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Math 530 Spring 2022, Lecture 20: Trees

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Trees and arborescences (cont’d)

1.1. de Bruijn sequences

Here is a more intricate application of what we have learned about arbores-
cences.

A little puzzle first: What is special about the periodic sequence

|| : 0000 1111 0110 0101 : || ?

(This is an infinite sequence of 0’s and 1’s; the spaces between some of them
are only for readability. The || : and : || symbols are “repeat signs” – they mean
that everything that stands between them should be repeated over and over. So
the sequence above is 0000 1111 0110 0101 0000 1111 . . ..)

One nice property of this sequence is that if you slide a ”length-4 window”
along it, you get all 16 possible bitstrings of length 4 depending on the position
of the window, and they don’t repeat until you move 16 steps to the right. Just
see:

0000 11110110010100001111 . . .

0 0001 1110110010100001111 . . .

00 0011 110110010100001111 . . .

000 0111 10110010100001111 . . .

0000 1111 0110010100001111 . . .

00001 1110 110010100001111 . . .

000011 1101 10010100001111 . . .

0000111 1011 0010100001111 . . .

00001111 0110 010100001111 . . .

000011110 1100 10100001111 . . .

0000111101 1001 0100001111 . . .

00001111011 0010 100001111 . . .

000011110110 0101 00001111 . . .

0000111101100 1010 0001111 . . .

00001111011001 0100 001111 . . .

000011110110010 1000 01111 . . .

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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This is nice and somewhat similar to Gray codes. Recall: in a Gray code,
you run through all bitstrings of a given size in such a way that only a single
bit is changed at each step. Here, instead, as you slide the window along the
sequence, at each step, the first bit is removed and a new bit is inserted at the
end.

Can we find such nice sequences for any window length, not just 4 ?
Here is an answer for window length 3, for instance:

|| : 000 111 01 : || .

What about higher window length?
Moreover, we can try to do this with other alphabets. For instance, instead

of bits, here is a similar sequence for the alphabet {0, 1, 2} (that is, we use the
numbers 0, 1, 2 instead of 0 and 1) and window length 2:

|| : 00 11 22 02 1 : || .

What about the general case? Let us give it a name:

Definition 1.1.1. Let n and k be two positive integers, and let K be a k-element
set.

A de Bruijn sequence of order n on K means a kn-tuple (c0, c1, . . . , ckn−1)
of elements of K such that

(A) for each n-tuple (a1, a2, . . . , an) ∈ Kn of elements of K, there is a unique
r ∈ {0, 1, . . . , kn − 1} such that

(a1, a2, . . . , an) = (cr, cr+1, . . . , cr+n−1) .

Here, the indices under the letter “c” are understood to be periodic modulo
kn; that is, we set cq+kn = cq for each q ∈ Z (so that ckn = c0 and ckn+1 = c1
and so on).

For example, for n = 2 and k = 3 and K = {0, 1, 2}, the 9-tuple

(0, 0, 1, 1, 2, 2, 0, 2, 1)

is a de Bruijn sequence of order n on K, because if we label the entries of this
9-tuple as c0, c1, . . . , c8 (and extend the indices periodically, so that c9 = c0),
then we have

(0, 0) = (c0, c1) ; (0, 1) = (c1, c2) ; (0, 2) = (c6, c7) ;
(1, 0) = (c8, c9) ; (1, 1) = (c2, c3) ; (1, 2) = (c3, c4) ;
(2, 0) = (c5, c6) ; (2, 1) = (c7, c8) ; (2, 2) = (c4, c5) .

It turns out that de Bruijn sequences always exist:
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Theorem 1.1.2 (de Bruijn, Sainte-Marie). Let n and k be positive integers. Let
K be a k-element set. Then, a de Bruijn sequence of order n on K exists.

Proof. It looks reasonable to approach this using a digraph. For example, we
can define a digraph whose vertices are the n-tuples in Kn, and that has an arc
from one n-tuple i to another n-tuple j if j can be obtained from i by dropping
the first entry and adding a new entry at the end. Then, a de Bruijn sequence
(of order n on K) is the same as a Hamiltonian cycle of this digraph.

