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Math 530 Spring 2022, Lecture 18: Trees

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Trees and arborescences (cont’d)

1.1. Spanning arborescences vs. spanning trees

Last time, we proved the BEST theorem, which connected the # of Eulerian
circuits in a digraph with the # of spanning arborescences of the same digraph.
Now we are looking for a way to compute the latter.

For example, let us try to do this for digraphs of the form Gbidir where G is a
multigraph. I claim that the spanning arborescences of Gbidir rooted to a given
vertex r are just the spanning trees of G in disguise:

Proposition 1.1.1. Let G = (V, E, φ) be a multigraph. Fix a vertex r ∈ V.
Recall that the arcs of Gbidir are the pairs (e, i) ∈ E × {1, 2}. Identify each
spanning tree of G with its edge set, and each spanning arborescence of
Gbidir with its arc set.

If B is a spanning arborescence of Gbidir rooted to r, then we set

B := {e | (e, i) ∈ B} .

(Recall that we are identifying spanning arborescences with their arc sets, so
that “(e, i) ∈ B” means “(e, i) is an arc of B”.)

Then:

(a) If B is a spanning arborescence of Gbidir rooted to r, then B is a spanning
tree of G.

(b) The map{
spanning arborescences of Gbidir rooted to r

}
→ {spanning trees of G} ,

B 7→ B

is a bijection.

Example 1.1.2. Here is a multigraph G (on the left) with the corresponding

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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multidigraph Gbidir (on the right):
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G Gbidir

Here is a spanning arborescence B of Gbidir rooted to 1, and the correspond-
ing spanning tree B of G:
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5

B B

(here, the arcs of Gbidir that don’t belong to B, as well as the edges of G that
don’t belong to B, have been drawn as dotted arrows). It is fairly easy to see
how B can be reconstructed from B: You just need to replace each edge of B
by the appropriately directed arc (namely, the one that is “directed towards
1”).

Proof of Proposition 1.1.1. This is an exercise in yak-shaving (and we have, in
fact, shaved a very similar yak in Lecture 16; the only difference is that we are
no longer dealing with trees in isolation, but rather with spanning trees of G).
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(a) Let B be a spanning arborescence of Gbidir rooted to r. Then, Bund is a tree
(by the implication A’1=⇒A’3 in Theorem 1.1.3 from Lecture 17). However, it
is easy to see that Bund ∼= B as multigraphs (indeed, each vertex v of Bund cor-
responds to the same vertex v of B, whereas any edge (e, i) of Bund corresponds
to the edge e of B) 1. Thus, B is a tree (since Bund is a tree)2, therefore a
spanning tree of G (since B is clearly a spanning subgraph of G). This proves
Proposition 1.1.1 (a).

(b) We must prove that this map is surjective and injective.
Surjectivity: Let T be a spanning tree of G. Then, the multidigraph Tr→

(defined in Definition 1.1.6 in Lecture 16) is an arborescence rooted from r (by
Lemma 1.1.9 in Lecture 16). Reversing each arc in this arborescence Tr→, we
obtain a new multidigraph Tr←, which is thus an arborescence rooted to r.
Unfortunately, Tr← is not a subdigraph of Gbidir, for a rather stupid reason:
The arcs of Tr← are elements of E, whereas the arcs of Gbidir are pairs of the
form (e, i) with e ∈ E and i ∈ {1, 2}.

Fortunately, this is easily fixed: For each arc e of Tr←, we let e′ be the arc
(e, i) of Gbidir that has the same source as e (and thus the same target as e). This
is uniquely determined, since the arcs (e, 1) and (e, 2) of Gbidir have different
sources3. If we replace each arc e of Tr← by the corresponding arc e′ of Gbidir,
then we obtain a spanning subdigraph S of Gbidir that is an arborescence rooted
to r (since Tr← is an arborescence rooted to r, and we have only replaced its
arcs by equivalent ones with the same sources and the same targets). In other
words, we obtain a spanning arborescence S of Gbidir rooted to r. It is easy to
see that S = T. Hence, the map{

spanning arborescences of Gbidir rooted to r
}
→ {spanning trees of G} ,

B 7→ B

1Here we need to use the fact that for each edge e of B, exactly one of the two pairs (e, 1) and
(e, 2) is an edge of Bund. But this is easy to check: At least one of the two pairs (e, 1) and
(e, 2) must be an arc of B (since e is an edge of B). In other words, at least one of the two
pairs (e, 1) and (e, 2) must be an edge of Bund. But both of these pairs cannot be edges of
Bund at the same time (since this would create a cycle, but Bund is a tree and thus has no
cycles). Hence, exactly one of these pairs is an edge of Bund, qed.

