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Math 530 Spring 2022, Lecture 19: Trees

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Trees and arborescences (cont’d)

1.1. The matrix-tree theorem (cont’d)

Last time, we defined the Laplacian (matrix) of a multidigraph. Let us recall its
definition:

Definition 1.1.1. Let D = (V, A, ψ) be a multidigraph. Assume that V =
{1, 2, . . . , n} for some n ∈ N.

For any i, j ∈ V, we let ai,j be the # of arcs of D that have source i and
target j.

The Laplacian of D is defined to be the n × n-matrix L ∈ Zn×n whose
entries are given by

Li,j =
(
deg+ i

)
· [i = j]︸ ︷︷ ︸

This is also
known as δi,j

− ai,j for all i, j ∈ V.

In other words, it is the matrix

L =


deg+ 1 − a1,1 −a1,2 · · · −a1,n

−a2,1 deg+ 2 − a2,2 · · · −a2,n
...

... . . . ...
−an,1 −an,2 · · · deg+ n − an,n

 .

We showed that det L = 0 whenever n > 0. We stated (without proof) the
following crucial result:

Theorem 1.1.2 (Matrix-Tree Theorem). Let D = (V, A, ψ) be a multidigraph.
Assume that V = {1, 2, . . . , n} for some positive integer n.

Let L be the Laplacian of D. Let r be a vertex of D. Then,

(# of spanning arborescences of D rooted to r) = det (L∼r,∼r) .

We shall now prove this theorem, guided by the following battle plan:

1. First, we will prove it in the case when each vertex v ∈ V \ {r} has out-
degree 1. In this case, after removing all arcs with source r from D (these
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arcs do not matter, since neither the submatrix L∼r,∼r nor the spanning ar-
borescences rooted to r depend on them), we have essentially two options
(subcases): either D is itself an arborescence or D has a cycle.

2. Then, we will prove the matrix-tree theorem in the slightly more general
case when each v ∈ V \ {r} has outdegree ≤ 1. This is easy, since a vertex
v ∈ V \ {r} having outdegree 0 trivializes the theorem.

3. Finally, we will prove the theorem in the general case. This is done by
strong induction on the number of arcs of D. Every time you have a
vertex v ∈ V \ {r} with outdegree > 1, you can pick such a vertex and
color the outgoing arcs from it red and blue in such a way that each color
is used at least once. Then, you can consider the subdigraph of D obtained
by removing all blue arcs (call it Dred) and the subdigraph of D obtained
by removing all red arcs (call it Dblue). You can then apply the induction
hypothesis to Dred and to Dblue (since each of these two subdigraphs has
fewer arcs than D), and add the results together. The good news is that
both the # of spanning arborescences rooted to r and the determinant
det (L∼r,∼r) “behave additively” (we will soon see what this means).

So let us begin with Step 1. We first study a very special case:

Lemma 1.1.3. Let D = (V, A, ψ) be a multidigraph. Let r be a vertex of D.
Assume that D has no cycles. Assume moreover that D has no arcs with
source r. Assume furthermore that each vertex v ∈ V \ {r} has outdegree 1.
Then:

(a) The digraph D has a unique spanning arborescence rooted to r.

(b) Assume that V = {1, 2, . . . , n} for some n ∈ N. Let L be the Laplacian
of D. Then, det (L∼r,∼r) = 1.

Proof. (a) Lemma 1.2.10 in Lecture 18 shows that the digraph D itself is an
arborescence rooted to r.

As a consequence, D itself is a spanning arborescence of D rooted to r.
Therefore, |A| = |V| − 1 (by Statement A’2 in the Dual Arborescence Equiv-

alence Theorem1). Hence, D has no spanning arborescences other than itself
(because the condition |A| = |V| − 1 would get destroyed as soon as we re-
move an arc). So the only spanning arborescence of D rooted to r is D itself.
This proves Lemma 1.1.3 (a).

(b) We WLOG assume that r = n (otherwise, we can rename the vertices
r, r + 1, r + 2, . . . , n as n, r, r + 1, . . . , n − 1, so that the matrix L∼r,∼r becomes
L∼n,∼n).

1or by the fact that |A| is the sum of the outdegrees of all vertices of D
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Let D′ be the digraph D with a loop added at each vertex – i.e., the multidi-
graph obtained from D by adding n extra arcs ℓ1, ℓ2, . . . , ℓn and letting each arc
ℓi have source i and target i.

Let Sn−1 denote the group of permutations of the set

{1, 2, . . . , n − 1} = {1, 2, . . . , n}︸ ︷︷ ︸
=V

\
{

n︸︷︷︸
=r

}
= V \ {r} .