Unfortunately, we don’t have any useful criteria that would show that such a
cycle exists. So this idea seems to be a dead end.

However, let us do something counterintuitive: We try to reinterpret de
Bruijn sequences in terms of Eulerian circuits (rather than Hamiltonian cycles),
since we have a good criterion for the existence of Eulerian circuits (unlike for
that of Hamiltonian cycles)!

We need a different digraph for that. Namely, we let D be the multidigraph(
Kn−1, Kn, ψ

)
, where the map ψ : Kn → Kn−1 × Kn−1 is given by the formula

ψ (a1, a2, . . . , an) = ((a1, a2, . . . , an−1) , (a2, a3, . . . , an)) .

Thus, the vertices of D are the (n − 1)-tuples (not the n-tuples!) of elements
of K, whereas the arcs are the n-tuples of elements of K, and each such arc
(a1, a2, . . . , an) has source (a1, a2, . . . , an−1) and target (a2, a3, . . . , an). Hence,
there is an arc from each (n − 1)-tuple i ∈ Kn−1 to each (n − 1)-tuple j ∈ Kn−1

that is obtained by dropping the first entry of i and adding a new entry at the
end. (Be careful: If n = 1, then D has only one vertex but n arcs. If this confuses
you, just do the n = 1 case by hand. For any n > 1, there are no parallel arcs in
D.)

Example 1.1.3. For example, if n = 3 and k = 2 and K = {0, 1}, then D
looks as follows (we again write our tuples without commas and without
parentheses):

00

01

10

11

001

000

101

100

010

011
110

111

Let us make a few observations about D:
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• The multidigraph D is strongly connected.

[Proof: We need to show that for any two vertices i and j of D, there is a
walk from i to j. But this is easy: Just insert the entries of j into i one by
one, pushing out the entries of i. In other words, using the notation kp for
the p-th entry of any tuple k, we have the walk

i = (i1, i2, . . . , in−1)

→ (i2, i3, . . . , in−1, j1)
→ (i3, i4, . . . , in−1, j1, j2)
→ · · ·
→ (in−1, j1, j2, . . . , jn−2)

→ (j1, j2, . . . , jn−1) = j.

Note that this walk has length n − 1, and is the unique walk from i to j
that has length n − 1. Thus, the # of walks from i to j that have length
n − 1 is 1. This will come useful further below.]

• Thus, the multidigraph D is weakly connected (since any strongly con-
nected digraph is weakly connected).

• The multidigraph D is balanced, and in fact each vertex of D has outde-
gree k and indegree k.

[Proof: Let i be a vertex of D. The arcs with source i are the n-tuples
whose first n − 1 entries form the (n − 1)-tuple i while the last, n-th entry
is an arbitrary element of K. Thus, there are |K| many such arcs. In other
words, i has outdegree k. A similar argument shows that i has indegree
k. This entails that deg− i = deg+ i. Since this holds for every vertex i, we
conclude that D is balanced.]

• The digraph D has a Eulerian circuit.

[Proof: This follows from the directed Euler–Hierholzer theorem (Theorem
1.4.2 in Lecture 10), since D is weakly connected and balanced. Alterna-
tively, we can derive this from the BEST theorem (Theorem 1.1.1 in Lecture
17) as follows: Pick an arbitrary arc a of D, and let r be its source. Then,
r is a from-root of D (since D is strongly connected), and thus D has a
spanning arborescence rooted from r (by Theorem 1.2.4 in Lecture 16). In
other words, using the notations of the BEST theorem (Theorem 1.1.1 in
Lecture 17), we have τ (D, r) ̸= 0. Moreover, each vertex of D has indegree
k > 0. Thus, the BEST theorem yields

ε (D, a) = τ (D, r)︸ ︷︷ ︸
̸=0

· ∏
u∈V

(
deg− u − 1

)
!︸ ︷︷ ︸

̸=0

̸= 0.

