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Math 530 Spring 2022, Lecture 16: Trees

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Trees and arborescences (cont’d)

1.1. Arborescences vs. trees

Last time, we defined from-roots and arborescences:

Definition 1.1.1. Let D be a multidigraph. Let r be a vertex of D.

(a) We say that r is a from-root (or, short, root) of D if for each vertex v of
D, the digraph D has a path from r to v.

(b) We say that D is an arborescence rooted from r if r is a from-root of D
and the undirected multigraph Dund has no cycles.

Last time, we proved the arborescence equivalence theorem, which gave sev-
eral equivalent criteria for a digraph with a from-root r to be an arborescence
rooted from r. We furthermore claimed the following theorem, connecting ar-
borescences with trees:

Theorem 1.1.2. Let D be a multidigraph, and let r be a vertex of D. Then,
the following two statements are equivalent:

• Statement C1: The multidigraph D is an arborescence rooted from r.

• Statement C2: The undirected multigraph Dund is a tree, and each arc
of D is “oriented away from r” (this means the following: the source of
this arc lies on the unique path between r and the target of this arc on
Dund).

Our next goal is to prove this theorem. It is an easy theorem to believe, but
an annoyingly hard one to formally prove!

To prove it formally, we introduce a few notations regarding trees. First, a
simple proposition:

Proposition 1.1.3. Let T = (V, E, φ) be a tree. Let r ∈ V be a vertex of
T. Let e be an edge of T, and let u and v be its two endpoints. Then,
the distances d (r, u) and d (r, v) differ by exactly 1 (that is, we have either
d (r, u) = d (r, v) + 1 or d (r, v) = d (r, u) + 1).

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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Proof. We recall that since T is a tree, the distance d (p, q) between two vertices
p and q of T is simply the length of the path from p to q. (This path is unique,
since T is a tree.)

Let p be the path from r to u. Then, we are in one of the following two cases:
Case 1: The edge e is an edge of p.
Case 2: The edge e is not an edge of p.
Consider Case 1. In this case, e must be the last edge of p (since otherwise, p

would visit u more than once, but p cannot do this, since p is a path). Thus, if
we remove this last edge e (and the vertex u) from p, then we obtain a path from
r to v. This path is exactly one edge shorter than p. Thus, d (r, v) = d (r, u)− 1,
so that d (r, u) = d (r, v) + 1. So we are done in Case 1.

Now, consider Case 2. In this case, the edge e is not an edge of p. Thus, we
can append e and v to the end of the path p, and the result will be a backtrack-
free walk p′. However, a backtrack-free walk in a tree is always a path (since
otherwise, it would contain a cycle1, but a tree has no cycles). Thus, p′ is a
path from r to v, and it is exactly one edge longer than p (by its construction).
Therefore, d (r, v) = d (r, u) + 1. So we are done in Case 2.

Now, we are done in both cases, so that Proposition 1.1.3 is proven.

Definition 1.1.4. Let T = (V, E, φ) be a tree. Let r ∈ V be a vertex of T. Let e
be an edge of T. By Proposition 1.1.3, the distances from the two endpoints
of e to the vertex r differ by exactly 1. So one of them is smaller than the
other.

(a) We define the r-parent of e to be the endpoint of e whose distance to r
is the smallest. We denote this endpoint by e−r.

(b) We define the r-child of e to be the endpoint of e whose distance to r is
the largest. We denote this endpoint by e+r.

Thus, by Proposition 1.1.3, we have

d
(
r, e+r) = d

(
r, e−r)+ 1.

