to be the number ¢ (S,S) =
Y. c(a).

ae [S,g]

Example 1.3.2. Let us again consider the network from Example Then,
[{s,u} , {s,u}} = {sp, uv, uq} is a cut of this network, and its capacity is

c ({s,u},m) = 5.

Now, Proposition (c) says that the value of any flow f can never be
larger than the capacity of any cut [S,S]. Thus, in particular, the maximum
value of a flow is < to the minimum capacity of a cut.

Furthermore, Proposition (d) says that if this inequality is an equality —
i.e., if the value of some flow f equals the capacity of some cut [S,g} —, then
the flow f must use each arc that crosses the cut in the right direction (from S
to S) to its full capacity and must not use any of the arcs that cross the cut in
the wrong direction (from S to S).

It turns out that this inequality actually is an equality for any maximum flow
and any minimum cut:

Lecture 26, version June 6, 2025 page 12

Theorem 1.3.3 (max-flow-min-cut theorem). Let N be a network consisting
of a multidigraph D = (V, A, ¢), a source s € V, a sink t € V and a capacity
function ¢ : A — IN. Then,

max {|f| | fisaflow} =min{c(S,S) | SCV;s€S; t¢S}.

In other words, the maximum value of a flow equals the minimum capacity
of a cut.

We shall soon sketch a proof of this theorem that doubles as a fairly efficient
(polynomial-time) algorithm for finding both a maximum flow (i.e., a flow of
maximum value) and a minimum cut (i.e., a cut of minimum capacity). The
algorithm is known as the Ford-Fulkerson algorithm, and is sufficiently fast to
be useful in practice. The idea is to start by having f be the zero flow (i.e., the
flow from Example[1.1.12), and then gradually increase its value |f| by making
changes to some of its arc flows f (a).

Of course, we cannot unilaterally change the arc flow f (a) on a single arc,
since this will (usually) mess up the conservation constraints. Thus, if we
change f (a), then we will also have to change f (b) for some other arcs b € A
to make the result a flow again. One way to do this is to increase all arc flows
f (a) along some path from s to t. Here is an example of such an increase:

Example 1.3.4. Consider the flow f from Example We can increase
the arc flows f (sp), f(pq), f(quv), f(vt) of f on all the arcs of the path
(s,p,q,v,t) (since neither of these arcs is used to its full capacity). As a
result, we obtain the following flow h:

whose value |1 is 4. It is easy to see that this is actually the maximum value

of a flow on our network (since || = 4 equals the capacity c (E, {t}) of the

cut [m, {t}} , but Proposition [1.2.2| (c) tells us that the value of any flow is
< to the capacity of any cut).

However, simple increases like the one we just did are not always enough to
find a maximum flow. They can leave us stuck at a “local maximum” —i.e., at a
flow which does not have any more paths from s to t that can be used for any
further increases (i.e., any path from s to t contains an arc that is already used
to its full capacity), yet is not a maximum flow. Here is an example:

Lecture 26, version June 6, 2025 page 13

Example 1.3.5. Consider the following network and flow:

This flow is not maximum, but each path from s to t has at least one arc that
is used to its full capacity. Thus, we cannot improve this flow by increasing
all its arc flows on any given path from s to ¢.

The trick to get past this hurdle is to use a “zig-zag path” - ie., not a
literal path, but rather a sequence (vg,a1,v1,4a2,v2,...,a;, V) of vertices and
arcs that can use arcs both in the forward and backward directions (i.e., any
i€{1,2,...,k} has to satisfy either ¢ (a;) = (v;_1,v;) or ¢ (a;) = (v;,v;_1)). In-
stead of increasing the flow on all arcs of this “path”, we do something slightly
subtler: On the forward arcs, we increase the flow; on the backward arcs, we
decrease it (all by the same amount). This, too, preserves the conservation con-
straints (think about why; we will soon see a rigorous proof), so it is a valid
way of increasing the value of a flow. Here is an example:

Example 1.3.6. Consider the flow in Example The underlying digraph
has a “zig-zag path” (s, p,q,u,v,t), which uses the arc ug in the backward
direction. We can decrease the arc flows of f on all forward arcs sp, pg, uv
and ot of this “zig-zag path”, and decrease it on the backward arc ug. As a
result, we obtain the flow

lofl

1of1l

This new flow has value 2, and can easily be seen to be a maximum flow.

