
Lecture 15, version June 7, 2025 page 1

Math 530 Spring 2022, Lecture 15: Trees

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Trees and arborescences (cont’d)

1.1. Spanning trees (cont’d)

Last time, we gave three proofs of the following theorem:

Theorem 1.1.1. Each connected multigraph G has at least one spanning tree.

Let us outline a fourth proof of this now:

Fourth proof of Theorem 1.1.1 (sketched). We imagine a snake that slithers along
the edges of G, trying to eventually bite each vertex. It starts at some vertex r,
which it immediately bites. Any time the snake enters a vertex v, it makes the
following step:

• If some neighbor of v has not been bitten yet, then the snake picks such
a neighbor w as well as some edge f that joins w with v; the snake then
moves to w along the edge f , bites the vertex w and marks the edge f .

• If not, then the snake marks the vertex v as fully digested and backtracks
(along the marked edges) to the last vertex it has visited but not fully
digested yet.

Once backtracking is no longer possible (because there are no more vertices
left that are not fully digested), the procedure is finished. I claim that the
marked edges at that moment are the edges of a spanning tree of G.

I won’t prove this claim in detail, but I will give some hints. First, however,
an example:

https://www.cip.ifi.lmu.de/~grinberg/t/22s

Lecture 15, version June 7, 2025 page 2

Example 1.1.2. Let G be the following connected multigraph:

1

2

3

4

7

8

5

6

9

10

11

12

13

14

.

Let our snake start its journey at r = 3. It bites this vertex. Then, let’s say
that it picks the vertex 1 as its next victim (it could just as well go to 4 or 7;
the snake has many choices, but we follow one possible trip). Thus, it next
arrives at vertex 1, bites it and marks the edge that brought it to this vertex.
As its next destination, it necessarily picks the vertex 2 (since vertex 3 has
already been bitten). It moves to vertex 2, bites it and marks the edge. Next,
let’s say that it picks the vertex 4 (the other option would be 8). It thus moves
to 4, bites it and marks the edge. Proceeding likewise, it then moves to 5 (the
other options are 6 and 10; the vertices 2 and 3 do not qualify since they are
already bitten), bites 5 and marks an edge. From there, let’s say it moves to
8, bites 8 and marks an edge. Now, there is no longer an unbitten neighbor
of 8 to move to. Thus, the snake marks the vertex 8 as fully digested and
backtracks to the last vertex not fully digested – which, at this point, is 5.
From this vertex 5, it moves on to 9 (this is the only option, since 4 and 8
have already been bitten). And so on. Here is one possible outcome of this
journey (there are a few more decisions that the snake can make here, so you

Lecture 15, version June 7, 2025 page 3

may get a different one):

1

2

3

4

7

8

5

6

9

10

11

12

13

14

.

Here, the marked edges are drawn in bold red ink, and endowed with an
arrow that represents the direction in which they were first used (e.g., the
edge joining 2 with 4 has an arrow towards 4 because it was first used to get
from 2 to 4).

Now, as promised, let me outline a proof of the above claim (that the marked
edges form a spanning tree of G). To wit, argue the following four observations
(ideally in this order):

1. After each step, the marked edges are precisely the edges along which the
snake has moved so far.

2. After each step, the network of bitten vertices and marked edges is a tree.

3. After enough steps, each bitten vertex is fully digested.

4. At that point, the network of bitten vertices and marked edges is a span-
ning tree (since each neighbor of a fully digested vertex is bitten, thus
fully digested by observation 3).

Details are left to the reader.
The result is that Theorem 1.1.1 is proved once again. However, more comes

out of the above construction if you know where to look. The spanning tree
T of G whose edges are the edges marked by the snake is called a depth-first
search (“DFS”) tree. It has the following extra property: If u and v are two

Lecture 15, version June 7, 2025 page 4

adjacent vertices of G, then either u lies on the path from r to v in T, or v lies on
the path from r to u in T. (This called a “lineal spanning tree”. See [BenWil06,
§6.1] for details.)

Spanning trees have lots of applications:

• A spanning tree of a graph can be viewed as a kind of “backbone” of
the graph, which in particular provides “canonical” paths between any
two vertices. This is useful, e.g., for networking applications where hav-
ing a choice between different paths would be problematic (see, e.g., the
Spanning Tree Protocol).

• A w-minimum spanning tree (see Homework set #5 exercise 6) solves
a global version of the cheapest-path problem. It can also be used for
detecting clusters.

• Depth-first search (the algorithm used in our fourth proof of Theorem
1.1.1) can also be used as a way to traverse all vertices of a given graph
and return back to the starting point. In particular, this provides an al-
gorithmic way to solve mazes (since a maze can be modeled as a graph,
where the vertices correspond to “rooms” and the edges correspond to
“doors”). This appears to have been the original motivation for Trémaux
to invent depth-first search back in the 19th century.

Here is a more theoretical application of spanning trees:

Definition 1.1.3. A vertex v of a connected multigraph G is said to be a cut-
vertex if the graph G \ v is disconnected. (Recall that G \ v is the multigraph
obtained from G by removing the vertex v and all edges that contain v.)

