
Lecture 25, version June 6, 2023 page 1

Math 530 Spring 2022, Lecture 25: Applications
of Hall’s marriage theorem

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Matchings (cont’d)

1.1. Hall’s marriage theorem (repeated)

We stated Hall’s marriage theorem last time:

Theorem 1.1.1 (Hall’s marriage theorem, short: HMT). Let (G, X, Y) be a
bipartite graph. Assume that each subset A of X satisfies |N (A)| ≥ |A|.
(This assumption is called the “Hall condition”.)

Then, G has an X-complete matching.

We won’t prove this now (this is what Lecture 26 will be for), but we will
give several more applications.

1.2. Systems of representatives

There are two more equivalent form of the HMT that have the “advantage” that
they do not rely on the notion of a graph. When non-combinatorialists use the
HMT, they often use it in one of these forms. Here is the first form:

Theorem 1.2.1 (existence of SDR). Let A1, A2, . . . , An be any n sets. Assume
that the union of any p of these sets has size ≥ p, for all p ∈ {0, 1, . . . , n}. (In
other words, assume that∣∣∣Ai1 ∪ Ai2 ∪ · · · ∪ Aip

∣∣∣ ≥ p for any 1 ≤ i1 < i2 < · · · < ip ≤ n.

)
Then, we can find n distinct elements

a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An.

Remark 1.2.2. An n-tuple (a1, a2, . . . , an) of n distinct elements like this is
called a system of distinct representatives for our n sets A1, A2, . . . , An. (This
is often abbreviated “SDR”.)

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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Example 1.2.3. Take a standard deck of cards, and deal them out into 13 piles
of 4 cards each – e.g., as follows:

{2♠, 2♡, 9♢, K♢} , {A♠, A♡, 3♠, 3♢} , {A♢, 4♣, 5♣, Q♣} ,
{2♢, 4♡, 5♡, 5♠} , {A♣, 7♣, 7♠, 7♡} , {4♠, 6♠, 6♢, 6♣} ,
{3♡, 3♣, 8♠, 8♡} , {2♣, K♣, K♡, 10♡} , {4♢, 5♢, 9♠, 9♡} ,
{Q♠, Q♡, Q♢, Q♣} , {6♡, J♠, J♢, J♣} , {7♢, 8♢, 8♣, 9♣} ,
{10♠, J♡, 10♢, 10♣}

(you can distribute the cards among the piles randomly; this is just one ex-
ample). Then, I claim that it is possible to select exactly 1 card from each pile
so that the 13 selected cards contain exactly 1 card of each rank (i.e., exactly
one ace, exactly one 2, exactly one 3, and so on).

Indeed, this follows from Theorem 1.2.1 (applied to Ai =
{ranks that occur in the i-th pile}) because any p piles contain cards of
at least p different ranks.

Proof of Theorem 1.2.1. First, we WLOG assume that all n sets A1, A2, . . . , An are
finite. (If not, then we can just replace each infinite one by an n-element subset
thereof. The assumption

∣∣∣Ai1 ∪ Ai2 ∪ · · · ∪ Aip

∣∣∣ ≥ p will not be disturbed by
this change – make sure you understand why!)

Furthermore, we WLOG assume that no integer belongs to any of the n sets
A1, A2, . . . , An (otherwise, we just rename the elements of these sets so that they
aren’t integers any more).

Now, let X = {1, 2, . . . , n} and Y = A1 ∪ A2 ∪ · · · ∪ An. Both sets X and Y are
finite, and are disjoint.

We define a simple graph G as follows:

• The vertices of G are the elements of X ∪ Y.

• A vertex x ∈ X is adjacent to a vertex y ∈ Y if and only if y ∈ Ax. There
are no further adjacencies.

