
Lecture 14, version June 6, 2025 page 1

Math 530 Spring 2022, Lecture 14: Trees

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Trees and arborescences (cont’d)

1.1. Forests and trees (cont’d)

Last time, we introduced trees. Let us quickly recall some of their properties:
If T = (V, E, φ) is a tree, then...

• T is a connected forest. (This is how trees were defined.) Thus, T has no
cycles. (This is how forests were defined.)

• we have |E| = |V| − 1. (This follows from the implication T1=⇒T4 in the
tree equivalence theorem.)

• adding any new edge to T creates a cycle. (This follows from the implica-
tion T1=⇒T6 in the tree equivalence theorem.)

• removing any edge from T yields a disconnected (i.e., non-connected)
graph. (This follows from the implication T1=⇒T7 in the tree equivalence
theorem.)

• for each u ∈ V and v ∈ V, there is a unique backtrack-free walk from u
to v. (This follows from the implication T1=⇒T3 in the tree equivalence
theorem.) Moreover, this backtrack-free walk is a path (since any walk
from u to v contains a path from u to v).

Remark 1.1.1. Computer scientists use some notions of “trees” that are sim-
ilar to ours, but not quite the same. In particular, their trees often have roots
(i.e., one vertex is chosen to be called “the root” of the tree), which leads to
a parent/child relationship on each edge (namely: the endpoint closer to the
root is called the “parent” of the endpoint further away from the root). Of-
ten, they also impose a total order on the children of each given vertex. With
these extra data, a tree can be used for addressing objects, since each vertex
has a unique “path description” from the root leading to it (e.g., “the second
child of the fourth child of the root”). But this all is going too far afield for
us here; we are mainly interested in trees as graphs, and won’t impose any
extra structure unless we need it for something.

1.2. Leaves

Continuing with our faux-botanical terminology, we define leaves in a tree:

https://www.cip.ifi.lmu.de/~grinberg/t/22s


Lecture 14, version June 6, 2025 page 2

Definition 1.2.1. Let T be a tree. A vertex of T is said to be a leaf if its degree
is 1.

For example, the tree

1

2 3

45
c

b d g

has three leaves: 1, 2 and 4.
How to find a tree with as many leaves as possible (for a given number of

vertices)? For any n ≥ 3, the simple graph

({0, 1, . . . , n − 1} , {0i | i > 0})

is a tree (when considered as a multigraph), and has n − 1 leaves (namely, all
of 1, 2, . . . , n − 1). This tree is called an n-star graph, as it looks as follows:

1

2
3

4

5

6
7

0

(for n = 8) .

It is easy to see that no tree with n ≥ 3 vertices can have more than n− 1 leaves,
so the n-star graph is optimal in this sense. Note that for n = 2, the n-star graph
has 2 leaves, not 1.

How to find a tree with as few leaves as possible? For any n ≥ 2, the n-path
graph

1 2 3 n· · ·Pn =

is a tree with only 2 leaves (viz., the vertices 1 and n). Can we find a tree with
fewer leaves? For n = 1, yes, because the 1-path graph P1 (this is simply the
graph with 1 vertex and no edges) has no leaves at all. However, for n ≥ 2, the
n-path graph is the best we can do:



Lecture 14, version June 6, 2025 page 3

Theorem 1.2.2. Let T be a tree with at least 2 vertices. Then:

(a) The tree T has at least 2 leaves.

(b) Let v be a vertex of T. Then, there exist two distinct leaves p and q of T
such that v lies on the path from p to q.

Note that I’m saying “the path” rather than “a path” here. This is allowed,
because in a tree, for any two vertices p and q, there is a unique path from p to
q. This follows from Statement T2 in the tree equivalence theorem.

Proof of Theorem 1.2.2. (b) We apply a variant of the “longest path trick”: Among
all paths that contain the vertex v, let w be a longest one. Let p be the starting
point of w, and let q be the ending point of w. We shall show that p and q are
two distinct leaves.

[Here is a picture of w, for what it’s worth:

p v q· · ·· · ·
.

Of course, the tree T can have other edges as well, not just those of w.]
First, we observe that T is connected (since T is a tree), and has at least one

vertex u distinct from v (since T has at least 2 vertices). Hence, T has a path r
that connects v to u. This path r must contain at least one edge (since u ̸= v).
Thus, we have found a path r of T that contains v and contains at least one
edge. Hence, the path w must contain at least one edge as well (since w is a
longest path that contains v, and thus cannot be shorter than r). Since w is a
path from p to q, we thus conclude that p ̸= q (because if a path contains at
least one edge, then its starting point is distinct from its ending point).