But this shows that D has an Eulerian circuit whose last arc is a.]
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So we know that D has a Eulerian circuit c. This Eulerian circuit leads to a
de Bruijn sequence as follows:

Let p0, p1, . . . , pkn−1 be the arcs of c (from first to last). Extend the subscripts
periodically modulo kn (that is, set pq+kn = pq for all q ∈ N). Thus, we obtain
an infinite walk1 with arcs p0, p1, p2, . . . (since c is a circuit). In other words, for
each i ∈ N, the target of the arc pi is the source of the arc pi+1.

In other words, for each i ∈ N, the last n − 1 entries of pi are the first n − 1
entries of pi+1 (since the target of pi is the tuple consisting of the last n − 1
entries of pi, whereas the source of pi+1 is the tuple consisting of the first n − 1
entries of pi+1). Therefore, for each i ∈ N and each j ∈ {2, 3, . . . , n}, we have

(the j-th entry of pi)

= (the (j − 1) -st entry of pi+1) . (1)

Now, for each i ∈ N, we let xi denote the first entry of the n-tuple pi. Then,
xq+kn = xq for all q ∈ N (since pq+kn = pq for all q ∈ N). In other words,
the sequence (x0, x1, x2, . . .) repeats itself every kn terms. Note that the kn-tuple
(x0, x1, . . . , xkn−1) consists of the first entries of the arcs p0, p1, . . . , pkn−1 of c (by
the definition of xi).

For each i ∈ N and each s ∈ {1, 2, . . . , n}, we have

(the s-th entry of pi)

= (the (s − 1) -st entry of pi+1) (by (1))
= (the (s − 2) -nd entry of pi+2) (by (1))
= (the (s − 3) -rd entry of pi+3) (by (1))
= · · ·
= (the 1-st entry of pi+s−1)

= xi+s−1 (since xi+s−1 was defined as the first entry of pi+s−1) .

In other words, for each i ∈ N, the entries of pi (from first to last) are
xi, xi+1, . . . , xi+n−1. In other words, for each i ∈ N, we have

pi = (xi, xi+1, . . . , xi+n−1) . (2)

Now, recall that c is a Eulerian circuit. Thus, each arc of D appears exactly
once among its arcs p0, p1, . . . , pkn−1. In other words, each n-tuple in Kn appears
exactly once among p0, p1, . . . , pkn−1 (since the arcs of D are the n-tuples in Kn).
In other words, as i ranges from 0 to kn − 1, the n-tuple pi takes each possible
value in Kn exactly once.

In view of (2), we can rewrite this as follows: As i ranges from 0 to kn − 1,
the n-tuple (xi, xi+1, . . . , xi+n−1) takes each possible value in Kn exactly once
(since this n-tuple is precisely pi, as we have shown in the previous para-
graph). In other words, for each (a1, a2, . . . , an) ∈ Kn, there is a unique r ∈
{0, 1, . . . , kn − 1} such that (a1, a2, . . . , an) = (xr, xr+1, . . . , xr+n−1).

1We have never formally defined infinite walks, but it should be fairly clear what they are.
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Hence, the kn-tuple (x0, x1, . . . , xkn−1) is a de Bruijn sequence of order n on
K. This shows that a de Bruijn sequence exists. Theorem 1.1.2 is thus proven.

Example 1.1.4. For n = 3 and k = 2 and K = {0, 1}, one possible Eulerian
circuit c of D is

(00, 001, 01, 010, 10, 101, 01, 011, 11, 111, 11, 110, 10, 100, 00)

(where we have written the arcs in bold for readability). The first entries of
the arcs of this circuit form the sequence 0010111, which is indeed a de Bruijn
sequence of order 3 on {0, 1}. Any 3 consecutive entries of this sequence
(extended periodically to the infinite sequence || : 0010111 : ||) form the
respective arc of c.

Theorem 1.1.2 is merely the starting point of a theory. Several specific de
Bruijn sequences are known, many of them having peculiar properties. See
[Freder82] for a survey of various such sequences2 (note that they are called
“full length nonlinear shift register sequences” in this survey). (My favorite
is the one obtained by concatenating all Lyndon words whose length divides
K in lexicographically increasing order. See [Moreno04] for the details of that
construction.)