2Alternatively, you can prove this as follows: The vertex r is a to-root of B (since B is an
arborescence rooted to r). Thus, for each v ∈ V, there is a path from v to r in B. By “project-
ing” this path onto B (that is, replacing each arc (e, i) of this path by the corresponding edge
e of B), we obtain a path from v to r in B. This shows that the multigraph B is connected.
Furthermore, the definition of B shows that

∣∣B∣∣ ≤ |B| = |V| − 1 (by Statement A’2 in The-
orem 1.1.3 in Lecture 17, since B is an arborescence rooted to r). Hence,

∣∣B∣∣ < |V|. Thus,
we can apply the implication T5=⇒T1 of the Tree Equivalence Theorem (Theorem 1.2.4 in
Lecture 14) to conclude that B is a tree.

3Proof. The edge e of T is not a loop (because T is a tree, but a tree cannot have any loops).
Hence, its two endpoints are distinct. Thus, the arcs (e, 1) and (e, 2) of Gbidir have different
sources (since their sources are the two endpoints of e).
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sends S to T. This shows that T is a value of this map. Since we have proved this
for every spanning tree T of G, we have thus shown that this map is surjective.

Injectivity: The main idea is that, in order to recover a spanning arborescence
B back from the corresponding spanning tree B, we just need to “orient the
edges of the tree towards r”. Here are the (annoyingly long) details:

Let B and C be two sparbs4 such that B = C. We must show that B = C.
Assume the contrary. Thus, B ̸= C. Let T be the tree B = C. Thus, each edge

e of T corresponds to either an arc (e, 1) or an arc (e, 2) in B (since T = B), and
likewise for C. Conversely, each arc (e, i) of B or of C corresponds to an edge e
of T. Hence, from B ̸= C, we see that there must exist an edge e of T such that

• either we have (e, 1) ∈ B and (e, 2) ∈ C,

• or we have (e, 1) ∈ C and (e, 2) ∈ B.

Consider this edge e. We WLOG assume that (e, 1) ∈ B and (e, 2) ∈ C (else,
we can just swap B with C). Let the arc (e, 1) of Gbidir have source s and target
t, so that (e, 2) has source t and target s. The edge e thus has endpoints s and t.

Since B is an arborescence rooted to r, the vertex r is a to-root of B. Hence,
there exists a path p from s to r in B. This path p must begin with the arc (e, 1)
5. Projecting this path p down onto T, we obtain a path p from s to r in T. (By
the word “projecting”, we mean replacing each arc (e, i) by the corresponding
edge e. Clearly, doing this to a path in B yields a path in T, because T = B.)
Since the path p begins with the arc (e, 1), the “projected” path p begins with
the edge e. Thus, in the tree T, the path from s to r begins with the edge e
(because this path must be the path p). As a consequence, t must be the second
vertex of this path (since the edge e has endpoints s and t), so that removing the
first edge from this path yields the path from t to r. Thus, d (t, r) = d (s, r)− 1,
where d denotes distance on the tree T. Hence, d (t, r) < d (s, r).

A similar argument (but with the roles of B and C swapped, as well as the
roles of s and t swapped, and the roles of (e, 1) and (e, 2) swapped) shows that
d (s, r) < d (t, r). But this contradicts d (t, r) < d (s, r).

This contradiction shows that our assumption was false. Thus, we have
proved that B = C.

4Henceforth, “sparb” is short for “spanning arborescence of Gbidir rooted to r”.
5Proof. Since r is a to-root of B, we know that there exists a path from t to r in B. Let t be this

path. Extending this path t by the vertex s and the arc (e, 1) (which we both insert at the start
of t), we obtain a walk t′ from s to r in B. (So, if t = (t, . . . , r), then t′ = (s, (e, 1) , t, . . . , r).)