Now, assume (for the sake of contradiction) that p is not a leaf. Then, deg p ̸=
1. The path w already contains one edge that contains p (namely, the first edge
of w). Since deg p ̸= 1, there must be another edge f of T that contains w.
Consider this f . Let p′ be its endpoint distinct from p (if f is a loop, then we
set p′ = p). Appending this edge f (and its endpoint) to the beginning of the
path w, we obtain a backtrack-free walkp′, f , p, . . . , v, . . . , q︸ ︷︷ ︸

This is w


(this is backtrack-free since f is not the first edge of w). According to Propo-
sition 1.1.2 in Lecture 13, this backtrack-free walk either is a path or contains
a cycle. Since T has no cycle (because T is a forest), we thus conclude that
this backtrack-free walk is a path. It is furthermore a path that contains v and
is longer than w (longer by 1, in fact). But this contradicts the fact that w is



Lecture 14, version June 6, 2025 page 4

a longest path that contains v. This contradiction shows that our assumption
(that p is not a leaf) was wrong.

Hence, p is a leaf. A similar argument shows that q is a leaf (here, we need
to append the new edge at the end of w rather than at the beginning). Thus,
p and q are two distinct leaves of T (distinct because p ̸= q) such that v lies on
the path from p to q (since v lies on the path w, which is a path from p to q).
This proves Theorem 1.2.2 (b).

(a) Pick any vertex v of T. Then, Theorem 1.2.2 (b) shows that there exist two
distinct leaves p and q of T such that v lies on the path from p to q. Thus, in
particular, there exist two distinct leaves p and q of T. In other words, T has at
least two leaves. This proves Theorem 1.2.2 (a).

[Remark: Another way to prove part (a) is to write the tree T as T = (V, E, φ),
and recall the handshake lemma, which yields

∑
v∈V

deg v = 2 · |E| = 2 · (|V| − 1) (since |E| = |V| − 1 in a tree)

= 2 · |V| − 2.

Since each v ∈ V satisfies deg v ≥ 1 (why?), this equality entails that at least
two vertices v ∈ V must satisfy deg v ≤ 1 (since otherwise, the sum ∑

v∈V
deg v

would be ≥ 2 · |V| − 1), and therefore these two vertices are leaves.]

Leaves are particularly helpful for performing induction on trees. The formal
reason for this is the following theorem:

Theorem 1.2.3 (induction principle for trees). Let T be a tree with at least 2
vertices. Let v be a leaf of T. Let T \ v be the multigraph obtained from T
by removing v and all edges that contain v (note that there is only one such
edge, since v is a leaf). Then, T \ v is again a tree.

Here is an example of a tree T and of the smaller tree T \ v obtained by
removing a leaf v (namely, v = 3):

1

23

4

5

6

7

8

1

2

4

5

6

7

8

T T \ v



Lecture 14, version June 6, 2025 page 5

Proof of Theorem 1.2.3. Write T as T = (V, E, φ). Thus, T \ v is the induced
subgraph T [V \ {v}].

The graph T is a tree, thus a forest; hence, it has no cycles. Thus, the graph
T \ v has no cycles either. Hence, it is a forest.

Furthermore, this forest T \ v has at least 1 vertex (since T has at least 2
vertices).

We shall now show that any two vertices p and q of T \ v are path-connected
in T \ v.

Indeed, let p and q be two vertices of T \ v. Then, p and q are path-connected
in T (since T is connected). Hence, there exists a path w from p to q in T.
Consider this path w. Note that v is neither the starting point nor the ending
point of this path w (since p and q are vertices of T \ v, and thus distinct from
v). Hence, if v was a vertex of w, then w would contain two distinct edges that
contain v (namely, the edge just before v and the edge just after v). But this is
impossible, since there is only one edge available that contains v (because v is
a leaf). Thus, v cannot be a vertex of w. Hence, the path w does not use the
vertex v, and thus is a path in the graph T \ v as well. So the vertices p and q
are path-connected in T \ v.

We have now shown that any two vertices p and q of T \ v are path-connected
in T \ v. This shows that T \ v is connected (since T \ v has at least 1 vertex).
Hence, T \ v is a tree (since T \ v is a forest).