Proposition 1.1.4. Let G be a connected multigraph with ≥ 2 vertices. Then,
there are at least 2 vertices of G that are not cut-vertices.

Proof. Pick a spanning tree T of G (we know from Theorem 1.1.1 that such a
spanning tree exists). Then, T has at least 2 leaves (as we proved last time). But
each leaf of T is a non-cut-vertex of G (why?).

Remark 1.1.5. It is not true that conversely, any non-leaf of T is a cut-vertex
of G. So we cannot get any lower bound on the number of cut-vertices. And
this is not surprising: Lots of graphs (e.g., the complete graph Kn for n ≥ 2)
have no cut-vertices at all. These graphs are said to be 2-connected.

So we have learnt that connected graphs have spanning trees. What do dis-
connected graphs have?

https://en.wikipedia.org/wiki/Spanning_Tree_Protocol
https://en.wikipedia.org/wiki/Spanning_Tree_Protocol

Lecture 15, version June 7, 2025 page 5

Corollary 1.1.6. Each multigraph has a spanning forest.

Proof. Apply Theorem 1.1.1 to each component of the multigraph. Then, com-
bine the resulting spanning trees into a spanning forest.

1.2. Centers of graphs and trees

Given a graph, we can define a “distance” between any two of its vertices,
simply by counting edges on the shortest path from one to the other:

Definition 1.2.1. Let G be a multigraph.
For any two vertices u and v of G, we define the distance between u and

v to be the smallest length of a path from u to v. If no such path exists, then
this distance is defined to be ∞.

The distance between u and v is denoted by d (u, v) or by dG (u, v) when
the graph G is not clear from the context.

Example 1.2.2. If G is the multigraph from Example 1.1.2, then

dG (1, 9) = 4, dG (4, 13) = 2, dG (4, 4) = 0.

Remark 1.2.3. Distances in a multigraph satisfy the rules that you would
expect a distance function to satisfy:

(a) We have d (u, u) = 0 for any vertex u.

(b) We have d (u, v) = d (v, u) for any vertices u and v.

(c) We have d (u, v) + d (v, w) ≥ d (u, w) for any vertices u, v and w. (We
understand that ∞ ≥ m for any m ∈ N.)

Also:

(d) The distances d (u, v) do not change if we replace “path” by “walk” in
the definition of the distance.

Proof. Part (d) follows from Corollary 1.1.5 in Lecture 8. The proofs of (a), (b)
and (c) are then straightforward (the proof of (c) relies on part (d), because
splicing two paths generally only yields a walk, not a path).

We note that the definition of a distance becomes simpler if our multigraph
is a tree: Namely, if T is a tree, then the distance d (u, v) between two vertices
u and v is the length of the only path from u to v in T. Thus, in a tree, we do
not have to find the shortest path.

We can now define “eccentricities”:

Lecture 15, version June 7, 2025 page 6

Definition 1.2.4. Let v be a vertex of a multigraph G = (V, E, φ). The eccen-
tricity of v (with respect to G) is defined to be the number

max {d (v, u) | u ∈ V} ∈ N ∪ {∞} .

This eccentricity is denoted by ecc v or eccG v.

Definition 1.2.5. Let G = (V, E, φ) be a multigraph. Then, a center of G
means a vertex of G whose eccentricity is minimum (among all vertices).

(Some authors have a slightly different definition of a “center”: They define
the center of G to be the set of all vertices of G whose eccentricity is minimum.
That is, what they call “center” is the set of what we call “centers”.)

Example 1.2.6. Let G be the following multigraph:

p q

r u

v

w

.

Then, the eccentricities of its vertices are as follows (we are just labeling each
vertex with its eccentricity):

4 3

2 3

2

4

.

Thus, the centers of G are the vertices r and v.

Example 1.2.7. Let G be a complete graph Kn (with n vertices). Then, each
vertex of G has the same eccentricity (which is 1 if n ≥ 2 and 0 if n = 1), and
thus each vertex of G is a center of G.

Example 1.2.8. Let G be a graph with more than one component. Then, each
vertex v of G has eccentricity ∞ (because there exists at least one vertex u
that lies in a different component of G than v, and thus this vertex u satisfies
d (v, u) = ∞). Hence, each vertex of G is a center of G.

As we see from Example 1.2.8, eccentricity and centers are not very useful
notions when the graph is disconnected. Even for a connected graph, Example

Lecture 15, version June 7, 2025 page 7

1.2.6 shows that the centers do not necessarily form a connected subgraph.
However, in a tree, they behave a lot better:

Theorem 1.2.9. Let T be a tree. Then:

(a) The tree T has either 1 or 2 centers.

(b) If T has 2 centers, then these 2 centers are adjacent.

(c) Moreover, these centers can be found by the following algorithm:

If T has more than 2 vertices, then we remove all leaves from T (simul-
taneously). What remains is again a tree. If that tree still has more than
2 vertices, we remove all leaves from it (simultaneously). The result is
again a tree. If that tree still has more than 2 vertices, we remove all
leaves from it (simultaneously), and continue doing so until we are left
with a tree that has only 1 or 2 vertices. These vertices are the centers
of T.