Now, from r = n, we have

det (L∼r,∼r) = det (L∼n,∼n) = ∑
σ∈Sn−1

sign σ ·
n−1

∏
i=1

Li,σ(i) (1)

(by the Leibniz formula for the determinant). We shall now study the addends
in the sum on the right hand side of this equality. Specifically, we will show that

the only addend whose product
n−1
∏
i=1

Li,σ(i) is nonzero is the addend for σ = id.

Indeed, let σ ∈ Sn−1 be a permutation such that the product
n−1
∏
i=1

Li,σ(i) is

nonzero. We shall prove that σ = id.
Consider an arbitrary v ∈ {1, 2, . . . , n − 1}. Then, Lv,σ(v) ̸= 0 (because Lv,σ(v)

is a factor in the product
n−1
∏
i=1

Li,σ(i), which is nonzero). However, the definition

of L yields Lv,σ(v) =
(
deg+ v

)
· [v = σ (v)]− av,σ(v). Thus,(

deg+ v
)
· [v = σ (v)]− av,σ(v) = Lv,σ(v) ̸= 0.

Hence, at least one of the numbers [v = σ (v)] and av,σ(v) is nonzero. In other
words, we have v = σ (v) (this is what it means for [v = σ (v)] to be nonzero) or
the digraph D has an arc with source v and target σ (v) (because this is what it
means for av,σ(v) to be nonzero). In either case, the digraph D′ has an arc with
source v and target σ (v) (because if v = σ (v), then one of the loops we added
to D does the trick). We can apply the same argument to σ (v) instead of v, and
obtain an arc with source σ (v) and target σ (σ (v)). Similarly, we obtain an arc
with source σ (σ (v)) and target σ (σ (σ (v))). We can continue this reasoning
indefinitely. By continuing it for n steps, we obtain a walk(

v, ∗, σ (v) , ∗, σ2 (v) , ∗, σ3 (v) , . . . , ∗, σn (v)
)

in the digraph D′, where each asterisk means an arc (we don’t care about what
these arcs are, so we are not giving them names). This walk cannot be a path
(since it has n + 1 vertices, but D′ has only n vertices); thus, it must contain a
cycle (by Proposition 1.2.9 in Lecture 10). All arcs of this cycle must be loops
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(because otherwise, we could remove the loops from this cycle and obtain a
cycle of D, but we know that D has no cycles). In particular, its first arc is
a loop. Thus, our above walk

(
v, ∗, σ (v) , ∗, σ2 (v) , ∗, σ3 (v) , . . . , ∗, σn (v)

)
con-

tains a loop (since the arcs of the cycle come from this walk). In other words,
we have σi (v) = σi+1 (v) for some i ∈ {0, 1, . . . , n − 1}. Since σ is injective, we
can apply σ−i to both sides of this equality, and conclude that v = σ (v). In
other words, σ (v) = v.

Forget that we fixed v. We thus have shown that σ (v) = v for each v ∈
{1, 2, . . . , n − 1}. In other words, σ = id.

Forget that we fixed σ. We thus have proved that σ = id for each permutation

σ ∈ Sn−1 for which the product
n−1
∏
i=1

Li,σ(i) is nonzero. In other words, the

only permutation σ ∈ Sn−1 for which the product
n−1
∏
i=1

Li,σ(i) is nonzero is the

permutation id.
Thus, the only nonzero addend on the right hand side of (1) is the addend

corresponding to σ = id. Hence, (1) can be simplified as follows:

det (L∼n,∼n) = sign (id)︸ ︷︷ ︸
=1

·
n−1

∏
i=1

Li,id(i) =
n−1

∏
i=1

Li,id(i).

Since each i ∈ {1, 2, . . . , n − 1} satisfies

Li,id(i) = Li,i =
(
deg+ i

)︸ ︷︷ ︸
=1

(since i has outdegree 1
(because each vertex v∈V\{r} has
outdegree 1, and we can apply this

to v=i since i∈{1,2,...,n−1}=V\{r}))

· [i = i]︸ ︷︷ ︸
=1

− ai,i︸︷︷︸
=0

(since D has no cycles
and thus cannot have
a loop with source i)

(by the definition of L)
= 1 · 1 − 0 = 1,

this can be simplified to det (L∼n,∼n) =
n−1
∏
i=1

1 = 1. This proves Lemma 1.1.3

(b).

Next, we drop the “no cycles” condition:

Lemma 1.1.4. Let D = (V, A, ψ) be a multidigraph. Let r be a vertex of
D. Assume that each vertex v ∈ V \ {r} has outdegree 1. Then, the MTT
holds for these D and r. (Here and in the following, “MTT” is short for
“Matrix-Tree Theorem”, i.e., for Theorem 1.1.2.)

Proof. First of all, we note that an arc with source r cannot appear in any
spanning arborescence of D rooted to r (since any such arborescence satisfies
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deg+ r = 0, according to Statement A’6 in the Dual Arborescence Equivalence
Theorem). Furthermore, the arcs with source r do not affect the matrix L∼r,∼r,
since they only appear in the r-th row of the matrix L (but this r-th row is
removed in L∼r,∼r).

