
Lecture 13, version May 2, 2023 page 1

Math 530 Spring 2022, Lecture 13: Trees

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Trees and arborescences

Trees are particularly nice graphs. Among other things, they can be character-
ized as

• the minimal connected graphs on a given set of vertices, or

• the maximal acyclic (= having no cycles) graphs on a given set of vertices,
or

• in many other ways.

Arborescences are their closest analogue for digraphs.
In this chapter, we will discuss the theory of trees and some of their ap-

plications. Further applications are usually covered in courses in theoretical
computer science, but their notion of a tree is somewhat different from ours.

1.1. Some general properties of components and cycles

1.1.1. Backtrack-free walks revisited

Before we start with trees, let us recall and prove some more facts about general
multigraphs. Recall the notion of a “backtrack-free walk” that already had a
brief appearance in Lecture 4:

Definition 1.1.1. Let G be a multigraph. A backtrack-free walk of G means
a walk w such that no two adjacent edges of w are identical.

Here are a few properties of this notion:

Proposition 1.1.2. Let G be a multigraph. Let w be a backtrack-free walk of
G. Then, w either is a path or contains a cycle.

Proof. We did this for simple graphs in Lecture 4 (Proposition 1.2.4). More or
less the same argument works for multigraphs. (“More or less” because the
definition of a cycle in a multigraph is slightly different from that in a simple
graph; but the proof is easy to adapt.)

Theorem 1.1.3. Let G be a multigraph. Let u and v be two vertices of G.
Assume that there are two distinct backtrack-free walks from u to v in G.
Then, G has a cycle.

Proof. We did this for simple graphs in Lecture 4 (Claim 1 in the proof of The-
orem 1.2.7). More or less the same argument works for multigraphs.

https://www.cip.ifi.lmu.de/~grinberg/t/22s

Lecture 13, version May 2, 2023 page 2

1.1.2. Counting components

Next, we shall derive a few properties of the number of components of a graph.
Again, we have already done most of the hard work, and we can now derive
corollaries. First, we give this number a name:

Definition 1.1.4. Let G be a multigraph. Then, conn G means the number of
components of G. (Some authors also call this number b0 (G). This notation
comes from algebraic topology, where it stands for the 0-th Betti number.
This makes sense, because we can regard a multigraph G as a topological
space. But we won’t need this.)

So a multigraph G satisfies conn G = 1 if and only if G is connected. More-
over, conn G = 0 if and only if G has no vertices.

Recall the following:

Theorem 1.1.5. Let G be a multigraph. Let e be an edge of G. Then:

(a) If e is an edge of some cycle of G, then the components of G \ e are
precisely the components of G. (Keep in mind that the components are
sets of vertices. It is these sets that we are talking about here, not the
induced subgraphs on these sets.)

(b) If e appears in no cycle of G (in other words, there exists no cycle of G
such that e is an edge of this cycle), then the graph G \ e has one more
component than G.

Proof. For simple graphs, we proved this in Lecture 5 (Theorem 1.2.2). More or
less the same proof works for multigraphs. See Lecture 8 for details.

Corollary 1.1.6. Let G be a multigraph. Let e be an edge of G. Then:

(a) If e is an edge of some cycle of G, then conn (G \ e) = conn G.

(b) If e appears in no cycle of G, then conn (G \ e) = conn G + 1.

(c) In either case, we have conn (G \ e) ≤ conn G + 1.

Proof. Part (a) follows from Theorem 1.1.5 (a). Part (b) follows from Theorem
1.1.5 (b). Part (c) follows by combining parts (a) and (b).

Corollary 1.1.7. Let G = (V, E, φ) be a multigraph. Then, conn G ≥ |V| − |E|.

Proof. We induct on |E|:

Lecture 13, version May 2, 2023 page 3

Base case: If |E| = 0, then conn G = |V| (since |E| = 0 means that the graph
G has no edges, and thus no two distinct vertices are path-connected); but this
rewrites as conn G = |V| − |E| (since |E| = 0). Thus, Corollary 1.1.7 is proved
for |E| = 0.

Induction step: Let k ∈ N. Assume (as the induction hypothesis) that Corol-
lary 1.1.7 holds for |E| = k. We must now show that it also holds for |E| = k+ 1.

