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Math 530 Spring 2022, Lecture 21: Trees and
colorings

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Trees and arborescences (cont’d)

1.1. A weighted Matrix-Tree Theorem

We have so far been counting arborescences. A natural generalization of count-
ing is weighted counting – i.e., you assign a certain number (a “weight”) to
each arborescence (or whatever object you are interested in), and then you sum
the weights of all arborescences (instead of merely counting them). This gener-
alizes counting, because if all weights are 1, then you get the # of arborescences.

If you pick the weights to be completely random, then the sum won’t usually
be particularly interesting. However, some choices of weights lead to good
behavior. Let us see what we get if we assign a weight to each arc of our
digraph, and then define the weight of an arborescence to be the product of the
weights of the arcs that appear in this arborescence.

Definition 1.1.1. Let D = (V, A, ψ) be a multidigraph.
Let K be a commutative ring. Assume that an element wa ∈ K is assigned

to each arc a ∈ A. We call this wa the weight of the arc a. (You can assume
that K = R, so that the weights are just numbers.)

(a) For any two vertices i, j ∈ V, we let aw
i,j be the sum of the weights of all

arcs of D that have source i and target j.

(b) For any vertex i ∈ V, we define the weighted outdegree deg+w i of i to
be the sum

∑
a∈A;

the source of a is i

wa.

(c) If B is a subdigraph of D, then the weight w (B) of B is defined to be
the product ∏

a is an arc of B
wa. This is the product of the weights of all arcs

of B.

(d) Assume that V = {1, 2, . . . , n} for some n ∈ N. The weighted Lapla-
cian of D (with respect to the weights wa) is defined to be the n × n-
matrix Lw ∈ Kn×n (note that the “w” here is a superscript, not an
exponent) whose entries are given by

Lw
i,j =

(
deg+w i

)
· [i = j]− aw

i,j for all i, j ∈ V.

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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These definitions generalize analogous definitions in the “unweighted case”.
Indeed, if we take all the arc weights wa to be 1, then the weighted outdegree
deg+w i of a vertex i becomes its usual outdegree deg i, and the weighted Lapla-
cian Lw becomes the usual Laplacian L. The weight w (B) of a subdigraph B
simply becomes 1 in this case.

We now can generalize the original MTT (= Matrix-Tree Theorem)1 as fol-
lows:

Theorem 1.1.2 (weighted Matrix-Tree Theorem). Let D = (V, A, ψ) be a mul-
tidigraph.

Let K be a commutative ring. Assume that an element wa ∈ K is assigned
to each arc a ∈ A. We call this wa the weight of the arc a.

Assume that V = {1, 2, . . . , n} for some n ∈ N. Let Lw be the weighted
Laplacian of D.

Let r be a vertex of D. Then,

∑
B is a spanning

arborescence
of D rooted to r

w (B) = det
(

Lw
∼r,∼r

)
.

Example 1.1.3. Let D be the following multidigraph:

1

2

3D =

α
β

γ

δ , and let r = 3.

Then, D has two spanning arborescences rooted to r. One of the two has arcs
α and β (and thus has weight wαwβ); the other has arcs γ and β (and thus
has weight wγwβ). Hence,

∑
B is a spanning

arborescence
of D rooted to r

w (B) = wαwβ + wγwβ, (1)

The weighted Laplacian Lw is

Lw =

 wα + wγ −wα −wγ

0 wβ −wβ

−wδ 0 wδ


1To remind: The original MTT is Theorem 1.1.2 in Lecture 19.
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(since, for example, deg+w 1 = wα + wγ and aw
1,1 = 0 and aw

1,2 = wα). Thus,

Lw
∼3,∼3 =

(
wα + wγ −wα

0 wβ

)
and therefore

det
(

Lw
∼3,∼3

)
= (wα + wγ)wβ = wαwβ + wγwβ.

The right hand side of this agrees with that of (1). This confirms the weighted
MTT for our D and r.

As we already said, the weighted MTT generalizes the original MTT, because
if we take all wa’s to be 1, we just recover the original MTT.

However, we can also go backwards: we can derive the weighted MTT from
the original MTT. Let us do this.

