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Math 530 Spring 2022, Lecture 17: Trees

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Trees and arborescences (cont’d)

1.1. The BEST theorem (cont’d)

Last time, we stated the BEST theorem in the following two versions (which are
equivalent by way of reversing all arcs):

Theorem 1.1.1 (The BEST theorem). Let D = (V, A, ψ) be a balanced multi-
digraph such that each vertex has indegree > 0. Fix an arc a of D, and let
r be its target. Let τ (D, r) be the number of spanning arborescences of D
rooted from r. Let ε (D, a) be the number of Eulerian circuits of D whose last
arc is a. Then,

ε (D, a) = τ (D, r) · ∏
u∈V

(
deg− u − 1

)
!.

Theorem 1.1.2 (The BEST’ theorem). Let D = (V, A, ψ) be a balanced multi-
digraph such that each vertex has outdegree > 0. Fix an arc a of D, and let
r be its source. Let τ (D, r) be the number of spanning arborescences of D
rooted to r. Let ε (D, a) be the number of Eulerian circuits of D whose first
arc is a. Then,

ε (D, a) = τ (D, r) · ∏
u∈V

(
deg+ u − 1

)
!.

We sketched a proof of the BEST’ theorem. Let us now expand on this sketch.
First, for the sake of convenience, we state the analogue of the Arborescence
Equivalence Theorem (Theorem 1.3.5 in Lecture 15) for “arborescences rooted
to r” (as opposed to “arborescences rooted from r”):

Theorem 1.1.3 (The dual arborescence equivalence theorem). Let D =
(V, A, ψ) be a multidigraph with a to-root r. Then, the following six state-
ments are equivalent:

• Statement A’1: The multidigraph D is an arborescence rooted to r.

• Statement A’2: We have |A| = |V| − 1.

• Statement A’3: The multigraph Dund is a tree.

• Statement A’4: For each vertex v ∈ V, the multidigraph D has a unique
walk from v to r.

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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• Statement A’5: If we remove any arc from D, then the vertex r will no
longer be a to-root of the resulting multidigraph.

• Statement A’6: We have deg+ r = 0, and each v ∈ V \ {r} satisfies
deg+ v = 1.

Proof. Upon reversing all arcs of D, this turns into the original Arborescence
Equivalence Theorem (Theorem 1.3.5 in Lecture 15).

We can now prove the BEST’ theorem:

Proof of Theorem 1.1.2. Some notations first:
An outgoing arc from a vertex u will mean an arc whose source is u. An

incoming arc into a vertex u will mean an arc whose target is u.
An a-Eulerian circuit shall mean a Eulerian circuit of D whose first arc is a.
A sparb shall mean a spanning arborescence of D rooted to r.
A spanning subdigraph of D always has the form (V, B, ψ |B) for some subset

B of A. Thus, it is uniquely determined by its arc set B.
Hence, from now on, we shall identify a spanning subdigraph (V, B, ψ |B)

of D with its arc set B. Conversely, any subset B of A will be identified with
the corresponding spanning subdigraph (V, B, ψ |B) of D. Thus, for instance,
when we say that a subset B of A “is a sparb”, we shall actually mean that the
corresponding spanning subdigraph (V, B, ψ |B) is a sparb.

For each a-Eulerian circuit e, we define a subset Exit e of A as follows:
Let e be an a-Eulerian circuit. Its first arc is a; thus, its first and last vertex

is r. Being a Eulerian circuit, e must contain each arc of D and therefore also
contain each vertex of D (since each vertex of D has outdegree > 0). For each
vertex u ∈ V \ {r}, we let e (u) be the last exit of e from u; this means the last
arc of e that has source u. We let Exit e be the set of these last exits e (u) for
all u ∈ V \ {r}. Thus, we have defined a subset Exit e of A for each a-Eulerian
circuit e.

Example 1.1.4. Here is an example of this construction: Let D be the multi-
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digraph
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with r = 1, and let e be the a-Eulerian circuit

(1, a, 2, b, 3, c, 4, d, 5, e, 1, f , 3, g, 3, h, 5, i, 5, j, 2, k, 4, l, 1)

(we have deliberately named the arcs in such a way that they appear on a
Eulerian circuit in alphabetic order). Then,

e (2) = k, e (3) = h, e (4) = l, e (5) = j,

so that Exit e = {k, h, l, j}. Here is Exit e as a spanning subdigraph:
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Now, we claim the following:

Claim 1: Let e be an a-Eulerian circuit. Then, the set Exit e is a sparb.