Thus, (G, X, Y) is a bipartite graph. The assumption
∣∣∣Ai1 ∪ Ai2 ∪ · · · ∪ Aip

∣∣∣ ≥
p ensures that it satisfies the Hall condition. Hence, by the HMT (Theorem
1.1.1), we conclude that this graph G has an X-complete matching. This match-
ing must have the form

{{1, a1} , {2, a2} , . . . , {n, an}}

for some a1, a2, . . . , an ∈ Y (since (G, X, Y) is bipartite, so that the partners of
the vertices 1, 2, . . . , n ∈ X must belong to Y). These elements a1, a2, . . . , an ∈ Y
are distinct (since two edges in a matching cannot have a common endpoint),
and each i ∈ {1, 2, . . . , n} satisfies ai ∈ Ai (since the vertex ai is adjacent to i in

https://en.wikipedia.org/wiki/Standard_52-card_deck
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G). Thus, these a1, a2, . . . , an are precisely the n distinct elements we are looking
for. This proves Theorem 1.2.1.

Conversely, it is not hard to derive the HMT from Theorem 1.2.1.

Here is the second set-theoretical restatement of the HMT:

Theorem 1.2.4 (existence of SCR). Let A1, A2, . . . , An be n sets. Let
B1, B2, . . . , Bm be m sets. Assume that for any numbers 1 ≤ i1 < i2 < · · · <
ip ≤ n, there exist at least p elements j ∈ {1, 2, . . . , m} such that the union
Ai1 ∪ Ai2 ∪ · · · ∪ Aip has nonempty intersection with Bj. Then, there exists an
injective map σ : {1, 2, . . . , n} → {1, 2, . . . , m} such that all i ∈ {1, 2, . . . , n}
satisfy Ai ∩ Bσ(i) ̸= ∅.

Proof. We leave this to the reader. Again, construct an appropriate bipartite
graph and apply the HMT.

(The “SCR” in the name of the theorem is short for “system of common
representatives”.)

See [MirPer66] for much more about systems of representatives.

1.3. Regular bipartite graphs

The HMT gives a necessary and sufficient criterion for the existence of an X-
complete matching in an arbitrary bipartite graph. In the more restrictive set-
ting of regular bipartite graphs – i.e., bipartite graphs where each vertex has the
same degree –, there is a simpler sufficient condition: such a matching always
exists! We shall soon prove this surprising fact (which is not hard using the
HMT), but first let us get the definition in order:

Definition 1.3.1. Let k ∈ N. A multigraph G is said to be k-regular if all its
vertices have degree k.

Example 1.3.2. A 1-regular graph is a graph whose entire edge set is a perfect
matching. In other words, a 1-regular graph is a graph that is a disjoint union
of copies of the 2-nd path graph P2. Here is an example of such a graph:
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Example 1.3.3. A 2-regular graph is a graph that is a disjoint union of cycle
graphs. Here is an example of such a graph:

(yes, a C1 is fine, and so would be a C2).

Example 1.3.4. The 3-regular graphs are known as cubic graphs or trivalent
graphs. An example is the Petersen graph. Here is another example (known
as the Frucht graph):

.

More examples of cubic graphs can be found on the Wikipedia page. There
is no hope of describing them all.

https://en.wikipedia.org/wiki/Frucht_graph
https://en.wikipedia.org/wiki/Cubic_graph
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Example 1.3.5. Any Kneser graph KS,k is
(
|S| − k

k

)
-regular.

Proof. This is saying that if A is a k-element subset of a finite set S, then there

are precisely
(
|S| − k

k

)
many k-element subsets of S that are disjoint from A.

But this is clear, since the latter subsets are just the k-element subsets of the
(|S| − k)-element set S \ A.

Proposition 1.3.6. Let k > 0. Let (G, X, Y) be a k-regular bipartite graph (i.e.,
a bipartite graph such that G is k-regular). Then, |X| = |Y|.

Proof. Write the multigraph G as G = (V, E, φ). Each edge e ∈ E contains
exactly one vertex x ∈ X (since (G, X, Y) is a bipartite graph). Hence,

|E| = ∑
x∈X

(# of edges that contain the vertex x)︸ ︷︷ ︸
=deg x

= ∑
x∈X

deg x︸ ︷︷ ︸
=k

(since G is k-regular)

= ∑
x∈X

k = k · |X| .