Example 1.1.5. Here is a tree T, a vertex r, an edge e and its r-parent e−r and

1by Proposition 1.1.2 in Lecture 13



Lecture 16, version July 31, 2023 page 3

its r-child e+r:

e+r e−r

r

e

Definition 1.1.6. Let T = (V, E, φ) be a tree. Let r ∈ V be a vertex of T. Then,
we define a multidigraph Tr→ by

Tr→ := (V, E, ψ) ,

where ψ : E → V × V is the map that sends each edge e ∈ E to the pair
(e−r, e+r). Colloquially speaking, this means that Tr→ is the multidigraph
obtained from T by turning each edge e into an arc from its r-parent e−r to
its r-child e+r. This is what we mean when we speak of “orienting each edge
of T away from r” in Theorem 1.1.2.

Example 1.1.7. If T is the tree from Example 1.1.5, then Tr→ is the following
multidigraph:

r

Now, Theorem 1.1.2 can be rewritten as follows:

Theorem 1.1.8. Let D be a multidigraph, and let r be a vertex of D. Then,
the following two statements are equivalent:

• Statement C1: The multidigraph D is an arborescence rooted from r.

• Statement C2: The undirected multigraph Dund is a tree, and we have
D =

(
Dund)r→

. (This is a honest equality, not just some isomorphism.)
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The proof of this theorem is best organized by splitting into two lemmas:

Lemma 1.1.9. Let T = (V, E, φ) be a tree. Let r ∈ V be a vertex of T. Then,
the multidigraph Tr→ is an arborescence rooted from r.

Proof. The idea is to show that if p is a path from r to some vertex v in the tree
T, then p is also a path in the digraph Tr→, because all the edges of p have been
“oriented correctly” (i.e., their orientation matches how they are used in p).

Here are the details: Clearly, (Tr→)und = T. Hence, the graph (Tr→)und is a
tree and hence has no cycles. Thus, it suffices to prove that r is a from-root of
Tr→. In other words, we must prove that

Tr→ has a path from r to v (1)

for each v ∈ V.
We shall prove (1) by induction on d (r, v) (where d means the distance on

the tree T):
Base case: If v ∈ V satisfies d (r, v) = 0, then v = r, and thus Tr→ has a path

from r to v (namely, the trivial path (r)). Thus, (1) is proved for d (r, v) = 0.
Induction step: Let k ∈ N. Assume (as the induction hypothesis) that (1) holds

for each v ∈ V satisfying d (r, v) = k. We must now prove the same for each
v ∈ V satisfying d (r, v) = k + 1.

So let v ∈ V satisfy d (r, v) = k + 1. Then, the path of T from r to v has
length k + 1. Let p be this path, let e be its last edge, and let u be its second-
to-last vertex (so that its last edge e has endpoints u and v). Then, by removing
the last edge e from the path p, we obtain a path from r to u that is one edge
shorter than p. Hence, d (r, u) = d (r, v)− 1 < d (r, v). Consequently, the edge
e has r-parent u and r-child v (by Definition 1.1.4). In other words, e−r = u
and e+r = v. Therefore, in the digraph Tr→, the edge e is an arc from u to
v (by Definition 1.1.6). Moreover, we have d (r, u) = d (r, v) − 1 = k (since
d (r, v) = k + 1); therefore, the induction hypothesis tells us that (1) holds for
u instead of v. In other words, Tr→ has a path from r to u. Attaching the arc
e and the vertex v to this path, we obtain a walk of Tr→ from r to v (since e
is an arc from u to v in Tr→). Thus, the digraph Tr→ has a walk from r to v,
therefore also a path from r to v. Hence, (1) holds for our v. This completes the
induction step.

Thus, (1) is proved by induction. As we explained above, this yields Lemma
1.1.9.

Lemma 1.1.10. Let D = (V, A, ψ) be an arborescence rooted from r (for some
r ∈ V). Let a ∈ A be an arc of D. Let s be the source of a, and let t be the
target of a. Then:

(a) We have d (r, s) < d (r, t), where d means distance on the tree Dund.

(b) In the multidigraph
(

Dund)r→
, the arc a has source s and target t.
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Proof. (a) The vertex r is a from-root of D (since D is an arborescence rooted
from r). Thus, D has a path from r to t. Let p be this path. Note that deg− t ≥ 1,
since t is the target of at least one arc (namely, of a).