To prove Theorem 1.2.9, we first study how a tree is affected when all its
leaves are removed:

Lemma 1.2.10. Let T = (V, E, φ) be a tree with more than 2 vertices.
Let L be the set of all leaves of T.
Let T \ L be the induced submultigraph of T on the set V \ L. (Thus, T \ L

is obtained from T by removing all the vertices in L and all edges that contain
a vertex in L.)

Then:

(a) The multigraph T \ L is a tree.

(b) For any u ∈ V \ L and v ∈ V \ L, we have

{paths of T from u to v} = {paths of T \ L from u to v}

(that is, the paths of T from u to v are precisely the paths of T \ L from
u to v).

(c) For any u ∈ V \ L and v ∈ V \ L, we have dT (u, v) = dT\L (u, v).

(d) Each vertex v ∈ V \ L satisfies eccT v = eccT\L v + 1.

(e) Each leaf v ∈ L satisfies eccT v = eccT w + 1, where w is the unique
neighbor of v in T. (A neighbor of v means a vertex that is adjacent to
v.)

(f) The centers of T are precisely the centers of T \ L.

Lecture 15, version June 7, 2025 page 8

Example 1.2.11. Let T be the following tree:

1

5

2

6 7

8

3

9

10 11

4

.

Then, the set L from Lemma 1.2.10 is {4, 5, 7, 8, 10, 11}, and the tree T \ L
looks as follows:

1 2

6

3

9 .

Proof of Lemma 1.2.10. First, we notice that T is a forest (since T is a tree), and
thus has no cycles. In particular, T therefore has no loops and no parallel edges.
Also, for any two vertices u and v of T, there is a unique path from u to v in T.

Next, we introduce some terminology: If p is a path of some multigraph, then
an intermediate vertex of p shall mean a vertex of p that is neither the starting
point nor the ending point of p. In other words, if p = (p0, e1, p1, e2, p2, . . . , ek, pk)
is a path of some multigraph, then the intermediate vertices of p are p1, p2, . . . , pk−1.
Clearly, any intermediate vertex of a path p must have degree ≥ 2 (since the
path p enters it along some edge, and leaves it along another). Hence, if p is a
path of T, then

any intermediate vertex of p must belong to V \ L (1)

(because it must have degree ≥ 2, thus cannot be a leaf of T; but this means
that it cannot belong to L; therefore, it must belong to V \ L).

(b) Let u ∈ V \ L and v ∈ V \ L. Let p be a path of T from u to v. We shall
show that p is a path of T \ L as well.

Indeed, let us first check that all vertices of p belong to V \ L. This is clear for
the vertices u and v (since u ∈ V \ L and v ∈ V \ L); but it also holds for every
intermediate vertex of p (by (1)). Thus, it does indeed hold for all vertices of p.

We have thus shown that all vertices of p belong to V \ L. Hence, p is a path
of T \ L (since T \ L is the induced submultigraph of T on the set V \ L).

Lecture 15, version June 7, 2025 page 9

Forget that we fixed p. We have thus shown that every path p of T from u to
v is also a path of T \ L. Hence,

{paths of T from u to v} ⊆ {paths of T \ L from u to v} .

Conversely, we have

{paths of T \ L from u to v} ⊆ {paths of T from u to v} ,

since every path of T \ L is a path of T (because T \ L is a submultigraph of T).
Combining these two facts, we obtain

{paths of T from u to v} = {paths of T \ L from u to v} .

This proves Lemma 1.2.10 (b).

(c) This follows from Lemma 1.2.10 (b), since the distance dG (u, v) of two
vertices u and v in a graph G is defined to be the smallest length of a path from
u to v.

(a) The graph T is a tree, thus a forest. Hence, its submultigraph T \ L is a
forest as well (since any cycle of T \ L would be a cycle of T). It thus remains
to show that T \ L is connected.

First, it is easy to see that T \ L has at least one vertex1. It remains to show
that any two vertices of T \ L are path-connected.

Let u and v be two vertices of T \ L. Then, u ∈ V \ L and v ∈ V \ L. Hence,
Lemma 1.2.10 (b) yields

{paths of T from u to v} = {paths of T \ L from u to v} .

Thus, {paths of T \ L from u to v} = {paths of T from u to v} ̸= ∅ (since there
exists a path of T from u to v (because T is connected)). In other words, there
exists a path of T \ L from u to v. In other words, u and v are path-connected
in T \ L.

We have now shown that any two vertices u and v of T \ L are path-connected
in T \ L. This entails that T \ L is connected (since T \ L has at least one vertex).
This proves Lemma 1.2.10 (a).

1Proof. We assumed that T has more than 2 vertices. In other words, there exist three distinct
vertices u, v, w of T. Consider these u, v, w. If all three distances dT (u, v), dT (v, w) and
dT (w, u) were equal to 1, then T would have a cycle (of the form (u, ∗, v, ∗, w, ∗, u), where
each asterisk stands for some edge); but this would contradict the fact that T has no cycles.
Thus, not all of these three distances are equal to 1. Hence, at least one of them is ̸= 1.
WLOG assume that dT (u, v) ̸= 1 (otherwise, we permute u, v, w). Hence, the path from
u to v has more than one edge (indeed, it must have at least one edge, since u and v are
distinct). Therefore, this path has at least one intermediate vertex. This intermediate vertex
then must belong to V \ L (by (1)). Hence, it is a vertex of the subgraph T \ L. This shows
that T \ L has at least one vertex.