Similarly, |E| = k · |Y|. Comparing these two equalities, we obtain k · |X| =
k · |Y|. Since k > 0, we can divide this by k, and conclude |X| = |Y|.

Theorem 1.3.7 (Frobenius matching theorem). Let k > 0. Let (G, X, Y) be
a k-regular bipartite graph (i.e., a bipartite graph such that G is k-regular).
Then, G has a perfect matching.

Proof. First, we claim that each subset A of X satisfies |N (A)| ≥ |A|.
Indeed, let A be a subset of X. Consider the edges of G that have at least one

endpoint in A. We shall call such edges “A-edges”. How many A-edges are
there?

On the one hand, each A-edge contains exactly one vertex in A (why?1).
Thus,

(# of A-edges) = ∑
x∈A

(# of A-edges containing the vertex x)︸ ︷︷ ︸
=deg x

(since each edge that contains the vertex x
is an A-edge)

= ∑
x∈A

deg x︸ ︷︷ ︸
=k

(since G is k-regular)

= ∑
x∈A

k = k · |A| .

1Here we are using the fact that A ⊆ X, so that no two vertices in A can be adjacent.
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On the other hand, each A-edge contains exactly one vertex in N (A) (why?2).
Thus,

(# of A-edges) = ∑
y∈N(A)

(# of A-edges containing the vertex y)︸ ︷︷ ︸
≤deg y

≤ ∑
y∈N(A)

deg y︸ ︷︷ ︸
=k

(since G is k-regular)

= ∑
y∈N(A)

k = k · |N (A)| .

Hence,
k · |N (A)| ≥ (# of A-edges) = k · |A| .

Since k > 0, we can divide this inequality by k, and thus find |N (A)| ≥ |A|.
Forget that we fixed A. We thus have proved |N (A)| ≥ |A| for each subset

A of X. Hence, the HMT (Theorem 1.1.1) yields that the graph G has an X-
complete matching M. Consider this M.

However, Proposition 1.3.6 yields |X| = |Y|. Hence, Proposition 1.3.1 (f)
in Lecture 24 shows that the matching M is perfect (since M is X-complete).
Therefore, G has a perfect matching. This proves Theorem 1.3.7.

1.4. Latin squares

One of many applications of Theorem 1.3.7 is to the study of Latin squares.
Here is the definition of this concept:

Definition 1.4.1. Let n ∈ N. A Latin square of order n is an n × n-matrix M
that satisfies the following conditions:

1. The entries of M are the numbers 1, 2, . . . , n, each appearing exactly n
times.

2. In each row of M, the entries are distinct.

3. In each column of M, the entries are distinct.

Example 1.4.2. Here is a Latin square of order 5:
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

 .

2Here we are using the fact that N (A) ⊆ Y (which follows from A ⊆ X using Proposition
1.2.8 in Lecture 24), so that no two vertices in N (A) can be adjacent.
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Similarly, for each n ∈ N, the matrix
(
ci+j−1

)
1≤i≤n, 1≤j≤n, where

ck =

{
k, if k ≤ n;
k − n, else,

is a Latin square of order n.

A popular example of Latin squares of order 9 are Sudokus (but they have to
satisfy an additional requirement, concerning certain 3 × 3 subsquares).

The Latin squares in Example 1.4.2 are rather boring. What would be a good
algorithm to construct general Latin squares?

Here is an attempt at a recursive algorithm: We just start by filling in the first
row, then the second row, then the third row, and so on, making sure at each
step that the distinctness conditions (Conditions 2 and 3 in Definition 1.4.1) are
satisfied.

Example 1.4.3. Let us construct a Latin square of order 5 by this algorithm.
We begin (e.g.) with the first row(

3 1 4 2 5
)

.

Then, we append a second row
(

2 4 1 5 3
)

to it, chosen in such a way
that its five entries are distinct and also each entry is distinct from the entry
above (again, there are many possibilities; we have just picked one). Thus,
we have our first two rows: (

3 1 4 2 5
2 4 1 5 3

)
.