Good news: Allowing ourselves to use “zig-zag paths” like this (rather than
literal paths only), we never get stuck at a non-maximum flow; we can always
increase the value further and further until we eventually arrive at a maximum
tlow.

Lecture 26, version June 6, 2025 page 14

In order to prove this, we introduce some convenient notations. We prefer
not to talk about “zig-zag paths”, but rather reinterpret these “zig-zag paths”
as (literal) paths of an appropriately chosen digraph. This has the advantage of
allowing us to use known properties of paths without having to first generalize
them to “zig-zag paths”.

The appropriately chosen digraph is the so-called residual digraph of a flow;
it is defined as follows:

Definition 1.3.7. Let N be a network consisting of a multidigraph D =
(V,A,¢),asources € V,asink t € V and a capacity functionc: A — IN.

(@) For each arca € A, we introduce a new arc a1, which should act like a
reversal of the arc a (that is, its source should be the target of a, and its
target should be the source of a). We don’t add these new arcs a1 to
our digraph D, but we keep them ready for use in a different digraph
(which we will define below).

Here is what this means in rigorous terms: For each arc a € A, we
introduce a new object, which we call a=!. We let A~! be the set of
these new objects a~! for a € A. We extend the map ¢: A — V x V to
a map l//J\I AUA1 5 V x V as follows: For each a € A, we let

@(a) = (u,0) and @ <a‘1) = (v,u),

where u and v are defined by (1,v) = ¢ (a).

For each arc a € A, we shall refer to the new arc a—! as the reversal of
a, and conversely, we shall refer to the original arc a4 as the reversal of
a~ 1. We set (a‘l)fl :=a for each a € A.

We shall refer to the arcs a € A as forward arcs, and to their reversals
a1 as backward arcs.

(b) Let f : A — N be any flow on N. We define the residual digraph Dy
of this flow f to be the multidigraph (V, A fr 1pf), where

Ap={acA | f@ <c@pufa | aca; f(a)>0}

and 5 := ¥ |a s (This is usually not a subdigraph of D.) Thus, the
residual digraph Dy has the same vertices as V, but its arcs are those
arcs of D that are not used to their full capacity by f as well as the
reversals of all arcs of D that are used by f.

Lecture 26, version June 6, 2025 page 15

Example 1.3.8. Let f be the flow f from Example Then, the residual
digraph Dy is

Notice that the digraph Dy has cycles even though D has none!

Example 1.3.9. Let f be the non-maximum flow from Example Then,
the residual digraph Dy is

This digraph Dy has a path from s to ¢, which corresponds precisely to the
“zig-zag path” (s, p,q,u,v,t) we found in Example

You can think of the residual digraph Dy as follows: Each arc of Dy corre-
sponds to an opportunity to change an arc flow f (a); namely, a forward arc
a of D¢ means that f (a) can be increased, whereas a backward arc a~! of Dy
means that f (a) can be decreased. Hence, the paths of the residual digraph Dy
are the “zig-zag paths” of D that allow the flow f to be increased (on forward
arcs) or decreased (on backward arcs) as in Example Thus, using Dy, we
can avoid talking about “zig-zag paths”.

The following crucial lemma tells us that such “zig-zag path increases” are
valid (i.e., turn flows into flows), and are sufficient to find a maximum flow
(i.e., if no more “zig-zag path increases” are possible, then our flow is already
maximal):

Lecture 26, version June 6, 2025 page 16

Lemma 1.3.10 (augmenting path lemma). Let N be a network consisting of
a multidigraph D = (V, A,), a source s € V, a sink t € V and a capacity
functionc: A — IN. Let f : A — IN be a flow.