First, we recall a standard result in algebra, known as the principle of per-
manence of polynomial identities or as the polynomial identity trick (it also
goes under several other names). Here is one incarnation of this principle:

Theorem 1.1.4 (principle of permanence of polynomial identities). Let
P (x1, x2, . . . , xm) and Q (x1, x2, . . . , xm) be two polynomials with integer co-
efficients in several indeterminates x1, x2, . . . , xm. Assume that the equality

P (k1, k2, . . . , km) = Q (k1, k2, . . . , km) (2)

holds for every m-tuple (k1, k2, . . . , km) ∈ Nm of nonnegative integers. Then,
P (x1, x2, . . . , xm) and Q (x1, x2, . . . , xm) are identical as polynomials (so that,
in particular, the equality (2) holds not only for every (k1, k2, . . . , km) ∈ Nm,
but also for every (k1, k2, . . . , km) ∈ Cm, and more generally, for every
(k1, k2, . . . , km) ∈ Km where K is an arbitrary commutative ring).

Theorem 1.1.4 is often summarized as “in order to prove that two polynomi-
als are equal, it suffices to show that they are equal on all nonnegative integer
points” (where a “nonnegative integer point” means a point – i.e., a tuple of
inputs – whose all entries are nonnegative integers). Even shorter, one says
that “a polynomial identity (i.e., an equality between two polynomials) needs
only to be checked on nonnegative integers”. For example, if you can prove the
equality

(x + y)4 + (x − y)4 = 2x4 + 12x2y2 + 2y4

for all nonnegative integers x and y, then you automatically conclude that this
equality holds as a polynomial identity, and thus is true for any elements x and
y of a commutative ring.

A typical application of Theorem 1.1.4 is to argue that a polynomial identity
you have proved for all nonnegative integers must automatically hold for all
inputs (because of Theorem 1.1.4). Some examples of such reasoning can be
found in [19fco, §2.6.3 and §2.6.4]. A variant of Theorem 1.1.4 is [Conrad21,
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Theorem 2.6]; actually, the proof of [Conrad21, Theorem 2.6] can be trivially
adapted to prove Theorem 1.1.4 (just replace “nonempty open set in Ck” by
“Nk”). In truth, there is nothing special about nonnegative integers and the
set N; you could replace N by any infinite set of numbers (or even any suf-
ficiently large set of numbers, where “sufficiently large” means “more than
max {deg P, deg Q} many”). See [Alon02, Lemma 2.1] for a fairly general ver-
sion of Theorem 1.1.4 that includes such cases2.

Proof of Theorem 1.1.2. The claim of Theorem 1.1.2 (for fixed D and r) is an
equality between two polynomials in the arc weights wa. (For instance, in Ex-

ample 1.1.3, this equality is wαwβ + wγwβ = det
(

wα + wγ −wα

0 wβ

)
.)

Therefore, thanks to Theorem 1.1.4, it suffices to prove this equality in the
case when all arc weights wa are nonnegative integers. So let us WLOG assume
that arc weights wa are nonnegative integers.

Let us now replace each arc a of D by wa many copies of the arc a (having
the same source as a and the same target as a). The result is a new digraph D′.
Here is an example:

Example 1.1.5. Let D be the digraph

1

2

3D =

α β

γ ,

and let the arc weights be wα = 2 and wβ = 3 and wγ = 2. Then, D′ looks as

2To be precise, [Alon02, Lemma 2.1] is not concerned with two polynomials being identical,
but rather with one polynomial being identically zero. But this is an equivalent question:
Two polynomials P and Q are identical if and only if their difference P − Q is identically
zero.
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follows:

1

2

3D′ =

α1
α2

β1
β2

β3

γ1

γ2 ,

where α1, α2 are the two arcs obtained from α, and so on.

Now, recall that the digraph D′ has the same vertices as D, but each arc a
of D has turned into wa arcs of D′. Thus, the weighted outdegree deg+w i of
a vertex i of D equals the (usual, i.e., non-weighted) outdegree deg+ i of the
same vertex i of D′. Hence, the weighted Laplacian Lw of D is the (usual, i.e.,
non-weighted) Laplacian of D′.

Recall again that the digraph D′ has the same vertices as D, but each arc a
of D has turned into wa arcs of D′. Thus, each subdigraph B of D gives rise
to w (B) many subdigraphs of D′ (because we can replace each arc a of B by
any of the wa many copies of this arc in D′). Moreover, this correspondence
takes spanning arborescences to spanning arborescences3, and we can obtain
any spanning arborescence of D′ in this way from exactly one B. Hence,

∑
B is a spanning

arborescence
of D rooted to r

w (B) =
(
# of spanning arborescences of D′ rooted to r

)
.