There are also several variations on de Bruijn sequences. For some of them,
see [ChDiGr92]. (Note that some of the open questions in that paper are still
unsolved.) A variation that recently became quite popular is the notion of a
“universal cycle for permutations” – a string that contains all “permutations”
(more precisely, n-tuples of distinct elements of K) as factors. See [EngVat18]
for some recent progress on minimizing the length of such a string, including
a cameo by a notorious hacker known as 4chan. (This is no longer really about
Eulerian circuits, since some amount of duplication cannot be avoided in these
strings.)

Let us move in a different direction. Having proved the existence of de Bruijn
sequences in Theorem 1.1.2, let us try to count them!

Question. Let n and k be two positive integers. Let K be a k-element set.
How many de Bruijn sequences of order n on K are there?

To solve this, it makes sense to apply the BEST theorem to the digraph D
we have constructed above. Alas, D is not of the form Gbidir for some undi-
rected graph G, so we cannot apply the undirected MTT (Matrix-Tree Theo-
rem). However, D is a balanced multidigraph, and for such digraphs, a version
of the undirected MTT still holds:

2Some of these sequences (the “prefer-one” and “prefer-opposite” generators) are just dis-
guised implementations of the algorithm for finding a Eulerian circuit implicit in our proof
of the BEST theorem.
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Theorem 1.1.5 (balanced Matrix-Tree Theorem). Let D = (V, A, ψ) be a bal-
anced multidigraph. Assume that V = {1, 2, . . . , n} for some positive integer
n.

Let L be the Laplacian of D. Then:

(a) For any vertex r of D, we have

(# of spanning arborescences of D rooted to r) = det (L∼r,∼r) .

Moreover, this number does not depend on r.

(b) Let t be an indeterminate. Expand the determinant det (tIn + L) (here,
In denotes the n × n identity matrix) as a polynomial in t:

det (tIn + L) = cntn + cn−1tn−1 + · · ·+ c1t1 + c0t0,

where c0, c1, . . . , cn are numbers. (Note that this is the characteristic
polynomial of L up to substituting −t for t and multiplying by a power
of −1. Some of its coefficients are cn = 1 and cn−1 = Tr L and c0 =
det L.) Then, for any vertex r of D, we have

(# of spanning arborescences of D rooted to r) =
1
n

c1.

(c) Let λ1, λ2, . . . , λn be the eigenvalues of L, listed in such a way that
λn = 0. Then, for any vertex r of D, we have

(# of spanning arborescences of D rooted to r) =
1
n
· λ1λ2 · · · λn−1.

(d) Let λ1, λ2, . . . , λn be the eigenvalues of L, listed in such a way that
λn = 0. If all vertices of D have outdegree > 0, then

(# of Eulerian circuits of D) = |A| · 1
n
·λ1λ2 · · · λn−1 · ∏

u∈V

(
deg+ u − 1

)
!.

(If you identify an Eulerian circuit with its cyclic rotations, then you
should drop the |A| factor on the right hand side.)

Proof. (a) The equality comes from the MTT (Theorem 1.1.2 in Lecture 19). It
remains to prove that the # of spanning arborescences of D rooted to r does not
depend on r. But this is Corollary 1.1.6 in Lecture 17.

(b) follows from (a) as in the undirected graph case (Lecture 19, proof of
Theorem 1.2.1 (b)).3

3In more detail: Just as we proved in Lecture 19 (for the undirected case), we have c1 =
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(c) follows from (b) as in the undirected graph case (Lecture 19, proof of
Theorem 1.2.1 (c)).

(d) Assume that all vertices of D have outdegree > 0. Then,

(# of Eulerian circuits of D)

= ∑
a∈A

(# of Eulerian circuits of D whose first arc is a) .

However, if a ∈ A is any arc, and if r is the source of a, then

(# of Eulerian circuits of D whose first arc is a)

= (# of spanning arborescences of D rooted to r) · ∏
u∈V

(
deg+ u − 1

)
!