The digraph D is an arborescence rooted from r, and thus satisfies Statement
A6 in the arborescence equivalence theorem (Theorem 1.3.5 in Lecture 15). In
other words, we have

deg− r = 0 and deg− v = 1 for each v ∈ V \ {r} .

In particular, this entails deg− v ≤ 1 for each v ∈ V. Applying this to v = t, we
obtain deg− t ≤ 1. Hence, the arc a is the only arc whose target is t.

We have t ̸= r (since deg− r = 0 but deg− t ≥ 1 > 0). Thus, the path p from r
to t has at least one arc. Its last arc is therefore an arc whose target is t. Hence,
this last arc is a (since a is the only arc whose target is t).

If we remove this last arc from the path p, then we obtain a path p′ from r to
s (since s is the source of a).

However, each path of D is a path of Dund. Thus, in particular, p is a path of
Dund from r to t, while p′ is a path of Dund from r to s. Since p′ is exactly one
edge shorter than p, we thus obtain d (r, s) = d (r, t)− 1 < d (r, t). This proves
Lemma 1.1.10 (a).

(b) The arc a of the digraph D has source s and target t. Hence, the edge a
of the tree Dund has endpoints s and t. Since d (r, s) < d (r, t) (by part (a)), this
entails that its r-parent is s and its r-child is t (by Definition 1.1.4). Thus, in the
digraph

(
Dund)r→

, this edge a becomes an arc with source s and target t (by
Definition 1.1.6). This proves Lemma 1.1.10 (b).

Proof of Theorem 1.1.8. If (V, A, ψ) is a multidigraph, then we shall refer to the
map ψ : A → V × V (which determines the source and the target of each arc)
as the “psi-map” of this multidigraph.

Write the multidigraph D as D = (V, A, ψ). We shall now prove the implica-
tions C1=⇒C2 and C2=⇒C1 separately:

Proof of the implication C1=⇒C2: Assume that Statement C1 holds. That is,
D is an arborescence rooted from r. We must prove Statement C2. In other
words, we must prove that the undirected multigraph Dund is a tree, and that
D =

(
Dund)r→

.
It is clear (by the definition of an arborescence) that Dund is a tree. It thus

remains to prove that D =
(

Dund)r→
.

The multidigraphs D and
(

Dund)r→
have the same set of vertices (namely, V)

and the same set of arcs (namely, A); we therefore just need to show that their
psi-maps are the same. In other words, we need to show that ψ′ = ψ, where ψ′

is the psi-map of
(

Dund)r→
.

Let a ∈ A be arbitrary. Let ψ (a) = (s, t). Thus, the arc a of D has source s and
target t. Lemma 1.1.10 (b) therefore shows that in the multidigraph

(
Dund)r→

,
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the arc a has source s and target t as well. In other words, ψ′ (a) = (s, t) (since
ψ′ is the psi-map of this multidigraph). Hence, ψ′ (a) = (s, t) = ψ (a).

Forget that we fixed a. We thus have shown that ψ′ (a) = ψ (a) for each
a ∈ A. In other words, ψ′ = ψ. As explained above, this completes the proof of
Statement C2.

Proof of the implication C2=⇒C1: Assume that Statement C2 holds. Thus, the
undirected multigraph Dund is a tree, and we have D =

(
Dund)r→

. Hence,
Lemma 1.1.9 (applied to T = Dund) yields that the multidigraph

(
Dund)r→

is
an arborescence rooted from r. In other words, D is an arborescence rooted
from r (since D =

(
Dund)r→

). This shows that Statement C1 holds.

Having now proved both implications C1=⇒C2 and C2=⇒C1, we conclude
that Statements C1 and C2 are equivalent. Thus, Theorem 1.1.8 is proved.

Oof.
Let’s get one more consequence out of this. First, let us show that an arbores-

cence can have only one root:

Proposition 1.1.11. Let D be an arborescence rooted from r. Then, r is the
only root of D.