However, B is an arborescence rooted to r. Thus, Statement A’4 in the Dual Arborescence
Equivalence Theorem (Theorem 1.1.3 in Lecture 17) shows that for each vertex v ∈ V, the
digraph B has a unique walk from v to r. Hence, in particular, B has a unique walk from s
to r. Thus, p = t′ (since both p and t′ are walks from s to r in B). Since t′ begins with the
arc (e, 1), we thus conclude that p begins with the arc (e, 1).
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Forget that we fixed B and C. We thus have shown that if B and C are two
sparbs such that B = C, then B = C. In other words, our map{

spanning arborescences of Gbidir rooted to r
}
→ {spanning trees of G} ,

B 7→ B

is injective.
We have now shown that this map is both surjective and injective. Hence, it

is a bijection. This proves Proposition 1.1.1 (b).

1.2. The matrix-tree theorem

So counting spanning trees in a multigraph is a particular case of counting
spanning arborescences (rooted to a given vertex) in a multidigraph. But how
do we do either? Let us begin with some simple examples:

Example 1.2.1. There is only one spanning tree of the complete graph K1:

1 .

There is only one spanning tree of the complete graph K2:

1 2 .

There are 3 spanning trees of the complete graph K3:

1

2

3

1

2

3

1

2

3

.

(They are all isomorphic, but still distinct.)
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There are 16 spanning trees of the complete graph K4:
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(There are only two non-isomorphic ones among them.)

This example suggests that the # of spanning trees of a complete graph Kn is
nn−2.

This is indeed true, and we will prove this later. For now, however, let us
address the more general problem of counting spanning arborescences of an
arbitrary digraph D.

First, we introduce a notation:

Definition 1.2.2. We will use the Iverson bracket notation: If A is any logical
statement, then we set

[A] :=

{
1, if A is true;
0, if A is false.
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For example, [K2 is a tree] = 1 whereas [K3 is a tree] = 0.

Definition 1.2.3. Let M be a matrix. Let i and j be two integers. Then,

Mi,j will mean the entry of M in row i and column j;

M∼i,∼j will mean the matrix M with row i removed and column j removed.

For example, a b c
d e f
g h i


2,3

= f and

 a b c
d e f
g h i


∼2,∼3

=

(
a b
g h

)
.

We shall now assign a matrix to (more or less) any multidigraph:6

Definition 1.2.4. Let D = (V, A, ψ) be a multidigraph. Assume that V =
{1, 2, . . . , n} for some n ∈N.

For any i, j ∈ V, we let ai,j be the # of arcs of D that have source i and
target j.

The Laplacian of D is defined to be the n × n-matrix L ∈ Zn×n whose
entries are given by

Li,j =
(
deg+ i

)
· [i = j]︸ ︷︷ ︸

This is also
known as δi,j

− ai,j for all i, j ∈ V.

In other words, it is the matrix

L =


deg+ 1− a1,1 −a1,2 · · · −a1,n

−a2,1 deg+ 2− a2,2 · · · −a2,n
...

... . . . ...
−an,1 −an,2 · · · deg+ n− an,n

 .

6Recall that the symbol “#” means “number”.
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Example 1.2.5. Let D be the digraph

1

2

3 .

Then, its Laplacian is 2− 1 −1 −0
−0 1− 0 −1
−0 −0 1− 1

 =

 1 −1 0
0 1 −1
0 0 0

 .

One thing we notice from this example is that loops do not matter at all to
the Laplacian L. Indeed, a loop with source i and target i counts once in deg+ i
and once in ai,i, but these contributions cancel out.

Here is a simple property of Laplacians:

Proposition 1.2.6. Let D = (V, A, ψ) be a multidigraph. Assume that V =
{1, 2, . . . , n} for some positive integer n.

Then, the Laplacian L of D is singular; i.e., we have det L = 0.