Lecture 15, version June 7, 2025 page 10

(d) If u and v are two vertices of T \ L, then the two distances dT (u, v) and
dT\L (u, v) are equal (by Lemma 1.2.10 (c)); thus, we shall denote both distances
by d (u, v) (since there is no confusion to be afraid of).

Let v ∈ V \ L. We must show that eccT v = eccT\L v + 1.
Let u be a vertex of T \ L such that d (v, u) is maximum. Thus, eccT\L v =

d (v, u) (by the definition of eccT\L v). However, u is a vertex of T \ L, and thus
does not belong to L. Hence, u is not a leaf of T (since L is the set of all leaves
of T). Hence, u has degree ≥ 2 in T (since a vertex in a tree with more than 1
vertex cannot have degree 0).

Now, consider the path p from v to u in the tree T. This path p has length
d (v, u). Since u has degree ≥ 2, there exist at least two edges of T that contain
u. Hence, in particular, there exists at least one edge f that contains u and is
distinct from the last edge of p 2. Consider this edge f . Let w be the endpoint
of f other than u. Appending f and w to the end of the path p, we obtain a walk
from v to w. This walk is backtrack-free (since f is distinct from the last edge of
p) and thus must be a path (by Proposition 1.1.2 in Lecture 13, since T has no
cycles). This path has length d (v, u) + 1 (since it was obtained by appending
an edge to the path p, which has length d (v, u)). Hence, d (v, w) = d (v, u) + 1.
But the definition of eccentricity yields

eccT v ≥ d (v, w) = d (v, u)︸ ︷︷ ︸
=eccT\L v

+1 = eccT\L v + 1. (2)

On the other hand, let x be a vertex of T such that d (v, x) is maximum. Thus,
eccT v = d (v, x) (by the definition of eccT v). The path from v to x has length
≥ 1 (since otherwise, we would have x = v and therefore d (v, x) = d (v, v) = 0,
which would easily contradict the maximality of d (v, x)). Thus, it has a second-
to-last vertex. Let y be this second-to-last vertex. Then, the path from v to
y is simply the path from v to x with its last edge removed. Consequently,
d (v, y) = d (v, x)− 1. However, it is easy to see that y ∈ V \ L 3. In other
words, y is a vertex of T \ L. Thus, the definition of eccentricity yields

eccT\L v ≥ d (v, y) = d (v, x)︸ ︷︷ ︸
=eccT v

−1 = eccT v − 1,

so that eccT v ≤ eccT\L v + 1. Combining this with (2), we obtain eccT v =
eccT\L v + 1. This proves Lemma 1.2.10 (d).

2If the path p has no edges, then f can be any edge that contains u.
3Proof. Assume the contrary. Thus, y /∈ V \ L. Hence, y ̸= v (since y /∈ V \ L but v ∈ V \ L).

However, y is the second-to-last vertex of the path from v to x. Therefore, y is either
the starting point v of this path, or an intermediate vertex of this path. Since y ̸= v, we
thus conclude that y is an intermediate vertex of this path. Hence, by (1), we see that y
must belong to V \ L. But this contradicts y /∈ V \ L. This contradiction shows that our
assumption was false, qed.

Lecture 15, version June 7, 2025 page 11

(e) If u and v are two vertices of T \ L, then the two distances dT (u, v) and
dT\L (u, v) are equal (by Lemma 1.2.10 (c)); thus, we shall denote both distances
by d (u, v) (since there is no confusion to be afraid of).

Let v ∈ L be a leaf. Let w be the unique neighbor of v in T. We must prove
that eccT v = eccT w + 1.

We first claim that

d (v, u) = d (w, u) + 1 for each u ∈ V \ {v} . (3)

[Proof of (3): We have deg v = 1 (since v is a leaf). In other words, there is a
unique edge of T that contains v. Let e be this edge. The endpoints of e are v
and w (since w is the unique neighbor of v). Thus, v ̸= w (since T has no loops)
and d (v, w) = 1.

Now, let u ∈ V \ {v}. Then, the path from v to u in T must have length ≥ 1
(since u ̸= v), and therefore must begin with the edge e (since e is the only edge
that contains v). If we remove this edge e from this path, we thus obtain a path
from w to u. As a consequence, the path from v to u is longer by exactly 1 edge
than the path from w to u. In other words, we have d (v, u) = d (w, u) + 1. This
proves (3).]