Proof of Proposition 1.1.11. Assume the contrary. Thus, D has another root s
distinct from r. Hence, D has a path from r to s (since r is a root) as well as
a path from s to r (since s is a root). Combining these paths gives a circuit
of length > 0. However, a circuit of length > 0 in a digraph must always
contain a cycle (since Proposition 1.2.9 in Lecture 10 shows that it either is
a path or contains a cycle; but it clearly cannot be a path). Hence, D has a
cycle. Therefore, Dund also has a cycle (since any cycle of D is a cycle of Dund).
However, Dund has no cycles (since D is an arborescence rooted from r). The
preceding two sentences contradict each other. This shows that the assumption
was wrong, and Proposition 1.1.11 is proven.

Definition 1.1.12. A multidigraph D is said to be an arborescence if there
exists a vertex r of D such that D is an arborescence rooted from r. In this
case, this r is uniquely determined as the only root of D (by Proposition
1.1.11).

Theorem 1.1.13. There are two mutually inverse maps

{pairs (T, r) of a tree T and a vertex r of T} → {arborescences} ,
(T, r) 7→ Tr→

and

{arborescences} → {pairs (T, r) of a tree T and a vertex r of T} ,

D 7→
(

Dund,
√

D
)

,
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where
√

D denotes the root of D.

Proof. The map

{pairs (T, r) of a tree T and a vertex r of T} → {arborescences} ,
(T, r) 7→ Tr→

is well-defined because of Lemma 1.1.9. The map

{arborescences} → {pairs (T, r) of a tree T and a vertex r of T} ,

D 7→
(

Dund,
√

D
)

,

is well-defined because if D is an arborescence, then Dund is a tree. In order to
show that these two maps are mutually inverse, we must check the following
two statements:

1. Each arborescence D satisfies
(

Dund)r→
= D, where r is the root of D;

2. Each pair (T, r) of a tree T and a vertex r of T satisfies (Tr→)und = T and√
(Tr→)und = r.

However, Statement 1 follows from Theorem 1.1.8 (specifically, from the im-
plication C1=⇒C2 in Theorem 1.1.8). Statement 2 follows from Lemma 1.1.9
(more precisely, the (Tr→)und = T part of Statement 2 is obvious, whereas

the
√
(Tr→)und = r part follows from Lemma 1.1.9). Thus, Theorem 1.1.13 is

proved.

Theorem 1.1.13 formalizes the idea that an arborescence is “just a tree with a
chosen vertex”. For this reason, arborescences are sometimes called “oriented
trees”, but this name is also shared with a more general notion, which is why I
avoid it.

1.2. Spanning arborescences

In analogy to spanning subgraphs of a multigraph, we can define spanning
subdigraphs of a multidigraph:

Definition 1.2.1. A spanning subdigraph of a multidigraph D = (V, A, ψ)
means a multidigraph of the form (V, B, ψ |B), where B is a subset of A.

In other words, it means a submultidigraph of D with the same vertex set
as D.

In other words, it means a multidigraph obtained from D by removing
some arcs, but leaving all vertices untouched.
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Definition 1.2.2. Let D be a multidigraph. Let r be a vertex of D. A spanning
arborescence of D rooted from r means a spanning subdigraph of D that is
an arborescence rooted from r.

Example 1.2.3. Let D = (V, A, ψ) be the following multidigraph:

1

2

3 4D =

a b

c

d

e

f
g

.

Is there a spanning arborescence of D rooted from 1 ? Yes, for instance,

(
V, {a, c, e} , ψ |{a,c,e}

)
=

1

2

3 4

a

c

e

.

By abuse of notation, we shall refer to this spanning arborescence simply
as {a, c, e} (since a spanning subdigraph of D is uniquely determined by its
arc set). Another spanning arborescence of D rooted from 1 is {a, b, e}. Yet
another is {a, b, f }. A non-example is {a, d, f } (indeed, this is an arborescence
rooted from 3, not from 1).