(@) If the digraph Dy has a path from s to £, then the network N has a flow
f' with a larger value than f.

(b) If the digraph Dy has no path from s to t, then the flow f has maximum
value (among all flows on N), and there exists a subset S of V satisfying
se€Sandt ¢ Sand [f| =c(S,S).

Proof. (a) Assume that the digraph Dy has a path from s to ¢. Pick such a path,
and call it p. Each arc of p is an arc of Dy.

For each forward arc a € A that appears in p, we have f (a) < ¢ (a) (since a is
an arc of D), and thus we can increase the arc flow f (a) by some positive ¢ € IN
(namely, by any ¢ < c (a) — f (a)) without violating the capacity constraints[]

For each backward arc a~! € A~! that appears in p, we have f (a) > 0 (since
a~!isanarcof D), and thus we can decrease the arc flow f (a) by some positive
e € N (namely, by any ¢ < f (a)) without violating the capacity constraints.

Let now

€ := min ({c(a)— f(a) | a € Aisa forward arc that appears in p}

U {f (a) | a=' € A7!is a backward arc that appears in p})

This ¢ is a positive integer (since it is a minimum of a set of positive integerﬂ.
Let f/ : A — IN be the map obtained from f as follows:

¢ For each forward arc a € A that appears in p, we increase the arc flow
f (a) by € (that is, we set f’ (a) := f (a) +¢).

e For each backward arc 4! € A~! that appears in p, we decrease the arc
flow f (a) by ¢ (that is, we set ' (a) := f (a) — e).

e For all other arcs a of D, we keep the arc flow f (a) unchanged (i.e., we

set f' (a) := f (a)).

10Of course, such a unilateral increase will likely violate the conservation constraints.
%b
ecause

e for each forward arc a € A that appears in p, we have f (a) < ¢ (a) and thus c (a) —
f(a) >0;

e for each backward arc a~! € A~! that appears in p, we have f (a) > 0.

Lecture 26, version June 6, 2025 page 17

This new map f’ still satisfies the capacity constraintﬁ We claim that it
also satisfies the conservation constraints. To check this, we have to verify that
(f)” (v) = (f")" (v) for each vertex v € V'\ {s,t}. So let us do this.

Let v € V' \ {s,t} be a vertex. We know that f~ (v) = f* (v) (since f is a
flow). We must prove that (f')~ (v) = ()" (v).

The path p is a path from s to t. Thus, it neither starts nor ends at v (since
v € V\ {s,t}). Hence, if v is a vertex of p, then the path p enters v by some arc
and exits v by another. Hence, we are in one of the following five cases:

Case 1: The vertex v is not a vertex of the path p.

Case 2: The path p enters v by a forward arc and exits v by a forward arc.

Case 3: The path p enters v by a forward arc and exits v by a backward arc.

Case 4: The path p enters v by a backward arc and exits v by a forward arc.

Case 5: The path p enters v by a backward arc and exits v by a backward arc.

Now, we can prove (/)™ (v) = (f/)* (v) in each of these five cases by hand.
Here is how this can be done in the first three cases:

First, we consider Case 1. In this case, v is not a vertex of the path p. Hence,
each arc a € A with target v satisfies f’ (a) = f (a) (because neither a nor a~!
appears in p). Therefore, (f)” (v) = f~ (v). Similarly, ()" (v) = f* (v).
Hence, ()" (v) = f~(v) = ft(v) = (f')" (v). Thus, we have proved
(f) (0) = (f)" (0) in Case 1.