Now, the definition of eccentricity yields

eccT v = max {d (v, u) | u ∈ V} . (4)

This maximum is clearly not attained for u = v (since d (v, v) = 0 is smaller
than d (v, w) = 1). Thus, this maximum does not change if we remove v from
its indexing set V. Hence, (4) rewrites as

eccT v = max

 d (v, u)︸ ︷︷ ︸
=d(w,u)+1

(by (3))

| u ∈ V \ {v}

= max {d (w, u) + 1 | u ∈ V \ {v}}
= max {d (w, u) | u ∈ V \ {v}}+ 1. (5)

On the other hand, the definition of eccentricity yields

eccT w = max {d (w, u) | u ∈ V} . (6)

We shall now show that this maximum does not change if we remove v from
its indexing set V. In other words, we shall show that

max {d (w, u) | u ∈ V} = max {d (w, u) | u ∈ V \ {v}} . (7)

[Proof of (7): Assume that (7) is false. Then, the maximum max {d (w, u) | u ∈ V}
is attained only at u = v. In other words, we have

d (w, v) > d (w, u) for all u ∈ V \ {v} . (8)

Lecture 15, version June 7, 2025 page 12

However, the tree T has more than 2 vertices. Thus, it has a vertex u that is
distinct from both v and w. Consider this u. Thus, u ∈ V \ {v}, so that (8)
yields d (w, v) > d (w, u). In view of d (w, v) = d (v, w) = 1, this rewrites as
1 > d (w, u), so that d (w, u) < 1. Therefore, w = u. But this contradicts the fact
that w is distinct from u. This contradiction shows that our assumption was
false, and thus (7) is proved.]

Now, (5) becomes

eccT v = max {d (w, u) | u ∈ V \ {v}}︸ ︷︷ ︸
=max{d(w,u) | u∈V}

(by (7))

+1

= max {d (w, u) | u ∈ V}︸ ︷︷ ︸
=eccT w
(by (6))

+1 = eccT w + 1.

This proves Lemma 1.2.10 (e).

(f) Lemma 1.2.10 (e) shows that any vertex v ∈ L has a higher eccentricity
than its unique neighbor. Thus, a vertex v of T that minimizes eccT v cannot
belong to L. In other words, a vertex v of T that minimizes eccT v must belong
to V \ L.

However, the centers of T are defined to be the vertices of T that minimize
eccT v. As we just proved, these vertices must belong to V \ L. Thus, the centers
of T can also be characterized as the vertices v ∈ V \ L that minimize eccT v.
However, a vertex v ∈ V \ L minimizes eccT v if and only if it minimizes eccT\L v
(because Lemma 1.2.10 (d) yields eccT v = eccT\L v + 1 for any such vertex v).
Thus, we conclude that the centers of T can be characterized as the vertices
v ∈ V \ L that minimize eccT\L v. But this is precisely the definition of the
centers of T \ L. As a consequence, we see that the centers of T are precisely
the centers of T \ L. This proves Lemma 1.2.10 (f).

Proof of Theorem 1.2.9. We shall prove parts (a) and (b) of Theorem 1.2.9 by
strong induction on |V (T)|:

Induction step: Consider a tree T. Assume that parts (a) and (b) of Theorem
1.2.9 are true for any tree with fewer than |V (T)| many vertices. We must now
prove these parts for our tree T.

If |V (T)| ≤ 2, then both parts are obvious. Hence, WLOG assume that
|V (T)| > 2. Thus, the tree T has more than 2 vertices. Let L be the set of all
leaves of T. Note that |L| ≥ 2 (since we know that any tree with at least 2
vertices has at least 2 leaves). Define the multigraph T \ L as in Lemma 1.2.10.
Then, Lemma 1.2.10 (f) shows that the centers of T are precisely the centers of
T \ L.

However, Lemma 1.2.10 (a) yields that T \ L is again a tree. This tree has
fewer vertices than T (since |L| ≥ 2 > 0). Hence, by the induction hypothesis,
both parts (a) and (b) of Theorem 1.2.9 are true for the tree T \ L instead of T.

Lecture 15, version June 7, 2025 page 13

In other words, the tree T \ L has either 1 or 2 centers, and if it has 2 centers,
then these 2 centers are adjacent. Since the centers of T are precisely the centers
of T \ L, we can rewrite this as follows: The tree T has either 1 or 2 centers,
and if it has 2 centers, then these 2 centers are adjacent. In other words, parts
(a) and (b) of Theorem 1.2.9 hold for our tree T. This completes the induction
step. Thus, parts (a) and (b) of Theorem 1.2.9 are proved.

(c) This follows from Lemma 1.2.10 (f). Indeed, if T has at most 2 vertices,
then all vertices of T are centers of T (this is trivial to check). If not, then each
“leaf-removal” step of our algorithm leaves the set of centers of T unchanged
(by Lemma 1.2.10 (f)), and thus the centers of the original tree T are precisely
the centers of the tree that remains at the end of the algorithm. But the latter
tree has at most 2 vertices, and thus its centers are precisely its vertices. So the
centers of T are precisely the vertices that remain at the end of the algorithm.
Theorem 1.2.9 (c) is proven.

1.3. Arborescences

Enough about undirected graphs.
What would be a directed analogue of a tree? I.e., what kind of digraphs

play the same role among digraphs that trees do among undirected graphs?
Trees are graphs that are connected and have no cycles. This suggests two

directed versions:

• We can study digraphs that are strongly connected and have no cycles.
Unfortunately, there is not much to study: Any such digraph has only 1
vertex and no arcs. (Make sure you understand why!)