Thus, applying the original MTT to D′ yields the weighted MTT for D (since
the weighted Laplacian Lw of D is the (usual, i.e., non-weighted) Laplacian of
D′). This completes the proof of Theorem 1.1.2.

[Remark: Alternatively, it is not hard to adapt our above proof of the original
MTT to the weighted case.]

The weighted MTT has some applications that wouldn’t be obvious from the
original MTT. Here is one:

Exercise 1. Let n ≥ 2 be an integer, and let d1, d2, . . . , dn be n positive integers.
An n-tree shall mean a simple graph with vertex set {1, 2, . . . , n} that is a tree.

3More precisely: Let B be a subdigraph of D, and let B′ be any of the w (B) many subdi-
graphs of D′ that are obtained from B through this correspondence. Then, B is a spanning
arborescence of D rooted to r if and only if B′ is a spanning arborescence of D′ rooted to r.
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We know from Cayley’s theorem that there are nn−2 many n-trees. How
many of these n-trees have the property that

deg i = di for each vertex i ?

Solution. The n-trees are just the spanning trees of the complete graph Kn.
To incorporate the deg i = di condition into our count, we use a generating

function. So let us not fix the numbers d1, d2, . . . , dn, but rather consider the
polynomial

P (x1, x2, . . . , xn) := ∑
T is a n-tree

xdeg 1
1 xdeg 2

2 · · · xdeg n
n (3)

in n indeterminates x1, x2, . . . , xn (where deg i means the degree of i in T). Then,
the xd1

1 xd2
2 · · · xdn

n -coefficient of this polynomial P (x1, x2, . . . , xn) is the # of n-
trees T satisfying the property that

deg i = di for each vertex i

(because each such n-tree T contributes a monomial xd1
1 xd2

2 · · · xdn
n to the sum

on the right hand side of (3), whereas any other n-tree T contributes a different
monomial to this sum).

Let us assign to each edge ij of Kn the weight wij := xixj. Then, the definition
of P (x1, x2, . . . , xn) rewrites as follows:

P (x1, x2, . . . , xn) = ∑
T is an n-tree

w (T) ,

where w (T) denotes the product of the weights of all edges of T. (Indeed, for
any subgraph T of Kn, the weight w (T) equals xdeg 1

1 xdeg 2
2 · · · xdeg n

n , where deg i
means the degree of i in T.)

We have assigned weights to the edges of the graph Kn; let us now assign the
same weights to the arcs of the digraph Kbidir

n . That is, the two arcs (ij, 1) and
(ij, 2) corresponding to an edge ij of Kn shall both have the weight

w(ij,1) = w(ij,2) = wij = xixj. (4)

As we are already used to, we can replace spanning trees of Kn by spanning
arborescences of Kbidir

n rooted to 1, since the former are in bijection with the
latter. Thus, we have

(# of spanning trees of Kn)

=
(

# of spanning arborescences of Kbidir
n rooted to 1

)
.
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Moreover, since this bijection preserves weights (because of (4)), we also have

∑
T is a spanning

tree of Kn

w (T) = ∑
B is a spanning

arborescence of Kbidir
n

rooted to 1

w (B) .

In other words,

∑
T is an n-tree

w (T) = ∑
B is a spanning

arborescence of Kbidir
n

rooted to 1

w (B)

(since the spanning trees of Kn are precisely the n-trees).
To compute the right hand side, we shall use the weighted Matrix-Tree The-

orem. The weighted Laplacian of Kbidir
n (with the weights we have just defined)

is the n × n-matrix Lw with entries given by

Lw
i,j =

(
deg+w i

)
· [i = j]− aw

i,j

=

deg+w i − aw
i,j, if i = j;

−aw
i,j, if i ̸= j

=

{
deg+w i, if i = j;
−aw

i,j, if i ̸= j

(
since aw

i,j = 0 when i = j

(because Kbidir
n has no loops)

)

=

{
xi (x1 + x2 + · · ·+ xn)− xixj, if i = j;
−xixj, if i ̸= j

since deg+w i = xix1 + xix2 + · · ·+ xixi−1 + xixi+1 + · · ·+ xixn
= xi (x1 + x2 + · · ·+ xi−1 + xi+1 + · · ·+ xn)

= xi (x1 + x2 + · · ·+ xn)− xixi
= xi (x1 + x2 + · · ·+ xn)− xixj whenever i = j,

and since aw
i,j = xixj whenever i ̸= j


= [i = j] xi (x1 + x2 + · · ·+ xn)− xixj

= xi
(
[i = j] (x1 + x2 + · · ·+ xn)− xj

)
.