We continue along the same lines, ending up with the Latin square
3 1 4 2 5
2 4 1 5 3
1 5 2 3 4
5 2 3 4 1
4 3 5 1 2


(or another, depending on the choices we have made).

Does this algorithm always work?
To be fully honest, it’s not a fully specified algorithm, since I haven’t ex-

plained how to fill a row (it’s not straightforward). But let’s assume that we
know how to do this, if it is at all possible. The natural question is: Will we
always be able to produce a complete Latin square using this algorithm, or will
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we get stuck somewhere (having constructed k rows for some k < n, but being
unable to produce a (k + 1)-st row)?

It turns out that we won’t get stuck this way. In other words, the following
holds:

Proposition 1.4.4. Let n ∈ N and k ∈ {0, 1, . . . , n − 1}. Then, any k × n
Latin rectangle (i.e., any k × n-matrix that contains the entries 1, 2, . . . , n,
each appearing exactly k times, and satisfies the Conditions 2 and 3 from
Definition 1.4.1) can be extended to a (k + 1)× n Latin rectangle by adding
an appropriately chosen extra row at the bottom.

Proof. Let M be a k × n Latin rectangle3. We want to find a new row that we
can append to M at the bottom, such that the result will be a (k + 1)× n Latin
rectangle.

This new row should contain the numbers 1, 2, . . . , n in some order. More-
over, for each i ∈ {1, 2, . . . , n}, its i-th entry should be distinct from all entries
of the i-th column of M. How do we find such a new row?

Let X = {1, 2, . . . , n} and Y = {−1,−2, . . . ,−n}.
Let G be the simple graph with vertex set X ∪ Y, where we let a vertex i ∈ X

be adjacent to a vertex −j ∈ Y if and only if the number j does not appear in
the i-th column of M. There should be no further adjacencies.

Thus, (G, X, Y) is a bipartite graph. Moreover, the graph G is (n − k)-regular
(this is not hard to see4). Thus, by the Frobenius matching theorem (Theorem
1.3.7), the graph G has a perfect matching. Let

{{1, −a1} , {2, −a2} , . . . , {n, −an}}

be this perfect matching. Then, the numbers a1, a2, . . . , an are distinct (since two
edges in a matching cannot have a common endpoint), and the number ai does
not appear in the i-th column of M (since {i, −ai} is an edge of G). Thus, we
can append the row (

a1 a2 · · · an
)

to M at the bottom and obtain a (k + 1)× n Latin rectangle. This proves Propo-
sition 1.4.4.

3For example, if n = 5 and k = 3, then M can be

 3 1 4 2 5
2 4 1 5 3
1 5 2 3 4

.

4Proof. Each vertex i ∈ X has degree n − k (after all, there are k numbers in {1, 2, . . . , n} that
appear in the i-th column of M, thus n − k numbers in {1, 2, . . . , n} that do not appear in
this column). It remains to show that each vertex −j ∈ Y has degree n − k as well. To see
this, consider some vertex −j ∈ Y. Then, the number j appears exactly once in each row
of M (since Condition 2 forces each row to contain the numbers 1, 2, . . . , n in some order).
Hence, the number j appears a total of k times in M. These k appearances of j must be
in k distinct columns (since having two of them in the same column would conflict with
Condition 3). Thus, there are k columns of M that contain j, and therefore n − k columns
that don’t. In other words, the vertex −j ∈ Y has degree n − k.
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1.5. Magic matrices and the Birkhoff–von Neumann theorem

Let us now apply the HMT to linear algebra.
Recall that N = {0, 1, 2, . . .}. We also set R+ := {all nonnegative reals}.
Here are three very similar definitions:

Definition 1.5.1. An N-magic matrix means an n × n-matrix M that satisfies
the following three conditions:

1. All entries of M are nonnegative integers.

2. The sum of the entries in each row of M is equal.

3. The sum of the entries in each column of M is equal.

Definition 1.5.2. An R+-magic matrix means an n× n-matrix M that satisfies
the following three conditions:

1. All entries of M are nonnegative reals.

2. The sum of the entries in each row of M is equal.

3. The sum of the entries in each column of M is equal.

Definition 1.5.3. A doubly stochastic matrix means an n × n-matrix M that
satisfies the following three conditions:

1. All entries of M are nonnegative reals.

2. The sum of the entries in each row of M is 1.

3. The sum of the entries in each column of M is 1.

Clearly, these three concepts are closely related (in particular, all N-magic
matrices and all doubly stochastic matrices are R+-magic). The most impor-
tant of them is the last; in particular, majorization theory (one of the main
methods for proving inequalities) is deeply connected to the properties of dou-
bly stochastic matrices (see [MaOlAr11, Chapter 2]). See [BapRag97, Chapter
2] for a chapter-length treatment of doubly stochastic matrices. We shall only
prove some of their most basic properties. First, some examples:

Example 1.5.4. For any n > 0, the n × n-matrix
1 1 · · · 1
1 1 · · · 1
...

... . . . ...
1 1 · · · 1
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is N-magic and also R+-magic. This matrix is not doubly stochastic (unless
n = 1), since the sum of the entries in a row or column is n, not 1. However,
if we divide this matrix by n, it becomes doubly stochastic.

Example 1.5.5. Here is an N-magic 3 × 3-matrix: 7 0 5
2 6 4
3 6 3

 .

Dividing this matrix by 12 gives a doubly stochastic matrix.

Example 1.5.6. A permutation matrix is an n × n-matrix whose entries are
0’s and 1’s, and which has exactly one 1 in each row and exactly one 1 in

each column. For example,


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 is a permutation matrix of size

4.
For any n ∈ N, there are n! many permutation matrices (of size n), since

they are in bijection with the permutations of {1, 2, . . . , n}. Namely, if σ is
a permutation of {1, 2, . . . , n}, then the corresponding permutation matrix
P (σ) has its (i, σ (i))-th entries equal to 1 for all i ∈ {1, 2, . . . , n}, while its re-
maining n2 − n entries are 0. For example, if σ is the permutation of {1, 2, 3}
sending 1, 2, 3 to 2, 3, 1, then the corresponding permutation matrix P (σ) is 0 1 0

0 0 1
1 0 0

.

Any permutation matrix is N-magic, R+-magic and doubly stochastic.

It turns out that these permutation matrices are (in a sense) the “building
blocks” of all magic (and doubly stochastic) matrices! Namely, the following
holds:

Theorem 1.5.7 (Birkhoff–von Neumann theorem). Let n ∈ N. Then:

(a) Any N-magic n × n-matrix can be expressed as a finite sum of permu-
tation matrices.

(b) Any R+-magic n × n-matrix can be expressed as an R+-linear combi-
nation of permutation matrices (i.e., it can be expressed in the form
λ1P1 + λ2P2 + · · ·+ λkPk, where λ1, λ2, . . . , λk ∈ R+ are numbers and
where P1, P2, . . . , Pk are permutation matrices).

(c) Let n > 0. Any doubly stochastic n × n-matrix can be expressed as a
convex combination of permutation matrices (i.e., it can be expressed

https://en.wikipedia.org/wiki/Convex_combination
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in the form λ1P1 + λ2P2 + · · · + λkPk, where λ1, λ2, . . . , λk ∈ R+ are
numbers satisfying λ1 + λ2 + · · ·+ λk = 1 and where P1, P2, . . . , Pk are
permutation matrices).

Soon we will sketch a proof of this theorem using the HMT. First, two simple
results that will be used in the proof.

Proposition 1.5.8. Let A be an N-magic or R+-magic n × n-matrix. Then,
the sum of all entries in a row of A equals the sum of all entries in a column
of A.

Proof. Both sums equal
1
n

times the sum of all entries of A (since A has n rows
and n columns).

Lemma 1.5.9. Let M be an N-magic or R+-magic matrix that is not the zero
matrix. Then, there exists a permutation σ of {1, 2, . . . , n} such that all entries
M1,σ(1), M2,σ(2), . . . , Mn,σ(n) are nonzero.