Let us now consider Case 2. In this case, the path p enters v by a forward arc
and exits v by a forward arc. Let b be the former arc, and c the latter. Then, both
b and c are arcs of D, and the vertex v is the target of b and the source of c. The
definition of f yields that f' (b) = f (b) + ¢, whereas each other arc a € A with
target v satisfies f' (a) = f (a). Hence, (f')” (v) = f~ (v) + &. Similarly, using
the arc ¢, we see that (f/)* (v) = f* (v) + & Hence, ()~ (v) = E\@—ks =

=f*(v)

() +e=(f)" (v). Thus, we have proved (f')” (v) = (f)" (v) in Case 2.

Let us next consider Case 3. In this case, the path p enters v by a forward arc
and exits v by a backward arc. Let b be the former arc, and ¢! the latter. Then,
both b and c are arcs of D, and the vertex v is the target of both b and c. The
definition of f’ yields that f' (b) = f (b) + € (since p uses the forward arc b) and
f'(c) = f(c) — e (since p uses the backward arc c~1), whereas each other arc
a € A with target v satisfies f' (a) = f (a). Hence, (') (v) = f~ (v) +e—e=
£~ (v). Moreover, (f')" (v) = f* (v) (since none of the arcs of D with source

3gince the definition of ¢ shows that

e for each forward arc a that appears in p, we have e < ¢ (a) — f (a) and thus f (a) +¢ <
c(a);

e for each backward arc a~! € A~! that appears in p, we have ¢ < f (a) and thus
f(a)—e>0.

Lecture 26, version June 6, 2025 page 18

v appears in p, nor does its reversal). Hence, (f')” (v) = f~ (v) = f* (v) =
(f)" (v). Thus, we have proved (f')” (v) = (f))* (v) in Case 3.

The other two cases are similar (Case 4 is analogous to Case 3, while Case 5
is analogous to Case 2). Thus, altogether, we have proved (')~ (v) = (f)" (v)
in all five cases.

Forget that we fixed v. We thus have shown that each vertex v € V'\ {s, t}
satisfies (/)™ (v) = (f')" (v). In other words, the map f’ satisfies the con-
servation constraints. Since f’ also satisfies the capacity constraints, we thus
conclude that f” is a flow.

What is the value |f'| of this flow? The path p starts at s, so it exits s by
some arc 7 (it must have at least one arc, since s # t) and never comes back
to s again. If this arc v is a forward arc b, then f’ (b) = f (b) + ¢ and therefore
(F)" (s) = fr(s)+eand (f) (s) = f (s). If this arc vy is a backward arc
¢, then f' (¢) = f (c) — ¢ and therefore (f)™ (s) = f~ (s) —eand (f)" (s) =
fT(s). Thus,

ft(s)—(f (s)—e¢), ifyisabackward arc
ft(s)—f (s)+e ifyisa forward arc;
| ft(s) = f(s)+e ifyisabackward arc
=) () e=fl+e

=|f]
(by the definition of |f])

However, the definition of the value |f’| yields

F1=(f)" ()= (f) () =Ifl +e> If] (since € > 0).

In other words, the flow f’ has a larger value than f. Thus, we have found a
flow f’ with a larger value than f. This proves Lemma [1.3.10] (a).

(b) Assume that the digraph D¢ has no path from s to t. Define a subset S of
V by
S = {v eV | thedigraph Dy has a path from s to v} .

Then, s € S (because the trivial path (s) is a path from s to s) and t ¢ S (since we
assumed that D has no path from s to t). We shall next show that |f| = ¢ (S,S).
Indeed, we shall obtain this from Proposition (d). To do so, we will first

show that
(f(a) =0foralla € [S,S]) ()

and
(f (a) =c(a) foralla € [S,S]). (3)

[Proof of : Leta € [S,S]. Assume that f (a) # 0. Thus, f (a) > 0 (since the
capacity constraints yield f (a) > 0). Hence, the backward arc a~! is an arc of

Lecture 26, version June 6, 2025 page 19

the residual digraph Dy. Let u be the source of 4, and let v be the target of a.