Hence, any arc with source r can be removed from D without disturbing
anything we currently care about. Thus, we WLOG assume that D has no arcs
with source r (else, we can just remove them from D).

We WLOG assume that r = n (otherwise, we can rename the vertices r, r +
1, r + 2, . . . , n as n, r, r + 1, . . . , n − 1, so that the matrix L∼r,∼r becomes L∼n,∼n).

We are in one of the following two cases:
Case 1: The digraph D has a cycle.
Case 2: The digraph D has no cycles.
Consider Case 1. In this case, D has a cycle v = (v1, ∗, v2, ∗, . . . , ∗, vm) (where

we again are putting asterisks in place of the arcs). This cycle cannot contain
r (since D has no arcs with source r). Thus, all its vertices v1, v2, . . . , vm belong
to V \ {r}. Hence, for each i ∈ {1, 2, . . . , m − 1}, the vertex vi has outdegree 1
(since we assumed that each vertex v ∈ V \ {r} has outdegree 1). Consequently,
for each i ∈ {1, 2, . . . , m − 1}, the only arc of D that has source vi is the arc that
follows vi on the cycle v. Therefore, in the matrix L, the vi-th row has a 1 in
the vi-th position (because deg+ (vi) = 1), a −1 in the vi+1-th position (since
the arc that follows vi on the cycle v has source vi and target vi+1), and 0s in all
other positions. Since r = n, the same must then be true for the matrix L∼r,∼r:
That is, the vi-th row of the matrix L∼r,∼r has a 1 in the vi-th position, a −1 in
the vi+1-th position, and 0s in all other positions. Thus, the sum of the v1-th,
v2-th, . . ., vm−1-th rows of L∼r,∼r is the zero vector (since the 1s and the −1s
just cancel out)2.3

So we have found a nonempty set of rows of L∼r,∼r whose sum is the zero
vector. This yields that the matrix L∼r,∼r is singular (by basic properties of

2Namely, the −1 in the vi+1-th position of the vi-th row gets cancelled by the 1 in the vi+1-th
position of the vi+1-th row. (We are using the fact that vm = v1 here.)

3Let me illustrate this on a representative example: Assume that the numbers
v1, v2, . . . , vm−1, vm are 1, 2, . . . , m − 1, 1 (respectively). Then, the first m − 1 rows of L look
as follows:

1 −1
1 −1

1 −1
. . . . . .

1 −1
−1 1

(where all the missing entries are zeroes). Thus, the sum of these m − 1 rows is the zero
vector. The same is therefore true of the matrix L∼r,∼r (since the first m− 1 rows of the latter
matrix are just the first m − 1 rows of L, with their r-th entries removed).

The general case is essentially the same as this example; the only difference is that the
relevant rows are in other positions.
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determinants4), so its determinant is det (L∼r,∼r) = 0. On the other hand, the
digraph D has no spanning arborescence (because, in order to get a spanning
arborescence of D, we would have to remove at least one arc of our cycle v
(since an arborescence cannot have a cycle); but then, the source of this arc
would have outdegree 0, and thus we could no longer find a path from this
source to r, so we would not obtain a spanning arborescence). In other words,

(# of spanning arborescences of D rooted to r) = 0.

Comparing this with det (L∼r,∼r) = 0, we conclude that the MTT holds in this
case (since it claims that 0 = 0). Thus, Case 1 is done.

Next, we consider Case 2. In this case, D has no cycles. Then, det (L∼r,∼r) = 1
(by Lemma 1.1.3 (b)) and

(# of spanning arborescences of D rooted to r) = 1 (by Lemma 1.1.3 (a)) .

Thus, the MTT boils down to 1 = 1, which is again true.
So Lemma 1.1.4 is proved.

Next, we venture into a mildly greater generality:

Lemma 1.1.5. Let D = (V, A, ψ) be a multidigraph. Let r be a vertex of D.
Assume that each vertex v ∈ V \ {r} has outdegree ≤ 1. Then, the MTT (=
Matrix-Tree Theorem) holds for these D and r.

Proof. If each vertex v ∈ V \ {r} has outdegree 1, then this is true by Lemma
1.1.4.

Thus, we WLOG assume that this is not the case. Hence, some vertex v ∈
V \ {r} has outdegree ̸= 1. Consider this v. The outdegree of v is ̸= 1, but also
≤ 1 (by the hypothesis of the lemma). Hence, this outdegree must be 0. That
is, there is no arc with source v.

WLOG assume that r = n (otherwise, rename the vertices r, r + 1, r + 2, . . . , n
as n, r, r + 1, . . . , n − 1, so that the matrix L∼r,∼r becomes L∼n,∼n).

We have v ̸= r. Hence, the digraph D has no path from v to r (since any such
path would include an arc with source v, but there is no arc with source v).