Example 1.5.10. If n = 3 and M =

 2 7 1
0 1 9
8 2 0

, then the permutation σ that

sends 1, 2, 3 to 3, 2, 1 has this property.

Proof of Lemma 1.5.9. Let s denote the sum of the entries in any given row of M
(it doesn’t matter which row we take, since M is magic). Then, s is also the sum
of the entries in any given column of M (by Proposition 1.5.8). Also, the sum
of all entries of M is ns. Hence, ns > 0 (since M has nonnegative entries and is
not the zero matrix). Thus, s > 0.

Let X = {1, 2, . . . , n} and Y = {−1,−2, . . . ,−n}.
Let G be the simple graph with vertex set X ∪ Y and with edges defined as

follows: A vertex i ∈ X shall be adjacent to a vertex −j ∈ Y if and only if
Mi,j > 0 (here, Mi,j denotes the (i, j)-th entry of M). There shall be no further
adjacencies.

Thus, (G, X, Y) is a bipartite graph.
We shall now prove that it satisfies the Hall condition. That is, we shall prove

that every subset A of {1, 2, . . . , n} satisfies |N (A)| ≥ |A|.
Assume the contrary. Thus, there exists a subset A of {1, 2, . . . , n} that satis-

fies |N (A)| < |A|. Consider this A. WLOG assume that A = {1, 2, . . . , k} for
some k ∈ {0, 1, . . . , n} (otherwise, we permute the rows of M). Thus, all positive
entries in the first k rows of A are concentrated in fewer than k columns (since
the columns in which they lie are the j-th columns for j ∈ N (A), but we have
|N (A)| < |A| = k). Therefore, the sum of these entries is smaller than ks (since
the sum of all entries in any given column is s). On the other hand, however,
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the sum of these entries equals ks, because they are all the positive entries in the
first k rows of A (and the sum of all positive entries in a given row equals the
sum of all entries in this row, which is s). The two preceding sentences clearly
contradict each other. This contradiction shows that our assumption was false.

Hence, the Hall condition is satisfied. Thus, the HMT yields that G has a
perfect matching. Let

{{1,−a1} , {2,−a2} , . . . , {n,−an}}

be this perfect matching. Then, a1, a2, . . . , an are distinct, so we can find a per-
mutation σ of {1, 2, . . . , n} such that ai = σ (i) for all i ∈ {1, 2, . . . , n}. This
permutation σ then satisfies Mi,σ(i) > 0 for all i ∈ {1, 2, . . . , n}, which is what
we wanted. Thus, Lemma 1.5.9 is proved.

Proof of Theorem 1.5.7 (sketched). (a) Let M be an N-magic n × n-matrix. How
can we express M as a sum of permutation matrices?

We can try the following method: Try to subtract a permutation matrix from
M in such a way that the result will still be an N-magic matrix. Then do this
again, and again and again... until we reach the zero matrix. Once we have
arrived at the zero matrix, the sum of all the permutation matrices that we have
subtracted along the way must be M.

Let us experience this method on an example: Let n = 3 and5 M =

 2 7 1
1 9

8 2

.

If we subtract a permutation matrix from M, then the resulting matrix will still
satisfy Conditions 2 and 3 of Definition 1.5.1 (since the sum of the entries in any
row has been decreased by 1, and the sum of the entries in any column has also
been decreased by 1); however, Condition 1 is not guaranteed, since the sub-
traction may turn an entry of M negative (which is not allowed). For example,

this would happen if we tried to subtract the permutation matrix

 1
1

1


from M. Fortunately, Lemma 1.5.9 tells us that there is a permutation σ of
{1, 2, . . . , n} such that all entries M1,σ(1), M2,σ(2), . . . , Mn,σ(n) are nonzero. If
we choose such a σ, and subtract the corresponding permutation matrix P (σ)
from M, then we obtain an N-magic matrix, because subtracting 1 from the
nonzero entries M1,σ(1), M2,σ(2), . . . , Mn,σ(n) cannot render any of these en-
tries negative. In our example, we can pick σ to be the permutation that sends

5We are here omitting zero entries from matrices. Thus,

 2 7 1
1 9

8 2

 means the matrix 2 7 1
0 1 9
8 2 0

.
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1, 2, 3 to 3, 2, 1. The corresponding permutation matrix P (σ) is

 1
1

1

.