Since a € [S,S], we thus have u € Sand v € S. From v € S, we see that the
digraph Dy has a path from s to v. Let q be this path. Appending the backward

arc a~! (which is an arc from v to u) and the vertex u to this path q (at the end),
we obtain a walk from s to u in D Iz Hence, D ¢ has a walk from s to u, thus also
a path from s to u (by Corollary 1.2.8 in Lecture 10). This entails u € S (by the
definition of S). However, this contradicts u € S = V '\ S. This contradiction
shows that our assumption (that f (a) # 0) was wrong. Therefore, f (a) = 0.
This proves (2).]

[Proof of (3): Let a € [S,S]. Assume that f (a) # c(a). Thus, f(a) < c(a)
(since the capacity constraints yield f (a) < c(a)). Hence, the forward arc a is
an arc of the residual digraph Ds. Let u be the source of 4, and let v be the

target of a. Since a € [5,5}, we thus have u € Sand v € S. From u € S, we
see that the digraph Dy has a path from s to u. Let q be this path. Appending
the forward arc a (which is an arc from u to v) and the vertex v to this path q
(at the end), we obtain a walk from s to v in Dy. Hence, Dy has a walk from
s to v, thus also a path from s to v (by Corollary 1.2.8 in Lecture 10). This
entails v € S (by the definition of S). However, this contradicts v € S = V '\ S.
This contradiction shows that our assumption (that f (a) # c (a)) was wrong.

Therefore, f (a) = c (a). This proves (3).]

Now, Proposition (d) yields that |f| = ¢ (S,S) holds (since (2) and
hold).

We have now found a subset S of V satisfying s € Sand t ¢ S and |f| =
c (5,5). In order to prove Lemma (b), it suffices to show that the flow
f has maximum value (among all flows on N). However, this is now easy:
Any flow g on N has value |g| < ¢ (S,S) (by Proposition @I (c), applied to
¢ instead of f). In other words, any flow ¢ on N has value |g| < |f| (since
|f| = ¢(S,S)). Thus, the flow f has maximum value. This completes the proof

of Lemma [1.3.10| (b). O

We are now ready to prove the max-flow-min-cut theorem (Theorem |1.3.3):

Proof of Theorem We let f : A — NN be the zero flow on N (see Example
1.1.12 for its definition). Now, we shall incrementally increase the value |f| of
this flow by the following algorithm (known as the Ford-Fulkerson algorithm):

1. Construct the residual digraph Dy.

2. If the digraph Dy has a path from s to ¢, then Lemma [1.3.10) (a) shows that

the network N has a flow f’ with a larger value than f (and furthermore,
the proof of Lemma [1.3.10 (a) shows how to find such an f’ efﬁcientlyﬁ).
Fix such an f’, and replace f by f’. Then, go back to step 1.

*Of course, this requires an algorithm for finding a path from s to ¢ in D r. But there are many
efficient algorithms for this (see, e.g., homework set #4 exercise 5).

Lecture 26, version June 6, 2025 page 20

3. If the digraph D/ has no path from s to ¢, then we end the algorithm.
graph L¢ p g

The replacement of f by f’ in Step 2 of this algorithm will be called an aug-
mentation. Thus, the algorithm proceeds by repeatedly performing augmenta-
tions until this is no longer possible.

I claim that the algorithm will eventually end —i.e., it cannot keep performing
augmentations forever. Indeed, each augmentation increases the value |f| of the
flow f, and therefore it increases this value |f| by at least 1 (because increasing
an integer always means increasing it by at least 1). However, the value |f|
is bounded from above by the capacity ¢ (S,S) of an arbitrary cut [S,S] (by
Proposition (), and thus cannot get increased by 1 more than c (S,S)
many times (since its initial value is 0). Therefore, we cannot perform more
than ¢ (S, S) many augmentations in sequence.