Claim 2: For each sparb B (regarded as a subset of A), there are ex-
actly ∏

u∈V

(
deg+ u − 1

)
! many a-Eulerian circuits e such that Exit e =
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B.

[Proof of Claim 1: The set Exit e contains exactly one outgoing arc (namely,
e (u)) from each vertex u ∈ V \ {r}, and no outgoing arc from r. Thus, |Exit e| =
|V| − 1.

Let us number the arcs of e as a1, a2, . . . , am, in the order in which they appear
in e. (Thus, a1 = a, since the first arc of e is a.)

Recall that the arcs in Exit e are the arcs e (u) for all u ∈ V \ {r} (defined as
above – i.e., the arc e (u) is the last exit of e from u). We shall refer to these arcs
as the last-exit arcs.

For each u ∈ V \ {r}, we let j (u) be the unique number i ∈ {1, 2, . . . , m} such
that e (u) = ai. (This i indeed exists and is unique, since each arc of D appears
exactly once on e.) Thus, j (u) tells us how late in the Eulerian circuit e the arc
e (u) appears. Since e (u) is the last exit of e from u, the Eulerian circuit e never
visits the vertex u again after this.

Thus, if a last-exit arc e (u) has target v ̸= r, then

j (u) < j (v) (1)

(because the arc e (u) leads the circuit e into the vertex v, which the circuit then
has to exit at least once; therefore, the corresponding last-exit arc e (v) has to
appear later in e than the arc e (u)).

We shall now show that r is a to-root of Exit e (that is, of the spanning subdi-
graph (V, Exit e, ψ |Exit e)). To this purpose, we must show that for each vertex
v ∈ V, there is a path from v to r in the digraph (V, Exit e, ψ |Exit e).

Indeed, let v ∈ V be any vertex. We must find a path from v to r in the
digraph (V, Exit e, ψ |Exit e). It will suffice to find a walk from v to r in this
digraph (by Corollary 1.2.8 in Lecture 10). In other words, we must find a way
to walk from v to r in D using last-exit arcs only.

So we start walking at v. If v = r, then we are already done. Otherwise, we
have v ∈ V \ {r}, so that the arc e (v) and the number j (v) are well-defined.
We thus take the arc e (v). This brings us to a vertex v′ (namely, the target of
e (v)) that satisfies j (v) < j (v′) (by (1)). If this vertex v′ is r, then we are done.
If not, then e (v′) and j (v′) are well-defined, so we continue our walk by taking
the arc e (v′). This brings us to a further vertex v′′ (namely, the target of e (v′))
that satisfies j (v′) < j (v′′) (by (1)). If this vertex v′′ is r, then we are done.
Otherwise, we proceed as before. We thus construct a walk(

v, e (v) , v′, e
(
v′
)

, v′′, e
(
v′′
)

, . . .
)

that either goes on indefinitely or stops at the vertex r.
However, this walking process cannot go on forever (since the chain of in-

equalities j (v) < j (v′) < j (v′′) < · · · would force the numbers j (v) , j (v′) , j (v′′) , . . .
to be all distinct, but there are only m distinct numbers in {1, 2, . . . , m}). Thus,
it must stop at the vertex r. So we have found a walk from v to r using last-exit
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arcs only. Thus, Exit e has a walk from v to r. Hence, Exit e has a path from v
to r.

Forget that we fixed v. We thus have shown that for each vertex v ∈ V,
there is a path from v to r in the digraph (V, Exit e, ψ |Exit e). In other words,
r is a to-root of Exit e. Hence, we conclude (using the implication A’2=⇒A’1
in Theorem 1.1.3) that Exit e is an arborescence rooted to r (since |Exit e| =
|V| − 1). Therefore, Exit e is a sparb. This proves Claim 1.]

[Proof of Claim 2: Let B be a sparb. (As before, B is a set of arcs, and we
identify it with the spanning subdigraph (V, B, ψ |B).)