Is there a spanning arborescence of D rooted from 2 ? Yes, for example
{b, d, f }.

Is there a spanning arborescence of D rooted from 4 ? No, since 4 is not a
from-root of D.

This illustrates a first obstruction to the existence of spanning arborescences:
Namely, a digraph D can have a spanning arborescence rooted from r only if r
is a from-root. This necessary criterion is also sufficient:

Theorem 1.2.4. Let D be a multidigraph. Let r be a from-root of D. Then, D
has a spanning arborescence rooted from r.

Proof. This is an analogue of the “every connected multigraph has a spanning
tree” theorem that we proved in 4 ways in Lectures 14 and 15. At least the first
proof easily adapts to the directed case:

Remove arcs from D one by one, but in such a way that the “rootness of r”
(that is, the property that r is a root of our multidigraph) is preserved. So we
can only remove an arc if r remains a root afterwards.
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Clearly, this removing process will eventually come to an end, since D has
only finitely many arcs. Let D′ be the multidigraph obtained at the end of this
process. Then, r is still a root of D′, but we cannot remove any more arcs from
D′ without breaking the rootness of r. That is, if we remove any arc from D′,
then the vertex r will no longer be a from-root of the resulting multidigraph.
This means that D′ satisfies Statement A5 from the arborescence equivalence
theorem (Theorem 1.3.5 in Lecture 15). Thus, D′ satisfies Statement A1 as well
(since all six statements A1, A2, . . ., A6 are equivalent). In other words, D′ is an
arborescence rooted from r. Since D′ is a spanning subdigraph of D, we thus
conclude that D has a spanning arborescence rooted from r (namely, D′). This
proves Theorem 1.2.4.

Question 1.2.5. Can we adapt the other three proofs too?

1.3. The BEST theorem

Recall that a multidigraph D = (V, A, φ) is balanced if and only if each vertex
v satisfies deg− v = deg+ v. This is necessary for the existence of a Eulerian
circuit. If D is weakly connected, this is also sufficient (by Exercise 3 (a) on
homework set #4).

Surprisingly, there is a formula for the number of these Eulerian circuits:

Theorem 1.3.1 (The BEST theorem). Let D = (V, A, ψ) be a balanced multi-
digraph such that each vertex has indegree > 0. Fix an arc a of D, and let
r be its target. Let τ (D, r) be the number of spanning arborescences of D
rooted from r. Let ε (D, a) be the number of Eulerian circuits of D whose last
arc is a. Then,

ε (D, a) = τ (D, r) · ∏
u∈V

(
deg− u − 1

)
!.

The “BEST” in the name of this theorem is an abbreviation for de Bruijn, van
Aardenne–Ehrenfest, Smith and Tutte.2

To prove this theorem, we shall restate it in terms of “arborescences to” (as
opposed to “arborescences from”). Mathematically speaking, this restatement
isn’t really necessary (the argument is the same in both cases up to reversing
the directions of all arcs), but it helps make the proof more intuitive, since it
lets us build our Eulerian circuits by moving forwards rather than backwards.

Here is the formal definition of “arborescences to”:

2We note that the number of Eulerian circuits of D whose last arc is a is precisely the number
of all Eulerian circuits of D counted up to rotation. Indeed, each Eulerian circuit of D
contains the arc a exactly once, and thus can be rotated in a unique way to end with a.
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Definition 1.3.2. Let D be a multidigraph. Let r be a vertex of D.

(a) We say that r is a to-root of D if for each vertex v of D, the digraph D
has a path from v to r.

(b) We say that D is an arborescence rooted to r if r is a to-root of D and
the undirected multigraph Dund has no cycles.