(by the BEST’ theorem (Theorem 1.3.5 in Lecture 16))

=
1
n
· λ1λ2 · · · λn−1 · ∏

u∈V

(
deg+ u − 1

)
! (by part (c)) .

Hence,

(# of Eulerian circuits of D)

= ∑
a∈A

(# of Eulerian circuits of D whose first arc is a)︸ ︷︷ ︸
=

1
n
·λ1λ2···λn−1· ∏

u∈V
(deg+ u−1)!

= ∑
a∈A

1
n
· λ1λ2 · · · λn−1 · ∏

u∈V

(
deg+ u − 1

)
!

= |A| · 1
n
· λ1λ2 · · · λn−1 · ∏

u∈V

(
deg+ u − 1

)
!.

This proves part (d).
n
∑

r=1
det (L∼r,∼r). However, part (a) shows that the number det (L∼r,∼r) does not depend

on r. Thus, the sum
n
∑

r=1
det (L∼r,∼r) consists of n equal addends, which can be written as

det (L∼r,∼r) for any vertex r of D. Therefore, this sum can be rewritten as n · det (L∼r,∼r)

for any vertex r of D. Hence, the equality c1 =
n
∑

r=1
det (L∼r,∼r) can be rewritten as c1 =

n · det (L∼r,∼r) for any vertex r of D. Therefore, det (L∼r,∼r) =
1
n

c1 for any vertex r of D.
Since part (a) yields

(# of spanning arborescences of D rooted to r) = det (L∼r,∼r) ,

we can rewrite this equality as

(# of spanning arborescences of D rooted to r) =
1
n

c1.
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Now, let’s try to solve our question – i.e., let’s count the de Bruijn sequences
of order n on K.

Recall the digraph D from our above proof of Theorem 1.1.2. We constructed
a de Bruijn sequence of order n on K by finding an Eulerian circuit of D. This
actually works both ways: The map

{Eulerian circuits of D} → {de Bruijn sequences of order n on K} ,
c 7→ (the sequence of first entries of the arcs of c)

is a bijection (make sure you understand why!). Hence, by the bijection princi-
ple, we have

(# of de Bruijn sequences of order n on K)
= (# of Eulerian circuits of D) . (3)

By Theorem 1.1.5 (d), however, we have

(# of Eulerian circuits of D)

= |Kn| · 1
kn−1 · λ1λ2 · · · λkn−1−1 · ∏

u∈Kn−1

(
deg+ u − 1

)
!, (4)

where λ1, λ2, . . . , λkn−1 are the eigenvalues of the Laplacian L of D, indexed in
such a way that λkn−1 = 0. (Note that the digraph D =

(
Kn−1, Kn, ψ

)
has kn−1

vertices, not n vertices, so the “n” in Theorem 1.1.5 is kn−1 here.)
As we know, each vertex of D has outdegree k. That is, we have deg+ u = k

for each u ∈ Kn−1. Thus,

∏
u∈Kn−1

(
deg+ u − 1

)
! = ∏

u∈Kn−1

(k − 1)! = ((k − 1)!)kn−1
.

Also,

|Kn| · 1
kn−1 = kn · 1

kn−1 = k.

It remains to find λ1λ2 · · · λkn−1−1. What are the eigenvalues of L ?
The Laplacian L of our digraph D is a kn−1 × kn−1-matrix whose rows and

columns are indexed by (n − 1)-tuples in Kn−1. Strictly speaking, we should
relabel the vertices of D as 1, 2, . . . , kn−1 here, in order to have a “proper matrix”
with a well-defined order on its rows and columns. But let’s not do this; instead,
I trust you can do the relabeling yourself, or just use the more general notion
of matrices that allows for the rows and the columns to be indexed by arbitrary
things (see https://mathoverflow.net/questions/317105 for details).