Proof. The sum of all columns of L is the zero vector, because for each i ∈ V we
have

n

∑
j=1

((
deg+ i

)
· [i = j]− ai,j

)
=

n

∑
j=1

(
deg+ i

)
· [i = j]︸ ︷︷ ︸

=deg+ i
(since only the addend
for j=i can be nonzero)

−
n

∑
j=1

ai,j︸ ︷︷ ︸
=deg+ i

(since this is counting
all arcs with source i)

= deg+ i− deg+ i = 0.

In other words, we have Le = 0 for the vector e := (1, 1, . . . , 1)T. Thus, this
vector e lies in the kernel (aka nullspace) of L, and so L is singular.

(Note that we used the positivity of n here! If n = 0, then e is the zero vector,
because a vector with 0 entries is automatically the zero vector.)

Proposition 1.2.6 shows that the determinant of the Laplacian of a digraph
is not very interesting. But there is a general rule that when a matrix has
determinant 0, its largest nonzero minors (= determinants of submatrices) often
carry some interesting information; they are “the closest the matrix has” to
a nonzero determinant. In the case of the Laplacian, they turn out to count
spanning arborescences:
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Theorem 1.2.7 (Matrix-Tree Theorem). Let D = (V, A, ψ) be a multidigraph.
Assume that V = {1, 2, . . . , n} for some positive integer n.

Let L be the Laplacian of D. Let r be a vertex of D. Then,

(# of spanning arborescences of D rooted to r) = det (L∼r,∼r) .

Before we prove this, some remarks:

• The determinant det (L∼r,∼r) is the (r, r)-th entry of the adjugate matrix
of L.

• The V = {1, 2, . . . , n} assumption is a typical “WLOG assumption”: If
you have an arbitrary digraph D, you can always rename its vertices as
1, 2, . . . , n, and then this assumption will be satisfied. Thus, Theorem 1.2.7
helps you count the spanning arborescences of any digraph. That said,
you can also drop the V = {1, 2, . . . , n} assumption from Theorem 1.2.7 if
you are okay with matrices whose rows and columns are indexed not by
numbers but by elements of an arbitrary finite set7.

Now, let us use the Matrix-Tree Theorem to count the spanning trees of Kn.
This should help you get an intuition for the theorem before we come to its
proof.

We fix a positive integer n. Let L be the Laplacian of the multidigraph Kbidir
n

(where Kn, as we recall, is the complete graph on the set {1, 2, . . . , n}). Then,
each vertex of Kbidir

n has outdegree n− 1, and thus we have

L =


n− 1 −1 · · · −1
−1 n− 1 · · · −1

...
... . . . ...

−1 −1 · · · n− 1


(this is the n×n-matrix whose diagonal entries are n− 1 and whose off-diagonal
entries are −1). By Proposition 1.1.1 (b) (applied to G = Kn and r = 1),
there is a bijection between

{
spanning arborescences of Kbidir

n rooted to 1
}

and

7Such matrices are perfectly fine, just somewhat unusual and hard to write down (which row
do you put on top?). See https://mathoverflow.net/questions/317105 for details.

https://en.wikipedia.org/wiki/Adjugate_matrix
https://mathoverflow.net/questions/317105
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{spanning trees of Kn}. Hence, by the bijection principle, we have

(# of spanning trees of Kn)

=
(

# of spanning arborescences of Kbidir
n rooted to 1

)
= det (L∼1,∼1)

(
by Theorem 1.2.7, applied to D = Kbidir

n and r = 1
)

= det


n− 1 −1 · · · −1
−1 n− 1 · · · −1

...
... . . . ...

−1 −1 · · · n− 1


︸ ︷︷ ︸

an (n−1)×(n−1)-matrix

.

How do we compute this determinant? Here are three ways:

• The most elementary approach is using row transformations:

det


n− 1 −1 · · · −1
−1 n− 1 · · · −1

...
... . . . ...

−1 −1 · · · n− 1



= det



n− 1 −1 −1 −1 · · · −1
−n n 0 0 · · · 0
−n 0 n 0 · · · 0
−n 0 0 n · · · 0

...
...

...
... . . . ...

−n 0 0 0 · · · n


 here, we have

subtracted the 1st row
from each other row



= nn−2 det



n− 1 −1 −1 −1 · · · −1
−1 1 0 0 · · · 0
−1 0 1 0 · · · 0
−1 0 0 1 · · · 0

...
...