We must prove that there are exactly ∏
u∈V

(
deg+ u − 1

)
! many a-Eulerian cir-

cuits e such that Exit e = B.
We shall refer to the arcs in B as the B-arcs. Recall that B is an arborescence

rooted to r (since B is a sparb). Hence, by the implication A’1=⇒A’6 in Theorem
1.1.3, we see that the outdegrees of its vertices satisfy

deg+
B r = 0, and deg+

B v = 1 for all v ∈ V \ {r}

(where deg+
B v means the outdegree of a vertex in the digraph (V, B, ψ |B)).

In other words, there is no B-arc with source r; however, for each vertex u ∈
V \ {r}, there is exactly one B-arc with source u.

Now, we are trying to count the a-Eulerian circuits e such that Exit e = B.
Let us try to construct such an a-Eulerian circuit e as follows:
A turtle wants to walk through the digraph D using each arc of D at most

once. It starts its walk by heading out from the vertex r along the arc a. From
that point on, it proceeds in the usual way you would walk on a digraph: Each
time it reaches a vertex, it chooses an arbitrary arc leading out of this vertex,
observing the following two rules:

1. It never uses an arc that it has already used before.

2. It never uses a B-arc unless it has to (i.e., unless this B-arc is the only
outgoing arc from its current position that is still unused).

Clearly, the turtle will eventually get stuck at some vertex (with no more arcs
left to continue walking along), since D has only finitely many arcs.

Let w be the total walk that the turtle has traced by the time it got stuck.
Thus, w is a trail (i.e., a walk that uses no arc more than once) that starts with
the vertex r and the arc a.

We will soon see that w is an a-Eulerian circuit satisfying Exit w = B. First,
however, let us see an example:
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Example 1.1.5. Let D be the multidigraph
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and let r = 1 and a = a (we called it a on purpose). Let B be the set {d, e, h, k},
regarded as a spanning subdigraph of D. (The arcs of B are drawn bold and
in red in the above picture.)

The turtle starts at r = 1 and walks along the arc a. This leads it to the
vertex 2. It now must choose between the arcs b and k, but since it must not
use the B-arc k unless it has to, it is actually forced to take the arc b next.
This brings it to the vertex 3. It now has to choose between the arcs c, g and
h, but again the arc h is disallowed because it is not yet time to use a B-arc.
Let us say that it takes the arc g. This brings it back to the vertex 3. Next, the
turtle must walk along c (since g is already used, while the B-arc still must
wait until it is the only option). This brings it to the vertex 4. Its next step is
to take the arc l to the vertex 1. From there, it follows the arc f to the vertex
3. Now, it can finally take the B-arc h, since all the other outgoing arcs from
3 have already been used. This brings it to the vertex 5. Now it has a choice
between the arcs e, i and j, but the arc e is disallowed because it is a B-arc.
Let us say it decides to use the arc j. This brings it to the vertex 2. From
there, it takes the B-arc k to the vertex 4 (since it has no other options). From
there, it continues along the B-arc d to the vertex 5. Now, it has to traverse
the loop i, and then leave 5 along the B-arc e to come back to 1. At this point,
the turtle is stuck, since it has nowhere left to go. The walk w we obtained is
thus

w = (1, a, 2, b, 3, g, 3, c, 4, l, 1, f , 3, h, 5, j, 2, k, 4, d, 5, i, 5, e, 1) .

(Of course, other choices would have led to other walks.)

Returning to the general case, let us analyze the walk w traversed by the
turtle.

• First, we claim that w is a closed walk (i.e., ends at r).



Lecture 17, version May 11, 2023 page 7

[Proof: Assume the contrary. Let u be the ending point of w. Thus, u
is the vertex at which the turtle gets stuck. Moreover, u ̸= r (since we
just assumed that w is not a closed walk). Hence, the walk w enters the
vertex u more often than it leaves it (since it ends but does not start at u).
In other words, the turtle has entered the vertex u more often than it has
left it. However, since D is balanced, we have deg− u = deg+ u. The turtle
has entered the vertex u at most deg− u times (because it cannot use an
arc twice, but there are only deg− u many arcs with target u). Thus, it has
left the vertex u less than deg− u times (because it has entered the vertex
u more often than it has left it). Since deg− u = deg+ u, this means that
the turtle has left the vertex u less than deg+ u times. Thus, by the time
the turtle has gotten stuck at u, there is at least one outgoing arc from u
that has not been used by the turtle. Therefore, the turtle is not actually
stuck at u. This is a contradiction. Thus, our assumption was wrong, so
we have proved that w is a closed walk.]