Therefore, D has no spanning arborescence rooted to r (because any such
spanning arborescence would have to have a path from v to r). In other words,

(# of spanning arborescences of D rooted to r) = 0.

4Specifically, we are using the following fact: “Let M be a square matrix. If there is a certain
nonempty set of rows of M whose sum is the zero vector, then the matrix M is singular.”.

To prove this fact, we let S be this nonempty set. Choose one row from this set, and
call it the chosen row. Now, add all the other rows from this set to this one chosen row.
This operation does not change the determinant of M (since the determinant of a matrix
is unchanged when we add one row to another), but the resulting matrix has a zero row
(namely, the chosen row) and thus has determinant 0. Hence, the original matrix M must
have had determinant 0 as well. In other words, M was singular, qed.
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Also, det (L∼r,∼r) = 0 (since the v-th row of the matrix L∼r,∼r is 0 (because
there is no arc with source v)). So the MTT boils down to 0 = 0 again, and thus
Lemma 1.1.5 is proved.

We are now ready to prove the MTT in the general case:

Proof of Theorem 1.1.2. First, we introduce a notation:

Let M and N be two n × n-matrices that agree in all but one row.
That is, there exists some j ∈ {1, 2, . . . , n} such that for each i ̸= j,
we have

(the i-th row of M) = (the i-th row of N) .

Then, we write M
j
≡ N, and we let M

j
+ N be the n × n-matrix that

is obtained from M by adding the j-th row of N to the j-th row of M
(while leaving all remaining rows unchanged).

For example, if M =

 a b c
d e f
g h i

 and N =

 a b c
d′ e′ f ′

g h i

, then M
2≡ N

and

M
2
+ N =

 a b c
d + d′ e + e′ f + f ′

g h i

 .

A well-known property of determinants (the multilinearity of the determi-
nant) says that if M and N are two n × n-matrices and j ∈ {1, 2, . . . , n} is a

number such that M
j
≡ N, then

det
(

M
j
+ N

)
= det M + det N.

Now, let us prove the MTT. We proceed by strong induction on the # of arcs
of D.

Induction step: Let m ∈ N. Assume (as the induction hypothesis) that the
MTT holds for all digraphs D that have < m arcs. We must now prove it for
our digraph D with m arcs.

WLOG assume that r = n (otherwise, rename the vertices r, r + 1, r + 2, . . . , n
as n, r, r + 1, . . . , n − 1, so that the matrix L∼r,∼r becomes L∼n,∼n).

If each vertex v ∈ V \ {r} has outdegree ≤ 1, then the MTT holds by Lemma
1.1.5. Thus, we WLOG assume that some vertex v ∈ V \ {r} has outdegree
> 1. Pick such a vertex v. We color each arc with source v either red or blue,
making sure that at least one arc is red and at least one arc is blue. (We can
do this, since v has outdegree > 1.) All arcs that do not have source v remain
uncolored.
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Now, let Dred be the subdigraph obtained from D by removing all blue arcs.
Then, Dred has fewer arcs than D. In other words, Dred has < m arcs. Hence,
the induction hypothesis yields that the MTT holds for Dred. That is, we have(

# of spanning arborescences of Dred rooted to r
)
= det

(
Lred
∼r,∼r

)
,

where Lred means the Laplacian of Dred.
Likewise, let Dblue be the subdigraph obtained from D by removing all red

arcs. Then, Dblue has fewer arcs than D. Hence, the induction hypothesis yields
that the MTT holds for Dblue. That is,(

# of spanning arborescences of Dblue rooted to r
)
= det

(
Lblue
∼r,∼r

)
,

where Lblue means the Laplacian of Dblue.

Example 1.1.6. Let D be the multidigraph

1

2

3

4

5

a

b
c

d

with r = 1. Its Laplacian is

L =


1 −1 0 0 0
0 1 −1 0 0
−1 0 3 −1 −1
0 0 0 1 −1
−1 0 0 0 1

 .

Let us pick v = 3 (this is a vertex with outdegree > 1), and let us color the
arcs a and c red and the arcs b and d blue (various other options are possible).
Then, Dred and Dblue look as follows (along with their Laplacians Lred and
Lblue):
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1

2

3

4

5

a

c

1

2

3

4

5

b

d

Dred Dblue

Lred =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
−1 0 0 0 1

 Lblue =


1 −1 0 0 0
0 1 −1 0 0
−1 0 2 0 −1
0 0 0 1 −1
−1 0 0 0 1



Now, the digraphs D, Dblue and Dred differ only in the arcs with source v,
and as far as the latter arcs are concerned, the arcs of D are divided between
Dblue and Dred. Hence, by the definition of the Laplacian, we have

Lred v≡ Lblue and Lred v
+ Lblue = L.