Let C be the adjacency matrix of the digraph D; this is the kn−1 × kn−1-matrix
(again with rows and columns indexed by (n − 1)-tuples in Kn−1) whose (i, j)-
th entry is the # of arcs with source i and target j. In particular, the trace of C
is thus the # of loops of D. It is easy to see that the loops of D are precisely the

https://mathoverflow.net/questions/317105
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arcs of the form (x, x, . . . , x) ∈ Kn for x ∈ K; thus, D has exactly k loops. Hence,
the trace of C is k.

Recall the definition of the Laplacian matrix L. We can restate it as follows:

L = ∆ − C, (5)

where ∆ is the diagonal matrix whose diagonal entries are the outdegrees of
the vertices of D. Since each vertex of D has outdegree k, the latter diagonal
matrix ∆ is simply k · I, where I is the identity matrix (of the appropriate size).
Hence, (5) can be rewritten as

L = k · I − C.

Thus, if γ1, γ2, . . . , γkn−1 are the eigenvalues of C, then k − γ1, k − γ2, . . . , k −
γkn−1 are the eigenvalues of L. Computing the former will thus help us find the
latter.

Furthermore, let J be the kn−1 × kn−1-matrix (again with rows and columns
indexed by (n − 1)-tuples in Kn−1) whose all entries are 1. It is easy to see that
the eigenvalues of J are

0, 0, . . . , 0︸ ︷︷ ︸
kn−1−1 many zeroes

, kn−1.

(The easiest way to see this is by noticing that J has rank 1 and trace kn−1. 4)
Now, here is something really underhanded: We observe that

Cn−1 = J.

[Proof: We need to show that all entries of the matrix Cn−1 are 1. So let i and
j be two vertices of D. We must then show that the (i, j)-th entry of Cn−1 is 1.

Recall the combinatorial interpretation of the powers of an adjacency matrix
(homework set #4, exercise 4 (a)): For any ℓ ∈ N, the (i, j)-th entry of Cℓ is the
# of walks from i to j (in D) that have length ℓ. Thus, in particular, the (i, j)-th
entry of Cn−1 is the # of walks from i to j (in D) that have length n − 1. But this
number is actually 1, as we have already shown in our above proof of Theorem
1.1.2. This completes the proof of Cn−1 = J.]

How does this help us compute the eigenvalues of C ? Well, let γ1, γ2, . . . , γkn−1

be the eigenvalues of C. Then, for any ℓ ∈ N, the eigenvalues of Cℓ are
γℓ

1, γℓ
2, . . . , γℓ

kn−1 (this is a fact that holds for any square matrix, and is probably
easiest to prove using the Jordan canonical form or triangularization). Hence, in

4Here are the details: The matrix J has rank 1 (since all its rows are the same); thus, all but one
of its eigenvalues are 0. It remains to show that the remaining eigenvalue is kn−1. However,
it is known that the sum of the eigenvalues of a square matrix equals its trace. Thus, if all
but one of the eigenvalues of a square matrix are 0, then the remaining eigenvalue equals
its trace. Applying this to our matrix J, we see that its remaining eigenvalue equals its trace,
which is kn−1.
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particular, γn−1
1 , γn−1

2 , . . . , γn−1
kn−1 are the eigenvalues of Cn−1 = J; but we know

that the latter eigenvalues are 0, 0, . . . , 0︸ ︷︷ ︸
kn−1−1 many zeroes

, kn−1. Hence, all but one of the

kn−1 numbers γn−1
1 , γn−1

2 , . . . , γn−1
kn−1 equal 0. Thus, all but one of the kn−1 num-

bers γ1, γ2, . . . , γkn−1 equal 0 (we don’t know what the remaining number is,
since (n − 1)-st roots are not uniquely determined in C). In other words, all but
one of the eigenvalues of C equal 0. The remaining eigenvalue must thus be
the trace of C (because the sum of the eigenvalues of a square matrix is known
to be the trace of that matrix), and therefore equal k (since we know that the
trace of C is k).