So let us consider a multigraph G = (V, E, φ) with |E| = k + 1. Thus, |E| −
1 = k. Pick any edge e ∈ E (such an edge exists, since |E| = k + 1 ≥ 1 > 0).
Then, the multigraph G \ e has edge set E \ {e} and therefore has |E \ {e}| =
|E| − 1 = k many edges. Hence, by the induction hypothesis, we have

conn (G \ e) ≥ |V| − |E \ {e}|

(since G \ e is a multigraph with vertex set V and edge set E \ {e}). However,
Corollary 1.1.6 (c) yields conn (G \ e) ≤ conn G + 1. Thus,

conn G ≥ conn (G \ e)︸ ︷︷ ︸
≥|V|−|E\{e}|

−1 ≥ |V|− |E \ {e}|︸ ︷︷ ︸
=|E|−1

−1 = |V|− (|E| − 1)− 1 = |V|− |E| .

This completes the induction step. Thus, Corollary 1.1.7 is proven.

Corollary 1.1.8. Let G = (V, E, φ) be a multigraph that has no cycles. Then,
conn G = |V| − |E|.

Proof. Replay the proof of Corollary 1.1.7, with just a few changes: Instead of
applying Corollary 1.1.6 (c), apply Corollary 1.1.6 (b) (this is allowed because
G has no cycles and thus e appears in no cycle of G). The induction hypothesis
can be used because when G has no cycles, G \ e has no cycles either. All ≤ and
≥ signs in the above proof now can be replaced by = signs (since Corollary
1.1.6 (b) claims an equality, not an inequality). The result is therefore conn G =
|V| − |E|.

Corollary 1.1.9. Let G = (V, E, φ) be a multigraph that has at least one cycle.
Then, conn G ≥ |V| − |E|+ 1.

Proof. Pick an edge e ∈ E that belongs to some cycle (such an edge exists, since
G has at least one cycle). Then, Corollary 1.1.6 (a) yields conn (G \ e) = conn G.
However, Corollary 1.1.7 (applied to G \ e and E \ {e} instead of G and E) yields

conn (G \ e) ≥ |V| − |E \ {e}|︸ ︷︷ ︸
=|E|−1

= |V| − (|E| − 1) = |V| − |E|+ 1.

Since conn (G \ e) = conn G, this rewrites as conn G ≥ |V| − |E|+ 1.

We summarize what we have proved into one convenient theorem:

Lecture 13, version May 2, 2023 page 4

Theorem 1.1.10. Let G = (V, E, φ) be a multigraph. Then:

(a) We always have conn G ≥ |V| − |E|.

(b) We have conn G = |V| − |E| if and only if G has no cycles.

Proof. (a) This is Corollary 1.1.7.

(b) ⇐=: This is Corollary 1.1.8.
=⇒: Assume that conn G = |V| − |E|. If G had any cycles, then Corollary

1.1.9 would yield conn G ≥ |V| − |E|+ 1 > |V| − |E|, which would contradict
conn G = |V| − |E|. So G has no cycles. This proves the “=⇒” direction of
Theorem 1.1.10.

Remark 1.1.11. Let G = (V, E, φ) be a multigraph. Does the number

conn G − (|V| − |E|)

have anything to do with how many cycles G has? We know that it is 0 if G
has no cycles. More generally, could it just be the number of cycles of G ?
(Let’s say we count reversals and cyclic rotations of a cycle as being the same
cycle.)

Unfortunately, the answer is still no. For example, a complete graph Kn

has many more than 1 −
(

n −
(

n
2

))
many cycles. However, there is still

some subtler connection. The number conn G − (|V| − |E|) is known as the
circuit rank or the cyclomatic number of G, and is the dimension of a certain
vector space that, in some way, consists of cycles.

1.2. Forests and trees

We now come to two of the heroes of this chapter:

Definition 1.2.1. A forest is a multigraph with no cycles.
(In particular, a forest therefore cannot contain two distinct parallel edges.

It also cannot contain loops.)

Definition 1.2.2. A tree is a connected forest.

Lecture 13, version May 2, 2023 page 5

Example 1.2.3. Consider the following multigraphs:

1

2 3

45

A =

a

c

b

e

d

f

g
1

2 3

45

B =

c

b d g

1

2 3

45

C =

c

b g

1 2

3

4

D =

c

e
a

1

2

3

4E =

a

c

1

2

3

4F =

a

b

c

d

G = 1H =

.

(Yes, G is an empty graph with no vertices.) Which of them are forests, and
which are trees?

• The graph A is not a forest, since it has a cycle (actually, several cycles).
Thus, A is not a tree either.

• The graph B is a tree.