Theorem 1.2.3 has a converse as well:

Theorem 1.2.4. Let G be a multigraph. Let v be a vertex of G such that
deg v = 1 and such that G \ v is a tree. (Here, G \ v means the multigraph
obtained from G by removing the vertex v and all edges that contain v.)
Then, G is a tree.

Proof. Left to the reader. (The main step is to show that a cycle of G cannot
contain v.)

Theorem 1.2.3 helps prove many properties of trees by induction on the num-
ber of vertices. In the induction step, remove a leaf v and apply the induction
hypothesis to T \ v. We move on to another use of trees, though.

1.3. Spanning trees

First we define a concept that makes sense for any multigraphs:

Definition 1.3.1. A spanning subgraph of a multigraph G = (V, E, φ) means
a multigraph of the form (V, F, φ |F), where F is a subset of E.

In other words, it means a submultigraph of G with the same vertex set as
G.

In other words, it means a multigraph obtained from G by removing some
edges, but leaving all vertices undisturbed.



Lecture 14, version June 6, 2025 page 6

Compare this to the notion of an induced subgraph:

• To build an induced subgraph, we throw away some vertices but keep all
the edges that we can keep. (As usual in mathematics, the words “some
vertices” include “no vertices” and “all vertices”.)

• In contrast, to build a spanning subgraph, we keep all vertices but throw
away some edges.

Spanning subgraphs are particularly useful when they are trees:

Definition 1.3.2. A spanning tree of a multigraph G means a spanning sub-
graph of G that is a tree.

Example 1.3.3. Let G be the following multigraph:

1

2 3

4

5

ε

µ

α
β γ

δ

κ

ν

λ

.

Here is a spanning tree of G:

1

2 3

4

5

ε

α
δ

ν

.

Here is another:

1

2 3

4

5

ε

β

δ

ν

.



Lecture 14, version June 6, 2025 page 7

(Yes, this is a different one, because α ̸= β.) And here is yet another spanning
tree of G:

1

2 3

4

5

ε

β

ν

λ

.

A spanning tree of a graph G can be regarded as a minimum “backbone” of G
– that is, a way to keep G connected using as few edges as possible. Of course,
if G is not connected, then this is not possible at all, so G has no spanning trees
in this case. The best one can hope for is a spanning subgraph that keeps each
component of G connected using as few edges as possible. This is known as a
“spanning forest”:

Definition 1.3.4. A spanning forest of a multigraph G means a spanning
subgraph H of G that is a forest and satisfies conn H = conn G.

When G is a connected multigraph, a spanning forest of G means the same
as a spanning tree of G.

The following theorem is crucial, which is why we will outline several proofs:

Theorem 1.3.5. Each connected multigraph G has at least one spanning tree.

First proof. Let G be a connected multigraph. We want to construct a spanning
tree of G. We try to achieve this by removing edges from G one by one, until G
becomes a tree. When doing so, we must be careful not to disconnect the graph
(i.e., not to destroy its connectedness). According to a result we have seen a
while ago (Theorem 1.1.14 in Lecture 8), this can be achieved by making sure
that we never remove a bridge (i.e., an edge that appears in no cycle). Thus, we
keep removing non-bridges (i.e., edges that are not bridges) as long as we can
(i.e., until we end up with a graph in which every edge is a bridge).

So here is the algorithm: We start with G, and we successively remove non-
bridges one by one until we no longer have any non-bridges left1. This proce-
dure cannot go on forever, since G has only finitely many edges. Thus, after
finitely many steps, we will end up with a graph that has no non-bridges any
more. This resulting graph therefore has no cycles (since any cycle would have

1Warning: We cannot remove several non-bridges at once! We have to remove them one by
one. Indeed, if e and f are two non-bridges of G, then there is no guarantee that f remains a
non-bridge in G \ e. So we cannot remove both e and f simultaneously; we have to remove
one of them and check whether the other is still a non-bridge.



Lecture 14, version June 6, 2025 page 8

at least one edge, and this edge would be a non-bridge), but is still connected
(since G was connected, and we never lost connectivity as we removed only
non-bridges). Thus, this resulting graph is a tree. Since it is also a spanning
subgraph of G (by construction), it is therefore a spanning tree of G. This proves
Theorem 1.3.5.

Second proof (sketched). In the above first proof, we constructed a spanning tree
of G by starting with G and successively removing edges until we got a tree.
Now let us take the opposite strategy: Start with an empty graph on the same
vertex set as G, and successively add edges (from G) until we get a connected
graph.