Thus,
Lred
∼r,∼r

v≡ Lblue
∼r,∼r and Lred

∼r,∼r
v
+ Lblue

∼r,∼r = L∼r,∼r

(here, we have used the fact that r = n and v ̸= r, so that when we remove
the r-th row and the r-th column of the matrix L, the v-th row remains the v-th
row). Hence,

det

 L∼r,∼r︸ ︷︷ ︸
=Lred∼r,∼r

v
+Lblue∼r,∼r

 = det
(

Lred
∼r,∼r

v
+ Lblue

∼r,∼r

)
= det

(
Lred
∼r,∼r

)
+ det

(
Lblue
∼r,∼r

)

(by the multilinearity of the determinant).
However, a similar equality holds for the # of spanning arborescences: namely,
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we have

(# of spanning arborescences of D rooted to r)

=
(

# of spanning arborescences of Dred rooted to r
)

+
(

# of spanning arborescences of Dblue rooted to r
)

.

Here is why: Recall that an arborescence rooted to r must satisfy deg+ v = 1
(by Statement A’6 in the Dual Arborescence Equivalence Theorem, since v ∈
V \ {r}). In other words, an arborescence rooted to r must contain exactly one
arc with source v. In particular, a spanning arborescence of D rooted to r must
contain either a red arc or a blue arc, but not both at the same time. In the
former case, it is a spanning arborescence of Dred; in the latter, it is a spanning
arborescence of Dblue. Conversely, any spanning arborescence of Dred or of
Dblue rooted to r is automatically a spanning arborescence of D rooted to r.
Thus,

(# of spanning arborescences of D rooted to r)

=
(

# of spanning arborescences of Dred rooted to r
)

︸ ︷︷ ︸
=det(Lred

∼r,∼r)
(as we saw above)

+
(

# of spanning arborescences of Dblue rooted to r
)

︸ ︷︷ ︸
=det(Lblue

∼r,∼r)
(as we saw above)

= det
(

Lred
∼r,∼r

)
+ det

(
Lblue
∼r,∼r

)
= det (L∼r,∼r)

(since we proved that det (L∼r,∼r) = det
(

Lred
∼r,∼r

)
+ det

(
Lblue
∼r,∼r

)
). That is, the

MTT holds for our digraph D and its vertex r. This completes the induction
step, and thus the MTT (Theorem 1.1.2) is proved.

Here is one more consequence of the MTT:

Proposition 1.1.7. Let n be a positive integer. Pick any arc a of the multidi-
graph Kbidir

n . Then, the # of Eulerian circuits of Kbidir
n whose first arc is a is

nn−2 · (n − 2)!n.

Proof. Let r be the source of the arc a. The digraph Kbidir
n is balanced, and each

of its vertices has outdegree n − 1. By the BEST’ theorem (Theorem 1.3.5 in



Lecture 19, version June 6, 2025 page 11

Lecture 16), we have(
# of Eulerian circuits of Kbidir

n whose first arc is a
)

=
(

# of spanning arborescences of Kbidir
n rooted to r

)
︸ ︷︷ ︸

=nn−2

(as we saw in Lecture 18)

·
n

∏
u=1

deg+ u︸ ︷︷ ︸
=n−1

− 1

!

= nn−2 ·
n

∏
u=1

(n − 2)! = nn−2 · (n − 2)!n,

qed.

In comparison, there is no good formula known for the # of Eulerian circuits
of the undirected graph Kn. For n even, this # is 0 of course (since Kn has
vertices of odd degree in this case). For n odd, the # grows very fast, but little
else is known about it (see https://oeis.org/A135388 for some known values).

One more remark: In Lecture 18, we have counted the trees with n vertices
(i.e., simple graphs with vertex set {1, 2, . . . , n} that are trees). It sounds equally
natural to count the “unlabelled trees with n vertices”, i.e., the equivalence
classes of such trees up to isomorphism. Unfortunately, this is another “messy
number”: the best formula known is recursive. There is also an asymptotic
formula (“Otter’s formula”, [Otter48]): the number of equivalence classes of
n-vertex trees (up to isomorphism) is

≈ β
αn

n5/2 with α ≈ 2.955 and β ≈ 0.5349.

1.2. The undirected MTT

The Matrix-Tree Theorem becomes simpler if we apply it to a digraph of the
form Gbidir:

Theorem 1.2.1 (undirected Matrix-Tree Theorem). Let G = (V, E, φ) be a
multigraph. Assume that V = {1, 2, . . . , n} for some positive integer n.