We can find its minor det
(

Lw
∼1,∼1

)
without too much trouble (e.g., using row

transformations similar to the ones we have done back in the proof of Cayley’s
theorem4); the result is

det
(

Lw
∼1,∼1

)
= x1x2 · · · xn (x1 + x2 + · · ·+ xn)

n−2 .

4The first step, of course, is to factor an xi out of the i-th row for each i.
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Summarizing what we have done so far,

P (x1, x2, . . . , xn) = ∑
T is an n-tree

w (T) = ∑
B is a spanning

arborescence of Kbidir
n

rooted to 1

w (B)

= det
(

Lw
∼1,∼1

)
(by the weighted Matrix-Tree Theorem)

= x1x2 · · · xn (x1 + x2 + · · ·+ xn)
n−2 . (5)

As we recall, we are looking for the xd1
1 xd2

2 · · · xdn
n -coefficient in this polynomial.

From (5), we see that(
the xd1

1 xd2
2 · · · xdn

n -coefficient of P (x1, x2, . . . , xn)
)

=
(

the xd1
1 xd2

2 · · · xdn
n -coefficient of x1x2 · · · xn (x1 + x2 + · · ·+ xn)

n−2
)

=
(

the xd1−1
1 xd2−1

2 · · · xdn−1
n -coefficient of (x1 + x2 + · · ·+ xn)

n−2
)

(because when we multiply a polynomial by x1x2 · · · xn, all the exponents in it
get incremented by 1, so its coefficients just shift by a 1 in each exponent).

Now, how can we describe the coefficients of (x1 + x2 + · · ·+ xn)
n−2, or,

more generally, of (x1 + x2 + · · ·+ xn)
m for some m ∈ N ? These are the

so-called multinomial coefficients (named in analogy to the binomial coeffi-
cients, which are their particular case for n = 2). Their definition is as follows:
If p1, p2, . . . , pn, q are nonnegative integers with q = p1 + p2 + · · · + pn, then

the multinomial coefficient
(

q
p1, p2, . . . , pn

)
is defined to be

q!
p1!p2! · · · pn!

. If

q ̸= p1 + p2 + · · · + pn, then it is defined to be 0 instead. In either case, this
coefficient is easily seen to be an integer.5 The multinomial formula (aka multi-
nomial theorem) says that for each k ∈ N, we have

(x1 + x2 + · · ·+ xn)
k = ∑

i1,i2,...,in∈N;
i1+i2+···+in=k

(
k

i1, i2, . . . , in

)
xi1

1 xi2
2 · · · xin

n

= ∑
i1,i2,...,in∈N

(
k

i1, i2, . . . , in

)
xi1

1 xi2
2 · · · xin

n

(it does not matter whether we restrict the sum by the condition i1 + i2 + · · ·+

in = k or not, since the coefficient
(

k
i1, i2, . . . , in

)
is defined to be 0 when this

condition is violated anyway). Hence,(
the xi1

1 xi2
2 · · · xin

n -coefficient of (x1 + x2 + · · ·+ xn)
k
)
=

(
k

i1, i2, . . . , in

)
5See [23wd, Lecture 18, Section 4.12] for an introduction to multinomial coefficients.

https://en.wikipedia.org/wiki/Multinomial_theorem
https://en.wikipedia.org/wiki/Multinomial_theorem
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for any k ∈ N and any i1, i2, . . . , in ∈ N. In particular,(
the xd1−1

1 xd2−1
2 · · · xdn−1

n -coefficient of (x1 + x2 + · · ·+ xn)
n−2
)

=

(
n − 2

d1 − 1, d2 − 1, . . . , dn − 1

)
.

Summarizing, we find(
the xd1

1 xd2
2 · · · xdn

n -coefficient of P (x1, x2, . . . , xn)
)

=
(

the xd1−1
1 xd2−1

2 · · · xdn−1
n -coefficient of (x1 + x2 + · · ·+ xn)

n−2
)

=

(
n − 2

d1 − 1, d2 − 1, . . . , dn − 1

)
.