Clearly, Definition 1.1.1 and Definition 1.3.2 differ only in the direction of
the arcs. In other words, if we reverse each arc of our digraph (turning its
source into its target and vice versa), then a from-root becomes a to-root, and
an arborescence rooted from r becomes an arborescence rooted to r, and vice
versa. Thus, every property that we have proved for arborescences rooted from
r can be translated into the language of arborescences rooted to r by reversing
all arcs.

If you want to see this stated more rigorously, here is a formal definition of “revers-
ing each arc”:

Definition 1.3.3. Let D = (V, A, ψ) be a multidigraph. Then, Drev shall denote the
multidigraph (V, A, τ ◦ ψ), where τ : V × V → V × V is the map that sends each
pair (s, t) to (t, s). Thus, if an arc a of D has source s and target t, then it is also an
arc of Drev, but in this digraph Drev it has source t and target s.

The multidigraph Drev is called the reversal of the multidigraph D; we say that it
is obtained from D by “reversing each arc”.

This notion of “reversing each arc” allows us to reverse walks in digraphs: If w is a
walk from a vertex s to t in some multidigraph D, then its reversal rev w (obtained by
reading w backwards) is a walk from t to s in the multidigraph Drev. The same holds
if we replace the word “walk” by “path”. Thus, we easily obtain the following:

Proposition 1.3.4. Let D be a multidigraph. Let r be a vertex of D. Then:

(a) The vertex r is a to-root of D if and only if r is a from-root of Drev.

(b) The digraph D is an arborescence rooted to r if and only if Drev is an arbores-
cence rooted from r.

Proof. Completely straightforward unpacking of the definitions.

Note that when we reverse each arc in a digraph D, the outdegrees of its
vertices become their indegrees and vice versa. Hence, a balanced digraph D
remains balanced when this happens. In particular, the BEST theorem (Theo-
rem 1.3.1) thus gets translated as follows:
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Theorem 1.3.5 (The BEST’ theorem). Let D = (V, A, ψ) be a balanced multi-
digraph such that each vertex has outdegree > 0. Fix an arc a of D, and let
r be its source. Let τ (D, r) be the number of spanning arborescences of D
rooted to r. Let ε (D, a) be the number of Eulerian circuits of D whose first
arc is a. Then,

ε (D, a) = τ (D, r) · ∏
u∈V

(
deg+ u − 1

)
!.

Proof idea. Here is the main idea of the proof; we will see the details next time:
An a-Eulerian circuit shall mean a Eulerian circuit of D whose first arc is a.
Let e be an a-Eulerian circuit. Its first arc is a; therefore, its first and last

vertex is r.
Being an Eulerian circuit, e must contain each arc of D and therefore contain

each vertex of D (since each vertex has outdegree > 0). For each vertex u ̸= r,
we let e (u) be the last exit of e from u, that is, the last arc of e that has source
u. Let Exit e be the set of these last exits e (u) for all vertices u ̸= r. Then, we
claim:

Claim 1: This set Exit e (or, more precisely, the spanning subdigraph
(V, Exit e, ψ |Exit e)) is a spanning arborescence of D rooted to r.

Let’s assume for the moment that Claim 1 is proven. Thus, given any a-
Eulerian circuit e, we have constructed a spanning arborescence of D rooted to
r.

How many a-Eulerian circuits e lead to a given arborescence in this way?
The answer is rather nice:

Claim 2: For each spanning arborescence (V, B, ψ |B) of D rooted to
r, there are exactly ∏

u∈V

(
deg+ u − 1

)
! many a-Eulerian circuits e such

that Exit e = B.

Let us again assume that this is proven. Combining Claim 1 with Claim 2, we
obtain a ∏

u∈V

(
deg+ u − 1

)
!-to-1 correspondence between the a-Eulerian circuits

and the spanning arborescences of D rooted to r. Thus, the number of the
former is ∏

u∈V

(
deg+ u − 1

)
! times the number of the latter. But this is precisely

the claim of Theorem 1.3.5. Hence, in order to prove Theorem 1.3.5, it remains
to prove Claim 1 and Claim 2. We will do this in the next lecture.
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