Let L be the Laplacian of the digraph Gbidir. Explicitly, this is the n × n-
matrix L ∈ Zn×n whose entries are given by

Li,j = (deg i) · [i = j]− ai,j,

where ai,j is the # of edges of G that have endpoints i and j (with loops
counting twice). Then:

(a) For any vertex r of G, we have

(# of spanning trees of G) = det (L∼r,∼r) .

https://oeis.org/A135388
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(b) Let t be an indeterminate. Expand the determinant det (tIn + L) (here,
In denotes the n × n identity matrix) as a polynomial in t:

det (tIn + L) = cntn + cn−1tn−1 + · · ·+ c1t1 + c0t0,

where c0, c1, . . . , cn are numbers. (Note that this is the characteristic
polynomial of L up to substituting −t for t and multiplying by a power
of −1. Some of its coefficients are cn = 1 and cn−1 = Tr L and c0 =
det L.) Then,

(# of spanning trees of G) =
1
n

c1.

(c) Let λ1, λ2, . . . , λn be the eigenvalues of L, listed in such a way that
λn = 0 (we know that 0 is an eigenvalue of L, since L is singular).
Then,

(# of spanning trees of G) =
1
n
· λ1λ2 · · · λn−1.

Proof. (a) Let r be a vertex of G. Then, Proposition 1.1.1 (b) in Lecture 18 shows
that there is a bijection{

spanning arborescences of Gbidir rooted to r
}
→ {spanning trees of G} .

Hence, by the bijection principle, we have

(# of spanning trees of G)

=
(

# of spanning arborescences of Gbidir rooted to r
)

= det (L∼r,∼r) (by the Matrix-Tree Theorem (Theorem 1.1.2)) .

This proves Theorem 1.2.1 (a).

(b) We claim that

c1 =
n

∑
r=1

det (L∼r,∼r) . (2)

Note that this is a purely linear-algebraic result, and has nothing to do with the
fact that L is the Laplacian of a digraph; it holds just as well if L is replaced by
any square matrix.

Once (2) is proved, Theorem 1.2.1 (b) will easily follow, because (2) entails

1
n

c1 =
1
n

n

∑
r=1

det (L∼r,∼r)︸ ︷︷ ︸
=(# of spanning trees of G)

(by Theorem 1.2.1 (a))

=
1
n

n

∑
r=1

(# of spanning trees of G)︸ ︷︷ ︸
=n·(# of spanning trees of G)

=
1
n
· n (# of spanning trees of G) = (# of spanning trees of G) .
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Thus, it remains to prove (2).
A rigorous proof of (2) can be found in [21s, Proposition 6.4.29] or in https:

//math.stackexchange.com/a/3989575/ (both of these references actually de-
scribe all coefficients c0, c1, . . . , cn of the polynomial det (tIn + L), not just the
t1-coefficient c1). We shall merely outline the proof of (2) on a convenient ex-
ample. We want to compute c1. In other words, we want to compute the
coefficient of t1 in the polynomial det (tIn + L) (since c1 is defined to be this
very coefficient). Let us say that n = 4, so that L has the form

L =


a b c d
a′ b′ c′ d′

a′′ b′′ c′′ d′′

a′′′ b′′′ c′′′ d′′′

 .

Thus,

det (tIn + L) = det


t + a b c d

a′ t + b′ c′ d′

a′′ b′′ t + c′′ d′′

a′′′ b′′′ c′′′ t + d′′′

 .

Imagine expanding the right hand side (using the Leibniz formula) and ex-
panding the resulting products further. For instance, the product

(t + a)
(
t + b′

)
d′′c′′′

becomes ttd′′c′′′ + tb′d′′c′′′ + atd′′c′′′ + ab′d′′c′′′. In the huge sum that results,
we are interested in those addends that contain exactly one t, because it is
precisely these addends that contribute to the coefficient of t1 in the polynomial
det (tIn + L). Where do these addends come from? To pick up exactly one t
from a product like (t + a) (t + b′) d′′c′′′, we need to have at least one diagonal
entry in our product (for example, we cannot pick up any t from the product
cd′b′′a′′′), and we need to pick out the t from this diagonal entry (rather than,
e.g., the a or b′ or c′′ or d′′′). If we pick the r-th diagonal entry, then the rest of
the product is part of the expansion of det (L∼r,∼r) (since we must not pick any
further ts and thus can pretend that they are not there in the first place). Thus,

the total t1-coefficient in det (tIn + L) will be
n
∑

r=1
det (L∼r,∼r). This proves (2),

and thus the proof of Theorem 1.2.1 (b) is complete.

(c) Consider the polynomial det (tIn + L) introduced in part (b), and in par-
ticular its t1-coefficient c1.

It is known that the characteristic polynomial det (tIn − L) of L is a monic
polynomial of degree n, and that its roots are the eigenvalues λ1, λ2, . . . , λn of
L. Hence, it can be factored as follows:

det (tIn − L) = (t − λ1) (t − λ2) · · · (t − λn) .

https://math.stackexchange.com/a/3989575/
https://math.stackexchange.com/a/3989575/
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Substituting −t for t on both sides of this equality, we obtain

det (−tIn − L) = (−t − λ1) (−t − λ2) · · · (−t − λn) .