• The graph C is a forest, but not a tree, since it is not connected.

• The graph D is a tree.

• The graph E is a forest, but not a tree.

Lecture 13, version May 2, 2023 page 6

• The graph F is not a forest, since it has cycles.

• The graph G (which has no vertices and no edges) is a forest, but not
a tree, since it is not connected (recall: a graph is connected if it has 1
component; but G has 0 components).

• The graph H is a tree.

Trees can be described in many ways:

Theorem 1.2.4 (The tree equivalence theorem). Let G = (V, E, φ) be a multi-
graph. Then, the following eight statements are equivalent:

• Statement T1: The multigraph G is a tree.

• Statement T2: The multigraph G has no loops, and we have V ̸= ∅,
and for each u ∈ V and v ∈ V, there is a unique path from u to v.

• Statement T3: We have V ̸= ∅, and for each u ∈ V and v ∈ V, there is
a unique backtrack-free walk from u to v.

• Statement T4: The multigraph G is connected, and we have |E| =
|V| − 1.

• Statement T5: The multigraph G is connected, and we have |E| < |V|.

• Statement T6: We have V ̸= ∅, and the graph G is a forest, but adding
any new edge to G creates a cycle.

• Statement T7: The multigraph G is connected, but removing any edge
from G yields a disconnected (i.e., non-connected) graph.

• Statement T8: The multigraph G is a forest, and we have |E| ≥ |V| − 1
and V ̸= ∅.

Proof. We shall prove the following implications:

T3

T2
T7

T6

T8

T4
T5

T1

.

Lecture 13, version May 2, 2023 page 7

In this digraph, an arc from Ti to Tj stands for the implication Ti =⇒Tj. Since
this digraph is strongly connected (i.e., you can travel from Statement Ti to
Statement Tj along its arcs for any i, j), this will prove the theorem. So let us
prove the implications.

Proof of T1=⇒T3: Assume that Statement T1 holds. Thus, G is a tree. There-
fore, G is connected, so that V ̸= ∅. We must prove that for each u ∈ V and
v ∈ V, there is a unique backtrack-free walk from u to v. The existence of such
a walk is clear (since G is connected, so there is a path from u to v). Thus, we
only need to show that it is unique. But this is easy: If there were two distinct
backtrack-free walks from u to v (for some u ∈ V and v ∈ V), then Theorem
1.1.3 would show that G has a cycle, and thus G could not be a forest, let alone
a tree. Thus, the backtrack-free walk from u to v is unique. So we have proved
Statement T3. The implication T1=⇒T3 is thus proved.

Proof of T3=⇒T2: Assume that Statement T3 holds. We must prove that State-
ment T2 holds. First, G has no loops, because if there was a loop e with end-
point u, then the two walks (u) and (u, e, u) would be two distinct backtrack-
free walks from u to u. It remains to prove that for each each u ∈ V and v ∈ V,
there is a unique path from u to v. However, the existence of a walk from u to v
always implies the existence of a path from u to v (by Corollary 1.1.5 from Lec-
ture 8). Moreover, the uniqueness of a backtrack-free walk from u to v implies
the uniqueness of a path from u to v (since any path is a backtrack-free walk).
Thus, Statement T2 follows from Statement T3.

Proof of T2=⇒T7: Assume that Statement T2 holds. Then, G is connected.
Now, let us remove any edge e from G. Let u and v be the endpoints of e. Then,
u ̸= v (since G has no loops). There cannot be a path from u to v in the graph
G \ e (because if there was such a path, then it would also be a path from u to v
in the graph G, and this path would be distinct from the path (u, e, v); thus, the
graph G would have at least two paths from u to v; but this would contradict
the uniqueness part of Statement T2). Hence, the graph G \ e is disconnected.
So we have shown that G is connected, but removing any edge from G yields a
disconnected graph. In other words, Statement T7 holds.

Proof of T7=⇒T1: Assume that Statement T7 holds. We must show that G
is a tree. Since G is connected (by Statement T7), it suffices to show that G
is a forest, i.e., that G has no cycles. However, if G had any cycle, then we
could pick any edge e of this cycle, and then we would know that G \ e is still
connected (since Corollary 1.1.6 (a) would yield conn (G \ e) = conn G = 1),
and this would contradict Statement T7. Thus, G has no cycles, hence is a
forest. This proves Statement T1.

Proof of T1=⇒T6: Assume that Statement T1 holds. Thus, G is a tree. We
must show that adding any new edge to G creates a cycle (since all other parts
of Statement T6 are clear).