In other words, w is a circuit. We shall next show that w is a Eulerian circuit.
To do so, we introduce one more piece of notation: A vertex u of D will be

called exhausted if the turtle has used each outgoing arc from u (that is, if each
outgoing arc from u is used in the circuit w).

Since w is a circuit, the ending point of w is its starting point, i.e., the vertex
r. Thus, the turtle must have gotten stuck at r. Hence, the vertex r is exhausted.

• We shall now show that all vertices of D are exhausted.

[Proof: Assume the contrary. Thus, there exists a vertex u of D that is
not exhausted. Consider this u. But B is a sparb, thus an arborescence
rooted to r. Hence, r is a to-root of B. Therefore, there exists a path
p = (p0, b1, p1, b2, p2, . . . , bk, pk) from u to r in B. Consider this path. Thus,
we have p0 = u and pk = r, and all the arcs b1, b2, . . . , bk belong to B.

There exists at least one i ∈ {0, 1, . . . , k} such that the vertex pi is ex-
hausted (for instance, i = k qualifies, since pk = r is exhausted). Consider
the smallest such i. Then, pi ̸= p0 (since pi is exhausted, but p0 = u is
not). Hence, i ̸= 0, so that i ≥ 1. Therefore, pi−1 exists. Moreover, the ver-
tex pi−1 is not exhausted (since i was defined to be the smallest element
of {0, 1, . . . , k} such that pi is exhausted).

The arc bi has source pi−1 and target pi. Thus, it is an outgoing arc from
pi−1 and incoming arc into pi. Furthermore, it belongs to B (since all the
arcs b1, b2, . . . , bk belong to B).

The digraph D is balanced; thus, deg+ (pi) = deg− (pi).

The vertex pi is exhausted. In other words, the turtle has used each out-
going arc from pi (by the definition of “exhausted”). Since the turtle never
reuses an arc, this entails that the turtle has used exactly deg+ (pi) many
outgoing arcs from pi (since deg+ (pi) is the total number of outgoing
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arcs from pi in D). In other words, it has used exactly deg− (pi) many
outgoing arcs from pi (since deg+ (pi) = deg− (pi)).

However, the turtle’s trajectory is a closed walk (in fact, it is the walk w,
which is closed). Thus, it must enter the vertex pi as often as it leaves this
vertex. In other words, the number of incoming arcs into pi used by the
turtle must equal the number of outgoing arcs from pi used by the turtle.
Since we just found (in the preceding paragraph) that the latter number
is deg− (pi), we thus conclude that the former number is deg− (pi) as
well. In other words, the turtle must have used exactly deg− (pi) many
incoming arcs into pi. Since deg− (pi) is the total number of incoming arcs
into pi in D, we thus conclude that the turtle must have used all incoming
arcs into pi (since the turtle never reuses an arc).

Hence, in particular, the turtle must have used the arc bi (since bi is an
incoming arc into pi). This arc bi is an outgoing arc from pi−1. But bi is
a B-arc, and thus our turtle uses this arc only as a last resort (i.e., after
using all other outgoing arcs from pi−1). Hence, we conclude that the
turtle must have used all outgoing arcs from pi−1 (since it has used bi).
In other words, pi−1 is exhausted. But this contradicts the fact that pi−1
is not exhausted! This shows that our assumption was wrong, and our
proof is finished.1].]

1For the sake of diversity, let me sketch a second proof of the same claim (i.e., that all vertices
in D are exhausted):

Assume the contrary. Thus, there exists a non-exhausted vertex u of D. Consider this u.
Then, u ̸= r (since r is exhausted but u is not). Since u is not exhausted, there is at least
one outgoing arc from u that the turtle has not used. Hence, the turtle has not used the
B-arc outgoing from u (since the turtle never uses a B-arc before it has to). Let f be this
B-arc, and let u′ be its target. Thus, the turtle has not used all incoming arcs of u′ (because
it has not used the arc f ). As a consequence, it has not used all outgoing arcs from u′ either
(because the turtle has left u′ as often as it has entered u′, but the balancedness of D entails
that deg− (u′) = deg+ (u′)). In other words, the vertex u′ is non-exhausted.