• We can drop the connectedness requirement. Digraphs that have no cy-
cles are called acyclic, and more typically they are called dags (short for
“directed acyclic graphs”).

However, these dags aren’t quite like trees. For example, a tree always has
fewer edges than vertices, but a dag can have more arcs than vertices.4

4For example, here is a dag with 4 vertices and 5 arcs:

.

Lecture 15, version June 7, 2025 page 14

Here is a more convincing analogue of trees for digraphs:5

Definition 1.3.1. Let D be a multidigraph. Let r be a vertex of D.

(a) We say that r is a from-root (or, short, root) of D if for each vertex v of
D, the digraph D has a path from r to v.

(b) We say that D is an arborescence rooted from r if r is a from-root of D
and the undirected multigraph Dund has no cycles. (Recall that Dund is
the multigraph obtained from D by turning each arc into an undirected
edge. Parallel arcs are not merged into one!)

Of course, there are analogous notions of a “to-root” and an “arborescence
rooted towards r”, but these are just the same notions that we just defined with
all arrows reversed. So we need not study them separately; we can just take
any property of “rooted from” and reverse all arcs to make it into a property of
“rooted to”.

Example 1.3.2. The multidigraph

0

1

2 3

4

has three from-roots (namely, 0, 1 and 2). It is not an arborescence rooted
from any of them, because turning each arc into an undirected edge yields a
graph with a cycle.

If we reverse the arc from 0 to 1, then we obtain a multidigraph

0

1

2 3

4

which has only one from-root (namely, 1) and is still not an arborescence (for
the same reason as before).

5We recall that we defined a multigraph Dund for every multidigraph D (at the end of
Lecture 9). Roughly speaking, this multigraph Dund is obtained by “forgetting the
directions” of the arcs of D. Parallel arcs are not merged into one. For example,

1 2 1 2if D = , then Dund = .

Lecture 15, version June 7, 2025 page 15

Example 1.3.3. Consider the following multidigraph:

1

23

4

5

6

7

8

.

This is an arborescence rooted from 6. Indeed, it has paths from 6 to all
vertices, and turning each arc into an undirected edge yields a tree.

If we reverse the arc from 1 to 2, we obtain a multidigraph

1

23

4

5

6

7

8

,

which is not an arborescence, because it has no from-root anymore.

We note that an arborescence rooted from r is basically the same as a tree,
whose all edges have been “oriented away from r”. More precisely:

Theorem 1.3.4. Let D be a multidigraph, and let r be a vertex of D. Then,
the following two statements are equivalent:

• Statement C1: The multidigraph D is an arborescence rooted from r.

• Statement C2: The undirected multigraph Dund is a tree, and each arc
of D is “oriented away from r” (this means the following: the source of
this arc lies on the unique path between r and the target of this arc on
Dund).

Lecture 15, version June 7, 2025 page 16

Proof. We will prove this next time.

Here is another bunch of equivalent criteria for arborescences, imitating the
tree equivalence theorem:

Theorem 1.3.5 (The arborescence equivalence theorem). Let D = (V, A, ψ)
be a multidigraph with a from-root r. Then, the following six statements are
equivalent:

• Statement A1: The multidigraph D is an arborescence rooted from r.

• Statement A2: We have |A| = |V| − 1.

• Statement A3: The multigraph Dund is a tree.

• Statement A4: For each vertex v ∈ V, the multidigraph D has a unique
walk from r to v.

• Statement A5: If we remove any arc from D, then the vertex r will no
longer be a from-root of the resulting multidigraph.

• Statement A6: We have deg− r = 0, and each v ∈ V \ {r} satisfies
deg− v = 1.

Proof. We will prove the implications A1=⇒A4=⇒A5=⇒A6=⇒A2=⇒A3=⇒A1.
Since these implications form a cycle that includes all six statements, this will
entail that all six statements are equivalent.

Before we prove these implications, we introduce a notation: If a is any arc
of D, then D \ a shall denote the multidigraph obtained from D by removing
this arc a. (Formally, this means that D \ a :=

(
V, A \ {a} , ψ |A\{a}

)
.)

We now come to the proofs of the promised implications.

Proof of the implication A1=⇒A4: Assume that Statement A1 holds. Thus, D
is an arborescence rooted from r. In other words, r is a from-root of D and the
undirected multigraph Dund has no cycles.

We must show that for each vertex v ∈ V, the multidigraph D has a unique
walk from r to v. The existence of such a walk is clear (because r is a from-root
of D). It is the uniqueness that we need to prove.

Assume the contrary. Thus, there exists a vertex v ∈ V such that two distinct
walks u and v from r to v exist. However, the multigraph D has no loops (since
any loop of D would be a loop of Dund, and thus create a cycle of Dund, but
we know that Dund has no cycles). Hence, any walk of D is automatically a
backtrack-free walk of Dund (indeed, it is backtrack-free because the only way
two consecutive arcs of a walk in a digraph can be equal is if they are loops).
Therefore, the two walks u and v of D are two backtrack-free walks of Dund.