Indeed, let us add a new edge f to G. Let u and v be the endpoints of f . The

Lecture 13, version May 2, 2023 page 8

graph G is connected, so there is already a path from u to v in G. Combining
this path with the edge f , we obtain a cycle. Thus, the graph obtained from G
by adding the new edge f has a cycle. This completes our proof that Statement
T6 holds.

Proof of T6=⇒T1: Assume that Statement T6 holds. Thus, G is a forest. We
must only show that G is connected.

Assume the contrary. Thus, there exist two vertices u and v of G that are not
path-connected in G. Hence, adding a new edge f with endpoints u and v to
the graph G cannot create a new cycle (because any such cycle would have to
contain f (otherwise, it would already be a cycle of G, but G has no cycles), and
then we could remove f from it to obtain a path from u to v in G; but such a
path cannot exist, since u and v are not path-connected in G). This contradicts
Statement T6.

So we have shown that G is connected, and thus G is a tree. This proves
Statement T1.

Proof of T1=⇒T8: Assume that Statement T1 holds. So G is a tree. Clearly, G
is then a forest. We must show that |E| ≥ |V| − 1.

Theorem 1.1.10 (a) yields conn G ≥ |V| − |E|. But we have conn G = 1
because G is connected. Thus, 1 = conn G ≥ |V| − |E|. In other words, |E| ≥
|V| − 1. This proves Statement T8.

Proof of T8=⇒T1: Assume that Statement T8 holds. Thus, G is a forest. We
must only show that G is connected. However, G is a forest, and thus has
no cycles. Hence, Theorem 1.1.10 (b) yields conn G = |V| − |E| ≤ 1 (since
Statement 8 yields |E| ≥ |V| − 1). On the other hand, conn G ≥ 1 (since V ̸= ∅).
Combining these two inequalities, we obtain conn G = 1. In other words, G is
connected. This yields Statement T1 (since G is a forest).

Proof of T1=⇒T4: Assume that Statement T1 holds. Then, G is a tree, hence
a connected forest. Therefore, G has no cycles (by the definition of a forest).
Theorem 1.1.10 (b) therefore yields conn G = |V| − |E|. Thus, |V| − |E| =
conn G = 1 (since G is connected), so that |E| = |V| − 1. Thus, Statement T4 is
proved.

Proof of T4=⇒T5: The implication T4=⇒T5 is obvious.

Proof of T5=⇒T1: Assume that Statement T5 holds. Thus, the multigraph G
is connected, and we have |E| < |V|. Thus, |E| ≤ |V| − 1. In other words,
1 ≤ |V| − |E|. Since G is connected, we have conn G = 1 ≤ |V| − |E|. However,
Theorem 1.1.10 (a) yields conn G ≥ |V| − |E|. Combining these two inequalities,
we obtain conn G = |V| − |E|. Thus, Theorem 1.1.10 (b) shows that G has no
cycles. In other words, G is a forest. Hence, G is a tree (since G is connected).
This proves Statement T1.

We have now proved all necessary implications to conclude that all eight
statements T1, T2, . . ., T8 are equivalent. Theorem 1.2.4 is thus proved.

Lecture 13, version May 2, 2023 page 9

We also observe the following connection between trees and forests:

Proposition 1.2.5. Let G be a multigraph, and let C1, C2, . . . , Ck be its com-
ponents. Then, G is a forest if and only if all the induced subgraphs
G [C1] , G [C2] , . . . , G [Ck] are trees.

Proof. =⇒: Assume that G is a forest. Thus, G has no cycles. Hence, the induced
subgraphs G [C1] , G [C2] , . . . , G [Ck] have no cycles either (since a cycle in any
of them would be a cycle of G); in other words, they are forests. But they are
furthermore connected (since the induced subgraph on a component is always
connected). Hence, they are connected forests, i.e., trees.
⇐=: Assume that the induced subgraphs G [C1] , G [C2] , . . . , G [Ck] are trees.

Hence, none of them has a cycle. Thus, G has no cycles either (since a cycle
of G would have to be fully contained in one of these induced subgraphs1). In
other words, G is a forest.

1Indeed, if it wasn’t, then it would contain vertices from different components. But this is
impossible, since there are no walks between vertices in different components.

	Trees and arborescences
	Some general properties of components and cycles
	Backtrack-free walks revisited
	Counting components

	Forests and trees