Thus, by starting at the non-exhausted vertex u and taking the B-arc outgoing from u,
we have arrived at a further non-exhausted vertex u′. Applying the same argument to u′

instead of u, we can take a further B-arc and arrive at a further non-exhausted vertex u′′.
Continuing like this, we obtain an infinite sequence (u, u′, u′′, . . .) of non-exhausted vertices
such that any vertex in this sequence is reached from the previous one by traveling along a
B-arc. Clearly, this sequence must have two equal vertices (since D has only finitely many
vertices). For example, let’s say that u′′ = u′′′′′. Then, if we consider only the part of the
sequence between u′′ and u′′′′′, then we obtain a closed walk(

u′′, ∗, u′′′, ∗, u′′′′, ∗, u′′′′′) ,

where each asterisk stands for some B-arc (not the same one, of course). This is a closed
walk of the digraph (V, B, ψ |B). Since this closed walk has length > 0, it cannot be a path;
therefore, it contains a cycle (by Proposition 1.2.9 in Lecture 10). Thus, we have found a
cycle of the digraph (V, B, ψ |B). However, the digraph (V, B, ψ |B) is an arborescence, and
thus has no cycles (because if D is an arborescence, then any cycle of D would be a cycle
of Dund; but the multigraph Dund has no cycles by the definition of an arborescence). The
previous two sentences contradict each other. This shows that our assumption was wrong,
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Thus, we have shown that all vertices of D are exhausted. In other words,
the turtle has used all arcs of D. In other words, the trail w contains all arcs of
D. Since w is a trail and a closed walk, this entails that w is a Eulerian circuit
of D. Since w starts with r and a, this shows further that w is an a-Eulerian
circuit. Since the turtle only used B-arcs as a last resort (and it used each B-arc
eventually, because w is Eulerian), we have Exit w = B.

Thus, the turtle’s walk has produced an a-Eulerian circuit e satisfying Exit e =
B (namely, the walk w). However, this circuit depends on some decisions the
turtle made during its walk. Namely, every time the turtle was at some vertex
u ∈ V, it had to decide which arc to take next; this arc had to be an unused arc
with source u, subject to the conditions that

1. if u ̸= r, then the B-arc2 has to be used last;

2. if u = r, then the arc a has to be used first.

Let us count how many options the turtle has had in total. To make the
argument clearer, we modify the procedure somewhat: Instead of deciding ad-
hoc which arc to take, the turtle should now make all these decisions before
embarking on its journey. To do so, it chooses, for each vertex u ∈ V, a total
order on the set of all arcs with source u, such that

1. if u ̸= r, then the B-arc comes last in this order, and

2. if u = r, then the arc a comes first in this order.

Note that this total order can be chosen in
(
deg+ u − 1

)
! many ways (since

there are deg+ u arcs with source u, and we can freely choose their order except
that one of them has a fixed position). Thus, in total, there are ∏

u∈V

(
deg+ u − 1

)
!

many options for how the turtle can choose all these orders. Once these orders
have been chosen, the turtle then uses them to decide which arcs to walk along:
Namely, the first time it visits the vertex u, it leaves it along the first arc (ac-
cording to its chosen order); the second time, it uses the second arc; the third
time, the third arc; and so on.

So the turtle has ∏
u∈V

(
deg+ u − 1

)
! many options, and each of these options

leads to a different a-Eulerian circuit e (because the total orders chosen by the
turtle are reflected in e: they are precisely the orders in which the respective
arcs appear in e). Moreover, each a-Eulerian circuit e satisfying Exit e = B
comes from one of these options3.

and our proof is finished.
2We say “the B-arc”, because there is exactly one B-arc with source u.
3Proof. Let e be an a-Eulerian circuit satisfying Exit e = B. Then, by choosing the appropriate

total orders ahead of its journey, the turtle will trace this exact circuit e. (Of course, the
“appropriate total orders” are the ones dictated by e: That is, for each vertex u ∈ V, the
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Therefore, the total number of a-Eulerian circuits e satisfying Exit e = B is the
total number of options, which is ∏

u∈V

(
deg+ u − 1

)
! as we know. This proves

Claim 2.]