So we have shown that the eigenvalues of C are 0, 0, . . . , 0︸ ︷︷ ︸
kn−1−1 many zeroes

, k. Thus, the

eigenvalues of L are

k − 0, k − 0, . . . , k − 0︸ ︷︷ ︸
kn−1−1 many (k−0)’s

, k − k

(because if γ1, γ2, . . . , γkn−1 are the eigenvalues of C, then k − γ1, k − γ2, . . . , k −
γkn−1 are the eigenvalues of L). In other words, the eigenvalues of L are

k, k, . . . , k︸ ︷︷ ︸
kn−1−1 many k’s

, 0.

Hence, the eigenvalues λ1, λ2, . . . , λkn−1−1 in (4) all equal k. Thus, (4) simplifies
to

(# of Eulerian circuits of D)

= |Kn| · 1
kn−1︸ ︷︷ ︸

=kn·
1

kn−1
=k

· kk · · · k︸ ︷︷ ︸
kn−1−1 factors

· ∏
u∈Kn−1

(
deg+ u − 1

)
!︸ ︷︷ ︸

=((k−1)!)kn−1

= k · kk · · · k︸ ︷︷ ︸
kn−1−1 factors︸ ︷︷ ︸
=kkn−1

· ((k − 1)!)kn−1
= kkn−1 · ((k − 1)!)kn−1

=

k · (k − 1)!︸ ︷︷ ︸
=k!

kn−1

= k!kn−1
.

In view of this, we can rewrite (3) as

(# of de Bruijn sequences of order n on K) = k!kn−1
.

Thus, we have proved the following:
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Theorem 1.1.6. Let n and k be positive integers. Let K be a k-element set.
Then,

(# of de Bruijn sequences of order n on K) = k!kn−1
.

What a nice (and huge) answer!
Our above proof of Theorem 1.1.6 is essentially taken from [Stanle18, Chapter

10].
We note that a combinatorial proof of Theorem 1.1.6 (avoiding any use of

linear algebra) has been recently given in [BidKis02].

1.2. On the left nullspace of the Laplacian

Much more can be said about the Laplacian of a digraph. The study of matrices
associated to a graph or digraph is known as spectral graph theory; I’d say the
Laplacian is probably the most prominent of these matrices (even though the
adjacency matrix is somewhat easier to define). The original form of the matrix-
tree theorem (undirected, I believe) was found by Gustav Kirchhoff in his study
of electricity; the effective resistance between two nodes of an electrical network
is a ratio of spanning-tree counts and thus can be computed using the Laplacian
(see, e.g., [Vos16, §2 and §3]). To be more precise, this relies on a “weighted
count” of spanning trees, which is more general than the counting we have
done so far; we will learn about it next time.

Another application of Laplacians is to drawing graphs: see “spectral layout”.
Let me mention one more result about Laplacians of digraphs that answers a

rather natural question you might already have asked yourself. Recall that the

Laplacian L of a digraph D always satisfies Le = 0, where e =


1
1
...
1

. Thus,

the vector e belongs to the right nullspace (= right kernel) of L. It is not hard
to see that if D has a to-root and we are working over a characteristic-0 field,
then e spans this nullspace, i.e., there are no vectors in that nullspace other than
scalar multiples of e. (This is actually an “if and only if”.) What about the left
nullspace of L ? Can we explicitly find a nonzero vector f with f L = 0 ? The
answer is positive:

Theorem 1.2.1 (harmonic vector theorem for Laplacians). Let D = (V, A, ψ)
be a multidigraph, where V = {1, 2, . . . , n} for some n ∈ N. For each r ∈ V,
let τ (D, r) be the # of spanning arborescences of D rooted to r. Let f be the
row vector (τ (D, 1) , τ (D, 2) , . . . , τ (D, n)). Then, f L = 0.

Proof. See homework set #7 exercise 1 (b), or [Sahi14, Theorem 1].

https://en.wikipedia.org/wiki/Spectral_layout
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Theorem 1.2.1 (or, more precisely, its weighted version, which we will see in
the next lecture) can be used to explicitly compute the steady state of a Markov
chain (see [KrGrWi10]); a similar interpretation, but in economical terms (emer-
gence of money in a barter economy), appears in [Sahi14, §1].
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