...
... . . . ...

−1 0 0 0 · · · 1




here, we have
factored out

an n from each
row except for
the first row



= nn−2 det



1 0 0 0 · · · 0
−1 1 0 0 · · · 0
−1 0 1 0 · · · 0
−1 0 0 1 · · · 0

...
...

...
... . . . ...

−1 0 0 0 · · · 1


︸ ︷︷ ︸

=1
(since the matrix is triangular
with diagonal entries 1,1,...,1)

(
here, we have added the 2nd,
3rd, etc. rows to the 1st row

)

= nn−2.
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• The so-called matrix determinant lemma says that for any m×m-matrix
A ∈ Rm×m, any column vector u ∈ Rm×1 and any row vector v ∈ R1×m,
we have

det (A + uv) = det A + v (adj A) u.

This helps us compute our determinant, since
n− 1 −1 · · · −1
−1 n− 1 · · · −1

...
... . . . ...

−1 −1 · · · n− 1



=


n 0 · · · 0
0 n · · · 0
...

... . . . ...
0 0 · · · n


︸ ︷︷ ︸

=A

+


−1
−1

...
−1


︸ ︷︷ ︸

=u

(
1 1 · · · 1

)︸ ︷︷ ︸
=v

.

• Here is an approach that is heavier on linear algebra (specifically, eigen-
vectors and eigenvalues8):

Let (e1, e2, . . . , en−1) be the standard basis of the R-vector space Rn−1 (so
that ei is the column vector with its i-th coordinate equal to 1 and all its
other coordinates equal to 0). Then, we can find the following n− 1 eigen-

vectors of our (n− 1)× (n− 1)-matrix


n− 1 −1 · · · −1
−1 n− 1 · · · −1

...
... . . . ...

−1 −1 · · · n− 1

:

– the n− 2 eigenvectors e1− ei for all i ∈ {2, 3, . . . , n− 1}, each of them
with eigenvalue n (check this!);

– the eigenvector e1 + e2 + · · ·+ en−1 with eigenvalue 1 (check this!).

Since these n− 1 eigenvectors are linearly independent (check this!), they
form a basis of Rn−1. Hence, our matrix is similar to the diagonal matrix
with diagonal entries n, n, . . . , n︸ ︷︷ ︸

n−2 times

, 1 (by [Treil17, Chapter 4, Theorem 2.1]),

and therefore has determinant nn · · · n︸ ︷︷ ︸
n−2 times

1 = nn−2.

There are other ways as well. Either way, the result we obtain is nn−2. Thus,
we have proved (relying on the Matrix-Tree Theorem, which we haven’t yet
proved):

8See [Treil17, Chapter 4] for a refresher.

https://en.wikipedia.org/wiki/Matrix_determinant_lemma
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Theorem 1.2.8 (Cayley’s formula). Let n be a positive integer. Then, the # of
spanning trees of the complete graph Kn is nn−2.

In other words:

Corollary 1.2.9. Let n be a positive integer. Then, the # of simple graphs with
vertex set {1, 2, . . . , n} that are trees is nn−2.

Proof. This is just Cayley’s formula, since the simple graphs with vertex set
{1, 2, . . . , n} that are trees are precisely the spanning trees of Kn.

There are many ways to prove Cayley’s formula. I can particularly recom-
mend the two combinatorial proofs given in [Galvin21, §2.4 and §2.5], as well
as Joyal’s proof sketched in [Leinst19]. Most textbooks on enumerative com-
binatorics give one proof or another; e.g., [Stanle18, Appendix to Chapter 9]
gives three. Cayley’s formula also appears in Aigner’s and Ziegler’s best-of
compilation of mathematical proofs [AigZie14, Chapter 33] with four different
proofs. Note that some of the sources use a matrix-tree theorem for undirected
graphs; this is a particular case of our matrix-tree theorem.

However, in order to complete our proof, we still need to prove the Matrix-
Tree Theorem.