However, the xd1
1 xd2

2 · · · xdn
n -coefficient of P (x1, x2, . . . , xn) is the # of n-trees T

satisfying the property that

deg i = di for each vertex i

(as we have seen above). Thus, we have proved the following:

Theorem 1.1.6 (refined Cayley’s formula). Let n ≥ 2 be an integer, and let
d1, d2, . . . , dn be n positive integers. Then, the # of n-trees with the property
that

deg i = di for each i ∈ {1, 2, . . . , n}
is the multinomial coefficient(

n − 2
d1 − 1, d2 − 1, . . . , dn − 1

)
.

The harmonic vector theorem for Laplacians (Theorem 1.2.1 in Lecture 20)
also has a weighted version:

Theorem 1.1.7 (harmonic vector theorem for weighted Laplacians). Let D =
(V, A, ψ) be a multidigraph, where V = {1, 2, . . . , n} for some n ∈ N. Let
K be a commutative ring. Assume that an element wa ∈ K is assigned to
each arc a ∈ A. For each r ∈ V, let τw (D, r) be the sum of the weights of
all the spanning arborescences of D rooted to r. Let f w be the row vector
(τw (D, 1) , τw (D, 2) , . . . , τw (D, n)). Let Lw be the weighted Laplacian of
D. Then, f wLw = 0.

Proof. Similar to the unweighted case.
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2. Colorings

Now to something different: Let’s color the vertices of a graph!

2.1. Definition

This is a serious course, so our colors are positive integers. Coloring the vertices
thus means assigning a color (= a positive integer) to each vertex. Here are the
details:

Definition 2.1.1. Let G = (V, E, φ) be a multigraph. Let k ∈ N.

(a) A k-coloring of G means a map f : V → {1, 2, . . . , k}. Given such a
k-coloring f , we refer to the numbers 1, 2, . . . , k as the colors, and we
refer to each value f (v) as the color of the vertex v in the k-coloring f .

(b) A k-coloring f of G is said to be proper if no two adjacent vertices of
G have the same color. (In other words, a k-coloring f of G is proper if
there exists no edge of G whose endpoints u and v satisfy f (u) = f (v).)

Example 2.1.2. Here are two 7-colorings of a graph:

1

2

4

2

5

1

1

3

4

2

3

1

(where the numbers on the nodes are not the vertices, but rather the colors
of the vertices). The 7-coloring on the left (yes, it is a 7-coloring, even though
it does not actually use the colors 3, 6 and 7) is not proper, because the two
adjacent vertices on the top left have the same color. The 7-coloring on the
right, however, is proper.
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Example 2.1.3. Here is a bunch of graphs:

1

2 3

45

A = 1

2 3

45

B =

1

2 3

45

C = 1

2 3

45

D =

.

Which of them have proper 3-colorings?

• The graph A has a proper 3-coloring. For example, the map f that
sends the vertices 1, 2, 3, 4, 5 to the colors 1, 2, 1, 2, 3 (respectively) is a
proper 3-coloring.

• The graph B has no proper 3-coloring. Indeed, the four vertices 2, 3, 4, 5
are mutually adjacent, so they would have to have 4 distinct colors in a
proper k-coloring; but this is not possible unless k ≥ 4.

• The graph C has a proper 3-coloring and even a proper 2-coloring (e.g.,
assigning color 1 to each odd vertex and color 2 to each even vertex).

• The graph D has no proper 3-coloring and, in fact, no proper k-coloring
for any k ∈ N. The reason is that the vertex 3 is adjacent to itself, but
obviously has the same color as itself no matter what the k-coloring is.
More generally, a graph with a loop cannot have a proper k-coloring
for any k ∈ N.
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Example 2.1.4. Here is the Petersen graph:

{1, 2}

{2, 3}
{3, 4}

{4, 5}
{1, 5}

{3, 5}

{1, 4}

{2, 5}

{1, 3}

{2, 4}
.

I claim that it has a proper 3-coloring. Can you find it?

As we see, some graphs have proper 3-colorings, while others don’t. Clearly,
having 4 mutually adjacent vertices makes a proper 3-coloring impossible (in-
deed, by the pigeonhole principle, two of them must have the same color), but
this is far from an “if and only if”. The question of determining whether a
given graph has a proper 3-coloring is NP-complete.

In contrast, the existence of proper 2-colorings is a much simpler question.
The following is a nice criterion:

Theorem 2.1.5 (2-coloring equivalence theorem). Let G = (V, E, φ) be a
multigraph. Then, the following three statements are equivalent:

• Statement B1: The graph G has a proper 2-coloring.

• Statement B2: The graph G has no cycles of odd length.

• Statement B3: The graph G has no circuits of odd length.

We will prove this next time.
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