Thus, the algorithm eventually ends. Let us consider the flow f that is ob-
tained once the algorithm has ended. This flow f has the property that the
digraph Df has no path from s to . Thus, Lemma (b) shows that the
flow f has maximum value (among all flows on N), and there exists a subset S
of V satisfying s € Sand t ¢ S and |f| = ¢ (S, S). Consider this S.

Since the flow f has maximum value, we have

f] = max{lg| | gisaflow}.
On the other hand, for each subset T of V satisfying s € T and t ¢ T, we have
c(5,5) =1fl<c(T,T)
(by Proposition (c), applied to T instead of S). Hence,
c(S5,8)=min{c(T,T) | TCV;s€eT; t¢T}.

Comparing this with
¢(5,5) = || = max{|g| | gisaflow},

we obtain

max {|g| | gisaflow} =min{c(T,T) | TCV;seT; t¢T}.

In other words, the maximum value of a flow equals the minimum capacity of a
cut. This proves Theorem (Of course, we cannot use the letters f and S for
the bound variables inmax {|g| | gisaflow}andmin{c(T,T) | TCV;se T, t¢ T},
since f and S already stand for a specific flow and a specific set.) O

Remark 1.3.11. All the theorems, propositions and lemmas we
proved in this lecture still work if we replace the set IN by the
set Q+ := {nonnegative rational numbers} or the set R, :=

Lecture 26, version June 6, 2025 page 21

{nonnegative real numbers}. However, their proofs get more compli-
cated. The problem is that if the arc flows of f belong to Q4 or R, rather
than IN, it is possible for |f| to increase endlessly (cf. Zeno’s paradox of
Achilles and the tortoise), as we make smaller and smaller improvements to
our flow but never achieve (or even approach!) the maximum value.

With rational values, this fortunately cannot happen, since the lowest com-
mon denominator of all arc flows f (a) does not change when we perform
an augmentation. (To put it differently: The case of rational values can be
reduced to the case of integer values by multiplying through with the low-
est common denominator.) With real values, however, this misbehavior can
occur (see [ForFul74, §1.8] for an example). Fortunately, there is a way to
avoid it by choosing a shortest path from s to f in Dy at each step. This is
known as the Edmonds-Karp version of the Ford-Fulkerson algorithm (o,
for short, the Edmonds-Karp algorithm). Proving that it works takes a bit
more work, which we won’t do here (see, e.g., [Schrij17, Theorem 4.4]). Inci-
dentally, this technique also helps keep the algorithm fast for integer-valued

flows (running time O <|V] : |A[2>).

1.4. Application: Deriving Hall-Konig

Now, let us apply the max-flow-min-cut theorem. Recall the following:

Theorem 1.4.1 (Hall-Konig matching theorem). Let (G, X,Y) be a bipartite
graph. Then, there exist a matching M of G and a subset U of X such that

M| = [N (U)] + |X] = |U].

We stated this in Lecture 24, and used this to derive the HMT and Konig's
theorem; but we didn’t prove Theorem Let us do this now.

Proof of Theorem (sketched). (This is an outline; see [17s-lec16, proof of Lemma
1.42] for detailss explained in Example we can turn the bipartite
graph (G, X,Y) into a network so that the matchings of G become the flows f
of this network. The max-flow-min-cut theorem (Theorem yields that

max {|f| | fisaflow} =min{c(S,S) | SCV;s€S; t¢S},

Note that [17s-lec16, Lemma 1.42] is stated only for a simple graph G, not for a multigraph
G. However, this really makes no difference here: If (G, X,Y) is a bipartite graph with G
being a multigraph, then (G'™P, X, Y) is a bipartite graph as well, and clearly any matching
of GSI™P yields a matching of G having the same size (and the set N (U) does not change
from G to GSI™P either). Thus, in proving Theorem we can WLOG assume that G is a
simple graph.

https://en.wikipedia.org/wiki/Zenos paradoxes
https://en.wikipedia.org/wiki/Zenos paradoxes

Lecture 26, version June 6, 2025 page 22

where V is the vertex set of the digraph that underlies our network. Thus, there
exist a flow f and a cut [S, S] of this network such that |f| = ¢ (S, S). Consider
these f and S. Thus, S is a subset of V such thats € Sand t ¢ S.