Lecture 15, version June 7, 2025 page 17

Thus, there are two distinct backtrack-free walks from r to v in Dund (namely,
u and v). Theorem 1.1.3 from Lecture 13 thus lets us conclude that Dund has a
cycle. But this contradicts the fact that Dund has no cycles.

This contradiction shows that our assumption was wrong. Hence, we have
proved that for each vertex v ∈ V, the multidigraph D has a unique walk from
r to v. In other words, Statement A4 holds.

Proof of the implication A4=⇒A5: Assume that Statement A4 holds.
Let now a be any arc of D. We shall show that r is not a from-root of the

multidigraph D \ a.
Indeed, let s be the source and t the target of the arc a. We shall show that

the digraph D \ a has no path from r to t.
Indeed, assume the contrary. Thus, D \ a has some path p from r to t. This

path does not use the arc a (since it is a path of D \ a).
On the other hand, we have assumed that Statement A4 holds. Applying this

statement to v = s, we conclude that the multidigraph D has a unique walk
from r to s. Let (v0, a1, v1, a2, v2, . . . , ak, vk) be this walk. By appending the arc a
and the vertex t to its end, we extend it to a longer walk

(v0, a1, v1, a2, v2, . . . , ak, vk, a, t) ,

which is a walk from r to t. We denote this walk by q.
We have now found two walks from r to t in the digraph D: namely, the

path p and the walk q. These two walks are distinct (since q uses the arc a,
but p does not). However, Statement A4 (applied to v = t) yields that the
multidigraph D has a unique walk from r to t. This contradicts the fact that we
just have found two distinct such walks.

This contradiction shows that our assumption was false. Hence, the digraph
D \ a has no path from r to t. Thus, r is not a from-root of D \ a.

Forget that we fixed a. We have now proved that if a is any arc of D, then r
is not a from-root of D \ a. In other words, if we remove any arc from D, then
the vertex r will no longer be a from-root of the resulting multidigraph. Thus,
Statement A5 holds.

Proof of the implication A5=⇒A6: Assume that Statement A5 holds. We must
prove that Statement A6 holds. In other words, we must prove that deg− r = 0,
and that each v ∈ V \ {r} satisfies deg− v = 1.

Let us first prove that deg− r = 0. Indeed, assume the contrary. Thus,
deg− r ̸= 0, so that there exists an arc a with target r. We shall show that r
is a from-root of D \ a.

The arc a has target r. Thus, a path that starts at r cannot use this arc a
(because this arc would lead it back to r, but a path is not allowed to revisit
any vertex), and therefore must be a path of D \ a. Thus we have shown that
any path of D that starts at r is also a path of D \ a. However, for each vertex
v of D, the digraph D has a path from r to v (since r is a from-root of D). This
path is also a path of D \ a (since any path of D that starts at r is also a path

Lecture 15, version June 7, 2025 page 18

of D \ a). Thus, for each vertex v of D \ a, the digraph D \ a has a path from
r to v. In other words, r is a from-root of D \ a. However, we have assumed
that Statement A5 holds. Thus, in particular, if we remove the arc a from D,
then the vertex r will no longer be a from-root of the resulting multidigraph. In
other words, r is not a from-root of D \ a. But this contradicts the fact that r is
a from-root of D \ a.

This contradiction shows that our assumption was false. Hence, deg− r = 0
is proved.

Now, let v ∈ V \ {r} be arbitrary. We must show that deg− v = 1.
Indeed, assume the contrary. Thus, deg− v ̸= 1. Using the fact that r is a

from-root of D, it is thus easy to see that deg− v ≥ 2 6. Hence, there exist two
distinct arcs a and b with target v. Consider these arcs a and b.

We are in one of the following three cases:
Case 1: The digraph D \ a has a path from r to v.
Case 2: The digraph D \ b has a path from r to v.
Case 3: Neither the digraph D \ a nor the digraph D \ b has a path from r to

v.
Let us first consider Case 1. In this case, the digraph D \ a has a path from r

to v. Let p be such a path.
We have assumed that Statement A5 holds. Thus, in particular, if we remove

the arc a from D, then the vertex r will no longer be a from-root of the resulting
multidigraph. In other words, r is not a from-root of D \ a. In other words,
there exists a vertex w ∈ V such that the digraph D \ a has no path from r to w
(by the definition of a “from-root”). Consider this vertex w.

The digraph D has a path q from r to w (since r is a from-root of D). Consider
this path q. If the path q did not use the arc a, then it would be a path of D \ a
as well, but this would contradict the fact that D \ a has no path from r to w.
Thus, the path q must use the arc a.

Consider the part of q that comes after the arc a. This part must be a path
from v to w (since the arc a has target v, whereas the path q has ending point
w). Let us denote this path by q′. Thus, the path q′ does not use the arc a (since
it was defined as the part of q that comes after a). Hence, q′ is a path of D \ a.