With Claims 1 and 2 proved, we are almost done. The map

{a-Eulerian circuits of D} → {sparbs} ,
e 7→ Exit e

is well-defined (by Claim 1). Furthermore, Claim 2 shows that this map is a
∏

u∈V

(
deg+ u − 1

)
!-to-1 correspondence4 (i.e., each sparb B has exactly

∏
u∈V

(
deg+ u − 1

)
! many preimages under this map). Thus, by the multijection

principle5, we conclude that6

(# of a-Eulerian circuits of D) =

(
∏
u∈V

(
deg+ u − 1

)
!

)
· (# of sparbs) .

Since ε (D, a) = (# of a-Eulerian circuits of D) and τ (D, r) = (# of sparbs), we
can rewrite this as follows:

ε (D, a) =

(
∏
u∈V

(
deg+ u − 1

)
!

)
· τ (D, r) = τ (D, r) · ∏

u∈V

(
deg+ u − 1

)
!.

This proves Theorem 1.1.2.

Proof of Theorem 1.1.1. As we already mentioned, Theorem 1.1.1 follows from
Theorem 1.1.2 by reversing each arc (i.e., by applying Theorem 1.1.2 to the
digraph Drev instead of D).

Before we actually use the BEST (or BEST’) theorem to count the Eulerian
circuits on any digraph, let us mention a neat corollary for the number of span-
ning arborescences:

turtle must pick the same total order on the set of all arcs with source u in which they appear
on e. This choice is legitimate, because the arc a is the first arc of e (so it will certainly come
first in its order), and because each B-arc appears in e after all other arcs from the same
source have appeared (so it will come last in its total order).)

4An m-to-1 correspondence (where m is a nonnegative integer) means a map f : X → Y
between two sets such that each element of Y has exactly m preimages under f .

5The multijection principle is a basic counting principle that says the following: Let X and Y
be two finite sets, and let m ∈ N. Let f : X → Y be an m-to-1 correspondence (i.e., a map
such that each element of Y has exactly m preimages under f ). Then, |X| = m · |Y|.

For example, n (intact) sheep have 4n legs in total, since the map that sends each leg to
its sheep is a 4-to-1 correspondence.

6The symbol “#” means “number”.
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Corollary 1.1.6. Let D = (V, A, ψ) be a balanced multidigraph. For each
vertex r ∈ V, let τ (D, r) be the number of spanning arborescences of D
rooted to r. Then, τ (D, r) does not depend on r.

Proof of Corollary 1.1.6. WLOG assume that |V| > 1 (else, the claim is obvious).
If there is a vertex v ∈ V with deg+ v = 0, then this vertex v satisfies deg− v = 0
as well (since the balancedness of D entails deg− v = deg+ v = 0), and therefore
D has no spanning arborescences at all (since any spanning arborescence would
have an arc with source or target v). Thus, we WLOG assume that deg+ v > 0
for all v ∈ V. In other words, each vertex has outdegree > 0.

Let r and s be two vertices of D. We must prove that τ (D, r) = τ (D, s).
Pick an arc a with source r. (This exists, since deg+ r > 0.) Pick an arc b with

source s. (This exists, since deg+ s > 0.)
Applying the BEST’ theorem (Theorem 1.1.2), we get

ε (D, a) = τ (D, r) · ∏
u∈V

(
deg+ u − 1

)
! and similarly

ε (D, b) = τ (D, s) · ∏
u∈V

(
deg+ u − 1

)
!.

However, ε (D, a) = ε (D, b), since counting Eulerian circuits that start with a is
equivalent to counting Eulerian circuits that start with b (because an Eulerian
circuit can be rotated uniquely to start with any given arc). Thus, we obtain

τ (D, r) · ∏
u∈V

(
deg+ u − 1

)
! = ε (D, a) = ε (D, b) = τ (D, s) · ∏

u∈V

(
deg+ u − 1

)
!.

Cancelling the (nonzero!) number ∏
u∈V

(
deg+ u − 1

)
! from this equality, we ob-

tain τ (D, r) = τ (D, s). This proves Corollary 1.1.6.
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