Here are some details: We start with a graph L that has the same vertex set
as G, but has no edges. Now, we inspect all edges e of G one by one (in some
order). For each such edge e, we add it to L, but only if it does not create
a cycle in L; otherwise, we discard this edge. Notice that adding an edge e
with endpoints u and v to L creates a cycle if and only if u and v lie in the
same component of L (before we add e). Thus, we only add an edge to L if
its endpoints lie in different components of L; otherwise, we discard it. This
way, at the end of the procedure, our graph L will still have no cycles (since we
never create any cycles). In other words, it will be a forest.

Let me denote this forest by H. (Thus, H is the L at the end of the procedure.)
I claim that this forest H is a spanning tree of G. Why? Since we know that H is
a forest, we only need to show that H is connected. Assume the contrary. Thus,
there is at least one edge e of G whose endpoints lie in different components of
H (why?). This edge e is therefore not an edge of H. Therefore, at some point
during our construction of H, we must have discarded this edge e (instead of
adding it to L). As we know, this means that the endpoints of e used to lie
in the same component of L at the point at which we discarded e. But this
entails that these two endpoints lie in the same component of L at the end of
the procedure as well (because the graph L never loses any edges during the
procedure, so that any two vertices that used to lie in the same component of
L at some point will still lie in the same component of L ever after). In other
words, the endpoints of e lie in the same component of H. This contradicts
our assumption that the endpoints of e lie in different components of H. This
contradiction completes our proof that H is connected. Hence, H is a spanning
tree of G, and we have proved Theorem 1.3.5 again.

Third proof. This proof takes yet another approach to constructing a spanning
tree of G: We choose an arbitrary vertex r of G, and then progressively “spread
a rumor” from r. The rumor starts at vertex r. On day 0, only r has heard
the rumor. Every day, every vertex that knows the rumor spreads it to all its
neighbors (i.e., all vertices adjacent to it). Since G is connected, the rumor
will eventually spread to every vertex of G. Now, each vertex v (other than r)
remembers which other vertex v′ it has first heard the rumor from (if it heard
it from several vertices at the same time, it just picks one of them), and picks



Lecture 14, version June 6, 2025 page 9

some edge ev that has endpoints v and v′ (such an edge must exist, since v must
have heard the rumor from a neighbor). The edges ev for all v ∈ V \ {r} (where
V is the vertex set of G) then form a spanning tree of G (that is, the graph with
vertex set V and edge set {ev | v ∈ V \ {r}} is a spanning tree). Why?

Intuitively, this is quite convincing: This graph cannot have cycles (because
that would require a time loop) and must be connected (because for any ver-
tex v, we can trace back the path of the rumor from r to v by following the
edges ev backwards). To obtain a rigorous proof, we formalize this construction
mathematically:

Write G as G = (V, E, φ). Choose any vertex r of G.
We shall recursively construct a sequence of subgraphs

(V0, E0, φ0) , (V1, E1, φ1) , (V2, E2, φ2) , . . .

of G. The idea behind these subgraphs is that for each i ∈ N, the set Vi will
consist of all vertices v that have heard the rumor by day i, and the set Ei will
consist of the corresponding edges ev. The map φi will be the restriction of φ
to Ei, of course.

Here is the exact construction of this sequence of subgraphs:

• Recursion base: Set V0 := {r} and E0 := ∅. Let φ0 be the restriction of φ to
the (empty) set E0.

• Recursion step: Let i ∈ N. Assume that the subgraph (Vi, Ei, φi) of G has
already been defined. Now, we set

Vi+1 := Vi ∪ {v ∈ V | v is adjacent to some vertex in Vi} .

For each v ∈ Vi+1 \ Vi, we choose one edge ev that joins2 v to a vertex in
Vi (such an edge exists, since v ∈ Vi+1; if there are several, we just choose
a random one). Set

Ei+1 := Ei ∪ {ev | v ∈ Vi+1 \ Vi} .

Finally, we let φi+1 be the restriction of the map φ to the set Ei+1. This is
a map from Ei+1 to P1,2 (Vi+1) (because any edge ev with v ∈ Vi+1 \Vi has
one endpoint v in Vi+1 \ Vi ⊆ Vi+1 and the other endpoint in Vi ⊆ Vi+1).
Thus, (Vi+1, Ei+1, φi+1) is a well-defined subgraph of G.