Now, we know that the digraph D \ a has a path p from r to v as well as a
path q′ from v to w. Splicing these paths together, we obtain a walk p ∗ q′ from
r to w. So we know that D \ a has a walk from r to w. According to Corollary
1.1.5 from Lecture 8, we thus conclude that D \ a has a path from r to w. This
contradicts the fact that D \ a has no path from r to w.

We have thus obtained a contradiction in Case 1.

6Proof. Since r is a from-root of D, we know that the digraph D has a path from r to v. Since
v ̸= r (because v ∈ V \ {r}), this path must have at least one arc. The last arc of this path
is clearly an arc with target v. Thus, there exists at least one arc with target v. In other
words, deg− v ≥ 1. Combining this with deg− v ̸= 1, we obtain deg− v > 1. In other words,
deg− v ≥ 2.

Lecture 15, version June 7, 2025 page 19

The same argument (but with the roles of a and b interchanged) results in a
contradiction in Case 2.

Let us finally consider Case 3. In this case, neither the digraph D \ a nor the
digraph D \ b has a path from r to v. However, the digraph D has a path p
from r to v (since r is a from-root of D). Consider this path p. If this path p did
not use the arc a, then it would be a path of D \ a, but this would contradict
our assumption that the digraph D \ a has no path from r to v. Thus, this path
p must use the arc a. For a similar reason, it must also use the arc b. However,
the two arcs a and b have the same target (viz., v) and thus cannot both appear
in the same path (since a path cannot visit a vertex more than once). This
contradicts the fact that the path p uses both arcs a and b. Hence, we have
found a contradiction in Case 3.

We have now found contradictions in all three Cases 1, 2 and 3. This contra-
diction shows that our assumption was false. Hence, deg− v = 1 is proved.

We have now proved that each v ∈ V \ {r} satisfies deg− v = 1. Since we
have also shown that deg− r = 0, we thus have proved Statement A6.

Proof of the implication A6=⇒A2: Assume that Statement A6 holds. We must
prove that Statement A2 holds. However, Proposition 2.2.3 from Lecture 9
yields

|A| = ∑
v∈V

deg− v = deg− r︸ ︷︷ ︸
=0

(by Statement A6)

+ ∑
v∈V\{r}

deg− v︸ ︷︷ ︸
=1

(by Statement A6)

= 0 + ∑
v∈V\{r}

1 = ∑
v∈V\{r}

1 = |V \ {r}| = |V| − 1.

Hence, Statement A2 holds.

Proof of the implication A2=⇒A3: Assume that Statement A2 holds. We must
prove that Statement A3 holds.

For each v ∈ V, the digraph D has a path from r to v (since r is a from-root
of D). Thus, for each v ∈ V, the graph Dund has a path from r to v (since
any path of D is a path of Dund). Therefore, any two vertices u and v of Dund

are path-connected in Dund (because we can get from u to v via r, according
to the previous sentence). Therefore, the graph Dund is connected (since it
has at least one vertex7). Moreover, its number of edges is |A| = |V| − 1 (by
Statement A2). Therefore, the multigraph Dund satisfies the Statement T4 of
the tree equivalence theorem (Theorem 1.2.4 in Lecture 13). Consequently, it
satisfies Statement T1 of that theorem as well. In other words, it is a tree. This
proves Statement A3.

Proof of the implication A3=⇒A1: Assume that Statement A3 holds. We must
prove that Statement A1 holds.

7This is because r ∈ V.

Lecture 15, version June 7, 2025 page 20

The multigraph Dund is a tree (by Statement A3), and thus is a forest; hence,
it has no cycles. Since we also know that r is a from-root of D, we thus conclude
that D is an arborescence rooted from r (by the definition of an arborescence).
In other words, Statement A1 is satisfied.

We have now proved all six implications in the chain
A1=⇒A4=⇒A5=⇒A6=⇒A2=⇒A3=⇒A1. Thus, all six statements A1, A2,
. . ., A6 are equivalent. This proves Theorem 1.3.5.

1.4. Teaser

Next time, we will show the following:

• Theorem 1.3.4 (this is pretty easy, but requires some notation).

• Each multidigraph with a root r has a spanning arborescence rooted from
r. (This is an analogue of Theorem 1.1.1 for digraphs.)

• The BEST theorem: Let D = (V, A, ψ) be a balanced multidigraph (i.e.,
we have deg− v = deg+ v for each v ∈ V) such that each vertex has
indegree > 0. Fix an arc a of D, and let r be its target. Let τ (D, r) be the
number of spanning arborescences of D rooted from r. Let ε (D, a) be the
number of Eulerian circuits of D whose last arc is a. Then,

ε (D, a) = τ (D, r) · ∏
u∈V

(
deg− u − 1

)
!.

Combined with a formula for τ (D, r) that we will prove later, this makes
ε (D, a) efficiently computable!

References

[BenWil06] Edward A. Bender, S. Gill Williamson, Foundations of Combinatorics
with Applications, Dover 2006.
https://mathweb.ucsd.edu/~ebender/CombText/index.html

https://mathweb.ucsd.edu/~ebender/CombText/index.html

	Trees and arborescences (cont'd)
	Spanning trees (cont'd)
	Centers of graphs and trees
	Arborescences
	Teaser