Subtracting this matrix from M, we find 2 7 1
1 9

8 2

−

 1
1

1

 =

 2 7
9

7 2

 .

This is again an N-magic matrix. Thus, let us do the same to it that we did to
M: We again subtract a permutation matrix.

This time, we can actually do better: We can subtract the permutation matrix 1
1

1

 from

 2 7
9

7 2

 not just once, but 7 times, without rendering

any entry negative, because the relevant entries 7, 9, 7 are all ≥ 7. The result is 2 7
9

7 2

− 7 ·

 1
1

1

 =

 2
2

2

 .

Now, we follow the same recipe and again subtract a permutation matrix.
This time, we can do it 2 times, and obtain 2

2
2

− 2 ·

 1
1

1

 =

  = 03×3

(the zero matrix, in case you’re wondering).
Thus, we have arrived at the zero matrix by successively subtracting permu-

tation matrices from M. Hence, M is the sum of all the permutation matrices
that have been subtracted: namely,

M =

 1
1

1

+ 7 ·

 1
1

1

+ 2 ·

 1
1

1

 ,

which is a sum of 1 + 7 + 2 permutation matrices.
This method works in general, because:

• If M is an N-magic matrix that is not the zero matrix, then Lemma 1.5.9
tells us that there is a permutation σ of {1, 2, . . . , n} such that all entries
M1,σ(1), M2,σ(2), . . . , Mn,σ(n) are nonzero. We can then choose such a σ

and subtract the corresponding permutation matrix P (σ) from M.

• Better yet, we can subtract m · P (σ) from M, where

m = min
{

M1,σ(1), M2,σ(2), . . . , Mn,σ(n)

}
.
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This results in an N-magic matrix (since the sum of the entries decreases
by m in each row and by m in each column, and since we are only sub-
tracting m from a bunch of entries that are ≥ m) that has at least one
fewer nonzero entry than M (since at least one of the nonzero entries
M1,σ(1), M2,σ(2), . . . , Mn,σ(n) becomes 0 when m is subtracted from it).

• This way, in each step of our process, the number of nonzero entries of
our matrix decreases by at least 1 (but the matrix remains an N-magic
matrix throughout the process). Hence, we eventually (after at most n2

steps) will end up with the zero matrix.

This proves Theorem 1.5.7 (a).

(b) This is analogous to the proof of part (a) (but this time, we have to sub-
tract m · P (σ) rather than P (σ) in our procedure, since the nonzero entries
M1,σ(1), M2,σ(2), . . . , Mn,σ(n) are not necessarily ≥ 1).

(c) Let M be a doubly stochastic n × n-matrix. Then, M is also R+-magic.
Hence, part (b) shows that M can be expressed in the form λ1P1 + λ2P2 +
· · ·+ λkPk, where λ1, λ2, . . . , λk ∈ R+ are numbers and where P1, P2, . . . , Pk are
permutation matrices. Consider these λ1, λ2, . . . , λk and these P1, P2, . . . , Pk.

Now, consider the sum of all entries in the first row of M. It is easy to see that
this sum is λ1 + λ2 + · · ·+ λk (because M = λ1P1 + λ2P2 + · · ·+ λkPk, but each
permutation matrix Pi contributes a 1 to the sum of all entries in the first row).
But we know that this sum is 1, since M is doubly stochastic. Comparing these,
we conclude that λ1 +λ2 + · · ·+λk = 1. Thus, we have expressed M in the form
λ1P1 + λ2P2 + · · · + λkPk, where λ1, λ2, . . . , λk ∈ R+ are numbers satisfying
λ1 + λ2 + · · ·+ λk = 1 and where P1, P2, . . . , Pk are permutation matrices. This
proves Theorem 1.5.7 (c).
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