This construction yields that (Vi, Ei, φi) is a subgraph of (Vi+1, Ei+1, φi+1) for
each i ∈ N. Hence, V0 ⊆ V1 ⊆ V2 ⊆ · · · , so that |V0| ≤ |V1| ≤ |V2| ≤ · · · . Since
a sequence of integers bounded from above cannot keep increasing forever (and
the sizes |Vi| are bounded from above by |V|, since each Vi is a subset of V), we
thus see that there exists some i ∈ N such that |Vi| = |Vi+1|. Consider this i.
From |Vi| = |Vi+1|, we obtain Vi = Vi+1 (since Vi ⊆ Vi+1).

2We say that an edge joins a vertex p to a vertex q if the endpoints of this edge are p and q.



Lecture 14, version June 6, 2025 page 10

In our colloquial model above, Vi = Vi+1 means that no new vertices learn
the rumor on day i + 1; it is reasonable to expect that at this point, every vertex
has heard the rumor. In other words, we claim that Vi = V. A rigorous proof
of this can be easily given using the fact that G is connected3.

Now, we claim that the subgraph (Vi, Ei, φi) is a spanning tree of G. To see
this, we must show that this subgraph is a forest and is connected (since Vi = V
already shows that it is a spanning subgraph). Before we do this, let us give an
example:

Example 1.3.6. Let G be the following multigraph:

1

2

3

4

5

6

7

8

9

10
.

Set r = 3. Then, the above construction yields

V0 = {3} ,
V1 = {3, 1, 4} ,
V2 = {3, 1, 4, 2, 5, 6, 10} ,
V3 = {3, 1, 4, 2, 5, 6, 10, 8, 9, 7} = V,

3Here is the proof in detail: We must show that Vi = V. Assume the contrary. Thus, there
exists a vertex u ∈ V \ Vi. Consider this u. The path from r to u starts at a vertex in Vi
(since r ∈ V0 ⊆ Vi) and ends at a vertex in V \ Vi (since u ∈ V \ Vi). Thus, it must cross over
from Vi into V \ Vi at some point. Therefore, there exists an edge with one endpoint in Vi
and the other endpoint in V \ Vi. Let v and w be these two endpoints, so that v ∈ Vi and
w ∈ V \ Vi. Then, w is adjacent to some vertex in Vi (namely, to v), and therefore belongs to
Vi+1 (by the definition of Vi+1). Hence, w ∈ Vi+1 = Vi. But this contradicts w /∈ V \ Vi. This
contradiction shows that our assumption was wrong, qed.



Lecture 14, version June 6, 2025 page 11

so that Vk = V for all k ≥ 3. Thus, we can take i = 3. Here is an image of the
Vk as progressively growing circles:

1

2

3

4

5

6

7

8

9

10

.

(The dark-red inner circle is V0; the red circle is V1; the orange circle is V2;
the yellow circle is V3 = V4 = V5 = · · · = V.) Finally, the edges ev can be



Lecture 14, version June 6, 2025 page 12

chosen to be the following (we are painting them red for clarity):

1

2

3

4

5

6

7

8

9

10

e2

e3 e4

e5

e6

e10

e7

e9

e8

.

(Here, we have made two choices: We chose e2 to be the edge joining 2 with 1
rather than the edge joining 2 with 4, and we chose e7 to be the edge joining
7 with 6 rather than 7 with 5. The other options would have been equally
fine.)

We now return to the general proof. Let us first show the following:

Claim 1: Let j ∈ N. Each vertex of the graph
(
Vj, Ej, φj

)
is path-

connected to r in this graph.

[Proof of Claim 1: We induct on j:
Base case: For j = 0, Claim 1 is obvious, since V0 = {r} (so the only vertex of

the graph in question is r itself).
Induction step: Fix some positive integer k. Assume (as the induction hy-

pothesis) that Claim 1 holds for j = k − 1. That is, each vertex of the graph
(Vk−1, Ek−1, φk−1) is path-connected to r in this graph.