Let M be the matching of G corresponding to the flow f (that is, we let M be
the set of all edges e of G such that f (") = 1). Thus, |M| = |f|.

Let U := XN S. Then, U is a subset of X. Here is an illustration of the cut
[S,S] on a simple example (the flow f is not shown):

(the orange oval is the set U).
Now, we have

M| =[f|=c (5, §) =c({s}, S)+c | XNS, S| +c(¥YNS,5)
N———— :{l_/ N————
=|X\U| - =|Yns|
(why?) (why?)
(since S is the union of the disjoint sets {s}, XNSand YNS)
= |X\ U] + c(U, S)+|Yns]
~—— N —~
=[X]—[U| >|N(U)|

(since each vertex y€N(U) either belongs to YNS
and thus contributes to |YNS|, or belongs to S
and thus contributes to C(U, g))

> [X| = U]+ N (U)] = [N ()] +|X] - [U].
This proves Theorem [1.4.1] O

Further applications of the max-flow-min-cut theorem include:

* A curious fact about rounding matrix entries (stated in terms of a digraph
in [Schrij17, Exercise 4.13]): Let A be an m X n-matrix with real entries.

Lecture 26, version June 6, 2025 page 23

Assume that all row sumﬁ of A and all column surnsﬂ of A are integers.
Then, we can round each non-integer entry of A (that is, replace it either
by the next-smaller integer or the next-larger integer) in such a way that
the resulting matrix has the same row sums as A and the same column
sums as A.

¢ An Euler-Hierholzer-like criterion for the existence of an Eulerian circuit
in a “mixed graph” (a general notion of a graph that can contain both
undirected edges and directed arcs) [ForFul74), §IL.7].

* A proof [Berge91, §6.3] of the Erdos—Gallai theorem, which states that for
a given weakly decreasing n-tuple (dqy > dy > --- > d,) of nonnegative
integers, there exists a simple graph with n vertices whose n vertices have
degrees dy,d>, ..., d, if and only if the sum dy +dp + - - - +d;; is even and
eachi € {1,2,...,n} satisfies

n

k
Zdlgk(k—l)—{— Z min{di,k}.
i=1 i=k+1

(The “only it” part of this theorem was Exercise 6 on homework set #2.)

References

[17s-lec16] Darij Grinberg, UMN, Spring 2017, Math 5707: Lecture 16 (flows and
cuts in networks), 14 May 2022.
https://www.cip.ifi.lmu.de/ grinberg/t/17s/57071ec16.pdf

[Berge9l] Claude Berge, Graphs, North-Holland Mathematical Library 6.1,
3rd edition, North-Holland 1991.

[ForFul74] L. R. Ford, Jr., D. R. Fulkerson, Flows in Networks, 7th printing,
Princeton University Press, 1974.

[Schrijl7] Alexander Schrijver, A Course in Combinatorial Optimization, March
23, 2017.
https://homepages.cwi.nl/"lex/files/dict.pdf

[Schrij03] Alexander Schrijver, Combinatorial Optimization: Polyhedra and Effi-
ciency, Springer 2003.
See https://homepages.cwi.nl/"lex/co/ for errata.

6A row sum of a matrix means the sum of all entries in some row of this matrix. Thus, an
m X n-matrix has m row sums.

7A column sum of a matrix means the sum of all entries in some column of this matrix. Thus,
an m X n-matrix has n column sums.

https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec16.pdf
https://homepages.cwi.nl/~lex/files/dict.pdf
https://homepages.cwi.nl/~lex/co/

	Networks and flows
	Definition
	Basic properties of flows
	The max-flow-min-cut theorem
	Application: Deriving Hall-König