Multiplying both sides of this equality by (−1)n, we find

det (tIn + L) = (t + λ1) (t + λ2) · · · (t + λn)

= (t + λ1) (t + λ2) · · · (t + λn−1) t (since λn = 0) .

Hence, the t1-coefficient of the polynomial det (tIn + L) is λ1λ2 · · · λn−1 (since
this is clearly the t1-coefficient on the right hand side). Since we defined c1
to be the t1-coefficient of the polynomial det (tIn + L), we thus conclude that
c1 = λ1λ2 · · · λn−1. However, Theorem 1.2.1 (b) yields

(# of spanning trees of G) =
1
n

c1︸︷︷︸
=λ1λ2···λn−1

=
1
n
· λ1λ2 · · · λn−1.

This proves Theorem 1.2.1 (c).

Laplacians of digraphs often have computable eigenvalues, so Theorem 1.2.1
(c) is actually pretty useful. A striking example of a # of spanning trees (specif-
ically, of the n-hypercube graph Qn, which we already met in Lecture 6) that
can be counted using eigenvalues will appear on homework set #7 Exercise 5.

Here, however, let us give a simpler example, in which Theorem 1.2.1 (a)
suffices:

Exercise 1. Let n and m be two positive integers. Let Kn,m be the simple
graph with n + m vertices

1, 2, . . . , n and − 1,−2, . . . ,−m,

where two vertices i and j are adjacent if and only if they have opposite
signs (i.e., each positive vertex is adjacent to each negative vertex, but no two
vertices of the same sign are adjacent).

[For example, here is how K5,2 looks like:

−1−2

1 2 3 4 5

.]

How many spanning trees does Kn,m have?
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Solution. If we rename the negative vertices −1,−2, . . . ,−m as n+ 1, n+ 2, . . . , n+
m, then the Laplacian L of the digraph Kbidir

n,m can be written in block-matrix no-
tation as follows:

L =

(
A B
C D

)
,

where

• A is a diagonal n × n-matrix whose all diagonal entries are equal to m
(since there are no edges between positive vertices, and since each positive
vertex has degree m);

• B is an n × m-matrix whose all entries equal −1;

• C is an m × n-matrix whose all entries equal −1;

• D is a diagonal m × m-matrix whose all diagonal entries are equal to n.

For instance, if n = 3 and m = 2, then

L =


2 0 0 −1 −1
0 2 0 −1 −1
0 0 2 −1 −1
−1 −1 −1 3 0
−1 −1 −1 0 3

 .

Theorem 1.2.1 (a) yields

(# of spanning trees of Kn,m) = det (L∼r,∼r) for any vertex r of Kn,m;

thus, we need to compute det (L∼r,∼r) for some vertex r. We let r = 1. Then, the
submatrix L∼r,∼r = L∼1,∼1 of L again can be written in block-matrix notation
as follows:

L∼r,∼r =

(
Ã B̃
C̃ D

)
, (3)

where

• Ã is a diagonal (n − 1) × (n − 1)-matrix, whose all diagonal entries are
equal to m;

• B̃ is an (n − 1)× m-matrix whose all entries equal −1;

• C̃ is an m × (n − 1)-matrix whose all entries equal −1;

• D is a diagonal m × m-matrix whose all diagonal entries are equal to n.



Lecture 19, version June 6, 2025 page 16

Fortunately, determinants of block matrices are often not hard to compute, at
least when some of the blocks are invertible. For example, the Schur comple-
ment provides a neat formula. Our life here is even easier, since Ã and D are
multiples of identity matrices: namely, Ã = mIn−1 and D = nIm. We perform

a “blockwise row transformation” on the block matrix L∼r,∼r =

(
Ã B̃
C̃ D

)
,

specifically subtracting the C̃Ã−1-multiple of the first “block row”
(

Ã B̃
)

from the second “block row”
(

C̃ D
)

(yes, this is legitimate – it’s the same as

left-multiplying by the block matrix
(

In−1 0
−C̃Ã−1 Im

)
, which has determinant

1 because it is lower-triangular). As a result, we obtain

det

(
Ã B̃
C̃ D

)
= det

(
Ã B̃

C̃ − C̃Ã−1Ã D − C̃Ã−1B̃

)

= det

(
Ã B̃
0 D − C̃Ã−1B̃

)
.

The matrix on the right is “block-upper triangular”, so its determinant factors
as follows:5

det

(
Ã B̃
0 D − C̃Ã−1B̃

)
= det Ã · det

(
D − C̃Ã−1B̃

)
.