Now, let v be a vertex of the graph (Vk, Ek, φk). We must show that v is
path-connected to r in this graph. If v ∈ Vk−1, then this follows from the in-
duction hypothesis (since (Vk−1, Ek−1, φk−1) is a subgraph of (Vk, Ek, φk)). Thus,
we WLOG assume that v /∈ Vk−1 from now on. Hence, v ∈ Vk \ Vk−1. Accord-
ing to the recursive definition of Ek, this entails that there is an edge ev ∈ Ek
that joins v to some vertex u ∈ Vk−1. Consider this latter vertex u. Then, v
is path-connected to u in the graph (Vk, Ek, φk) (since the edge ev provides a
length-1 path from v to u). However, u is path-connected to r in the graph



Lecture 14, version June 6, 2025 page 13

(Vk−1, Ek−1, φk−1) (by the induction hypothesis, since u ∈ Vk−1), hence also
in the graph (Vk, Ek, φk) (since (Vk−1, Ek−1, φk−1) is a subgraph of (Vk, Ek, φk)).
Since the relation “path-connected” is transitive, we conclude from the previous
two sentences that v is path-connected to r in the graph (Vk, Ek, φk).

So we have shown that each vertex v of the graph (Vk, Ek, φk) is path-connected
to r in the graph (Vk, Ek, φk). In other words, Claim 1 holds for j = k. This com-
pletes the induction step, and Claim 1 is proved.]

Claim 1 (applied to j = i) shows that each vertex of the graph (Vi, Ei, φi) is
path-connected to r in this graph. Since the relation “path-connected” is an
equivalence relation, this entails that any two vertices of this graph are path-
connected. Thus, the graph (Vi, Ei, φi) is connected (since it has at least one
vertex). It remains to prove that this graph (Vi, Ei, φi) is a forest.

Again, we do this using an auxiliary claim:

Claim 2: Let j ∈ N. Then, the graph
(
Vj, Ej, φj

)
has no cycles.

[Proof of Claim 2: We induct on j:
Base case: The graph (V0, E0, φ0) has no edges (because E0 = ∅) and thus no

cycles. Thus, Claim 2 holds for j = 0.
Induction step: Fix some positive integer k. Assume (as the induction hypoth-

esis) that Claim 2 holds for j = k − 1. That is, the graph (Vk−1, Ek−1, φk−1) has
no cycles.

Now, let c be a cycle of the graph (Vk, Ek, φk). Then, c must use at least
one edge from Ek \ Ek−1 (since otherwise, c would be a cycle of the graph
(Vk−1, Ek−1, φk−1), but this is impossible, since (Vk−1, Ek−1, φk−1) has no cycles).
However, each edge from Ek \ Ek−1 has the form ev for some v ∈ Vk \ Vk−1
(because of how Ek was defined). Thus, c must have an edge of this form.
Consider the corresponding vertex v ∈ Vk \ Vk−1. The cycle c contains the edge
ev and therefore also contains its endpoint v. However, (again by the definition
of Ek) the edge ev is the only edge in Ek that contains the vertex v. Since the
edge ev is not a loop (because it joins the vertex v ∈ Vk \ Vk−1 with a vertex in
Vk−1), we thus conclude that the vertex v has degree 1 in the graph (Vk, Ek, φk).
Thus, the vertex v cannot be contained in any cycle of (Vk, Ek, φk) (because a
cycle cannot contain a vertex of degree 1). This contradicts the fact that the
cycle c contains v.

Forget that we fixed c. We thus have obtained a contradiction for each cycle
c of the graph (Vk, Ek, φk). Hence, the graph (Vk, Ek, φk) has no cycles. In other
words, Claim 2 holds for j = k. This completes the induction step, and Claim 2
is proved.]

Applying Claim 2 to j = i, we see that the graph (Vi, Ei, φi) has no cycles. In
other words, this graph is a forest. Since it is connected, it is therefore a tree.
Since it is a spanning subgraph of G, we thus conclude that it is a spanning tree
of G. Hence, we have constructed a spanning tree of G.

We note an important property of this construction:



Lecture 14, version June 6, 2025 page 14

Claim 3: For each k ∈ N, we have

Vk = {v ∈ V | d (r, v) ≤ k} ,

where d (r, v) means the length of a shortest path from r to v.

This is easily proved by induction on k. Thus, the spanning tree (Vi, Ei, φi)
we have constructed has the following property: For each v ∈ V, the path from
r to v in this spanning tree is a shortest path from r to v in G. For this reason,
this spanning tree is called a breadth-first search (“BFS”) tree. Note that the
choice of root r is important here: It is usually not true that the path from an
arbitrary vertex u to an arbitrary vertex v along our spanning tree is a shortest
path in G. No spanning tree of G has this property, unless G itself is “more or
less a tree” (more precisely, unless Gsimp is a tree)!


	Trees and arborescences (cont'd)
	Forests and trees (cont'd)
	Leaves
	Spanning trees