We shall do this next time (i.e., in Lecture 19). First, let us prepare with a
simple lemma (yet another criterion for a digraph to be an arborescence):

Lemma 1.2.10. Let D = (V, A, ψ) be a multidigraph. Let r be a vertex of D.
Assume that D has no cycles. Assume moreover that D has no arcs with
source r. Assume furthermore that each vertex v ∈ V \ {r} has outdegree 1.
Then, the digraph D is an arborescence rooted to r.

This lemma is precisely homework set #6 problem 4 (b), at least after revers-
ing all arcs. But let us give a self-contained proof here:

Proof of Lemma 1.2.10. Let u be any vertex of D. Let p = (v0, a1, v1, a2, v2, . . . , ak, vk)
be a longest path of D that starts at u. 9 Thus, v0 = u.

We shall show that vk = r. Indeed, assume the contrary. Thus, vk ̸= r, so that
vk ∈ V \ {r}. Hence, the vertex vk has outdegree 1 (since we assumed that each
vertex v ∈ V \ {r} has outdegree 1). Thus, there exists an arc b of D that has
source vk. Consider this arc b, and let w be its target. Thus, appending the arc
b and the vertex w to the end of the path p, we obtain a walk

w = (v0, a1, v1, a2, v2, . . . , ak, vk, b, w)

of D that starts at u (since v0 = u). Proposition 1.2.9 in Lecture 10 shows that
this walk w either is a path or contains a cycle. Hence, w is a path (since D

9Such a path clearly exists, since the length-0 path (u) is a path of D that starts at u, and since
a path of D cannot have length larger than |V| − 1.
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has no cycles). Thus, w is a path of D that starts at u. Since w is longer than p
(namely, longer by 1), this shows that p is not the longest path of D that starts
at u. But this contradicts the very definition of p.

This contradiction shows that our assumption was false. Hence, vk = r. Thus,
p is a path from u to r (since v0 = u and vk = r). Therefore, the digraph D has
a path from u to r (namely, p).

Forget that we fixed u. We thus have shown that for each vertex u of D, the di-
graph D has a path from u to r. In other words, r is a to-root of D. Furthermore,
we have deg+ r = 0 (since D has no arcs with source r), and each v ∈ V \ {r}
satisfies deg+ v = 1 (since we have assumed that each vertex v ∈ V \ {r} has
outdegree 1). In other words, the digraph D satisfies Statement A’6 from the
dual arborescence equivalence theorem (Theorem 1.1.3 in Lecture 17). There-
fore, it satisfies Statement A’1 from that theorem as well (since all six statements
A’1, A’2, . . ., A’6 are equivalent). In other words, D is an arborescence rooted
to r. This proves Lemma 1.2.10.

References

[AigZie14] Martin Aigner, Günter M. Ziegler, Proofs from the Book, 6th edition,
Springer 2018.

[Galvin21] David Galvin, Basic Discrete Mathematics (Spring 2021).
https://www3.nd.edu/~dgalvin1/60610/60610_S21/index.html
Follow the overleaf link. Notes: Course-notes.tex; solved home-
work: main.tex.

[Leinst19] Tom Leinster, The probability that an operator is nilpotent,
arXiv:1912.12562v2.

[Stanle18] Richard P. Stanley, Algebraic Combinatorics: Walks, Trees, Tableaux, and
More, 2nd edition, Springer 2018.
See https://math.mit.edu/~rstan/algcomb/errata2.pdf for er-
rata.

[Treil17] Sergei Treil, Linear Algebra Done Wrong, 4 September 2017.
https://www.math.brown.edu/streil/papers/LADW/LADW.html

https://doi.org/10.1007/978-3-662-44205-0
https://doi.org/10.1007/978-3-662-44205-0
https://www3.nd.edu/~dgalvin1/60610/60610_S21/index.html
https://arxiv.org/abs/1912.12562
https://arxiv.org/abs/1912.12562
https://doi.org/10.1007/978-3-319-77173-1
https://doi.org/10.1007/978-3-319-77173-1
https://math.mit.edu/~rstan/algcomb/errata2.pdf
https://www.math.brown.edu/streil/papers/LADW/LADW.html

	Trees and arborescences (cont'd)
	Spanning arborescences vs. spanning trees
	The matrix-tree theorem