Of course, det Ã = mn−1, since Ã is a diagonal matrix with m, m, . . . , m on the
diagonal. Computing det

(
D − C̃Ã−1B̃

)
is a bit more complicated, but still

doable: The matrix Ã−1 is a diagonal matrix with m−1, m−1, . . . , m−1 on the
diagonal; thus, its role in the product C̃Ã−1B̃ is merely to multiply everything
by m−1. Hence, C̃Ã−1B̃ = m−1C̃B̃. Since all entries of C̃ and B̃ are −1’s, we
see that all entries of C̃B̃ are (n − 1)’s. Putting all of this together, we see
that D − C̃Ã−1B̃ is the m × m-matrix whose all diagonal entries are equal to
n − m−1 (n − 1) and whose all off-diagonal entries are equal to −m−1 (n − 1).
We have already computed the determinant of a matrix much like this back in
our proof of Cayley’s Formula (Lecture 18); let us deal with the general case:

5We are using the fact that if a matrix is block-triangular (with all diagonal blocks being square
matrices), then its determinant is the product of the determinants of its diagonal blocks.
See, e.g., https://math.stackexchange.com/a/1221066/ or [Grinbe20, Exercise 6.29] for a
proof of this fact.

https://en.wikipedia.org/wiki/Block_matrix#Block_matrix_determinant
https://math.stackexchange.com/a/1221066/
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Proposition 1.2.2. Let n ∈ N. Let x and a be two numbers. Then,

det



x a a · · · a a
a x a · · · a a
a a x · · · a a
...

...
... . . . ...

...
a a a · · · x a
a a a · · · a x


︸ ︷︷ ︸

the n×n-matrix
whose diagonal entries are x

and whose off-diagonal entries are a

= (x + (n − 1) a) (x − a)n−1 .

Proposition 1.2.2 can be proved using similar reasoning as the determinant
in Lecture 18; we will say more about it later. For now, let us apply it to m,
n − m−1 (n − 1) and −m−1 (n − 1) instead of n, x and a, to obtain

det
(

D − C̃Ã−1B̃
)
=
((

n − m−1 (n − 1)
)
+ (m − 1)

(
−m−1 (n − 1)

))
︸ ︷︷ ︸

=1

·

(n − m−1 (n − 1)
)
−
(
−m−1 (n − 1)

)
︸ ︷︷ ︸

=n


m−1

= nm−1.

Now, it is time to combine everything we know. Theorem 1.2.1 (a) yields

(# of spanning trees of Kn,m) = det (L∼r,∼r)

= det

(
Ã B̃
C̃ D

)
(by (3))

= det

(
Ã B̃
0 D − C̃Ã−1B̃

)
= det Ã︸ ︷︷ ︸

=mn−1

·det
(

D − C̃Ã−1B̃
)

︸ ︷︷ ︸
=nm−1

= mn−1 · nm−1.

Thus, we have obtained the following:
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Theorem 1.2.3. Let n and m be two positive integers. Let Kn,m be the simple
graph with n + m vertices

1, 2, . . . , n and − 1,−2, . . . ,−m,

where two vertices i and j are adjacent if and only if they have opposite signs.
Then,

(# of spanning trees of Kn,m) = mn−1 · nm−1.

See [AbuSbe88] for a combinatorial proof of this theorem.

As we promised, let us make a few more remarks about Proposition 1.2.2.
While this proposition can be proved by fairly straightforward row transforma-
tions (first subtracting the first row from all the other rows, then factoring an
x − a from all the latter rows, then subtracting a times each of the latter rows to
the first row to obtain a triangular matrix), it can also be viewed as a particular
case of either of the following two determinantal identities:

Proposition 1.2.4. Let n ∈ N. Let a1, a2, . . . , an be n numbers, and let x be a
further number. Then,

det



x a1 a2 · · · an−1 an
a1 x a2 · · · an−1 an
a1 a2 x · · · an−1 an
...

...
... . . . ...

...
a1 a2 a3 · · · x an
a1 a2 a3 · · · an x


︸ ︷︷ ︸

an (n+1)×(n+1)-matrix

=

(
x +

n

∑
i=1

ai

)
n

∏
i=1

(x − ai) .

Proposition 1.2.5. Let n ∈ N. Let x1, x2, . . . , xn be n numbers, and let a be a
further number. Then,

det


x1 a a · · · a
a x2 a · · · a
a a x3 · · · a
...

...
... . . . ...

a a a · · · xn

 =
n

∏
i=1

(xi − a) + a
n

∑
i=1

yi,

where we set yi := ∏
k∈{1,2,...,n};

k ̸=i

(xk − a) for each i ∈ {1, 2, . . . , n}.

Both of these propositions make good exercises in determinant evaluation.
(Proposition 1.2.4 is [Grinbe20, Exercise 6.21], while Proposition 1.2.5 is https:
//math.stackexchange.com/a/2112473/ .)

https://math.stackexchange.com/a/2112473/
https://math.stackexchange.com/a/2112473/


Lecture 19, version June 6, 2025 page 19

See [KleSta19] for more applications of the Matrix-Tree Theorem.
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