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Math 530 Spring 2022, Lecture 12: more
tournaments and Hamiltonian paths

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s
Today’s material appears in more detail in:

• Lecture 7 from my Spring 2017 course ( https://www.cip.ifi.lmu.de/
~grinberg/t/17s/5707lec7.pdf )

• Lecture 8 from my Spring 2017 course ( https://www.cip.ifi.lmu.de/
~grinberg/t/17s/5707lec8.pdf ).

1. Digraphs and multidigraphs (cont’d)

1.1. Tournaments (cont’d)

Recall some definitions from Lecture 11:

Definition 1.1.1. A digraph D is said to be loopless if it has no loops.

Definition 1.1.2. A tournament is defined to be a loopless simple digraph D
that satisfies the

• Tournament axiom: For any two distinct vertices u and v of D, exactly
one of (u, v) and (v, u) is an arc of D.

Example 1.1.3. Here is a tournament with 5 vertices:

1

2

3

4

5 .

A tournament can also be viewed as a complete graph, whose each edge has
been given a direction.

Recall also the following definitions from Lecture 11:

https://www.cip.ifi.lmu.de/~grinberg/t/22s
https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec8.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec8.pdf
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Definition 1.1.4. Let D = (V, A) be a simple digraph. Then:

(a) We define the simple digraph Drev to be (V, Arev), where

Arev = {(v, u) | (u, v) ∈ A} .

(b) We define the simple digraph D to be
(
V, A

)
, where

A = (V × V) \ A.

The definition of a tournament can now be restated as follows:

Proposition 1.1.5. Let D = (V, A) be a loopless simple digraph. Then, D is
a tournament if and only if the non-loop arcs of D are precisely the arcs of
Drev.

In Lecture 11, we stated the following two theorems:1

Theorem 1.1.6 (Easy Rédei theorem). A tournament always has at least one
hamp.

Theorem 1.1.7 (Hard Rédei theorem). Let D be a tournament. Then,

(# of hamps of D) is odd.

We shall prove these two theorems today. Clearly, the Easy Rédei Theorem
follows from the Hard one, since an odd number cannot be 0. Thus, it will
suffice to prove the Hard one.

First, we recall two results from Lecture 11:

Theorem 1.1.8 (Berge’s theorem). Let D = (V, A) be a simple digraph. Then,(
# of hamps of D

)
≡ (# of hamps of D)mod 2.

Proposition 1.1.9. Let D = (V, A) be a simple digraph. Then,

(# of hamps of Drev) = (# of hamps of D) .

Here is our crucial lemma for the proof of the hard Rédei theorem:

1The word “hamp” is short for “Hamiltonian path”. Here, we understand the 0-tuple () to be
a hamp if the tournament has no vertices.
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Lemma 1.1.10. Let D = (V, A) be a tournament, and let vw ∈ A be an arc of
D.

Let D′ be the digraph obtained from D by reversing the arc vw. In other
words, let

D′ := (V, (A \ {vw}) ∪ {wv}) .

Then, D′ is again a tournament, and satisfies

(# of hamps of D) ≡
(
# of hamps of D′)mod 2.

Here is a visualization of the setup of Lemma 1.1.10:

v wD :

;

v wD′ :

.

(Here, we are only showing the arcs joining v with w, since D and D′ agree in
all other arcs.)

Proof of Lemma 1.1.10. First of all, D′ is clearly a tournament. It remains to prove
the congruence.

We introduce two more digraphs: Let

D0 := (the digraph D with the arc vw removed) and
D2 := (the digraph D with the arc wv added) .

Note that these are not tournaments any more. Here is a comparative illustra-
tion of all four digraphs D, D′, D0 and D2 (again showing only the arcs joining
v with w, since there are no differences in the other arcs):

v wD :

;

v wD′ :

;

v wD0 :

;

v wD2 :

.
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The digraph D0 is D′ with the arc wv removed. Therefore, a hamp of D0 is
the same as a hamp of D′ that does not use the arc wv. Hence,

(# of hamps of D0)

=
(
# of hamps of D′ that do not use the arc wv

)
=

(
# of hamps of D′)− (

# of hamps of D′ that use the arc wv
)

.

Similarly, since D is D2 with the arc wv removed, we have

(# of hamps of D)

= (# of hamps of D2)− (# of hamps of D2 that use the arc wv)
= (# of hamps of D2)−

(
# of hamps of D′ that use the arc wv

)
(the last equality is because a hamp of D2 that uses the arc wv cannot use the
arc vw, and therefore is automatically a hamp of D′ as well, and of course the
converse is obviously true).

However, from the previously proved equality

(# of hamps of D0)

=
(
# of hamps of D′)− (

# of hamps of D′ that use the arc wv
)

,

we obtain(
# of hamps of D′)
= (# of hamps of D0) +

(
# of hamps of D′ that use the arc wv

)
≡ (# of hamps of D0)−

(
# of hamps of D′ that use the arc wv

)
mod 2

(since x + y ≡ x − y mod 2 for any integers x and y). Thus, if we can show that

(# of hamps of D2) ≡ (# of hamps of D0)mod 2,

then we will be able to conclude that

(# of hamps of D)

= (# of hamps of D2)︸ ︷︷ ︸
≡(# of hamps of D0)mod 2

−
(
# of hamps of D′ that use the arc wv

)
≡ (# of hamps of D0)−

(
# of hamps of D′ that use the arc wv

)
≡

(
# of hamps of D′)mod 2,

and the proof of the lemma will be complete.
So let us show this. Recall that D is a tournament. Thus, the non-loop arcs

of D are precisely the arcs of Drev (by Proposition 1.1.5). Hence, the non-loop
arcs of D0 are precisely the arcs of Drev

2 (since D0 is just D with the extra arc vw
added, and since Drev

2 is just Drev with the extra arc vw added). Therefore, the
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digraphs D0 and Drev
2 are equal “up to loops” (i.e., they have the same vertices

and the same non-loop arcs). Since loops don’t matter for hamps, these two
digraphs thus have the same of hamps. Hence,(

# of hamps in D0
)
= (# of hamps in Drev

2 ) = (# of hamps in D2)

(by Proposition 1.1.9), and therefore

(# of hamps in D2) =
(
# of hamps in D0

)
≡ (# of hamps in D0)mod 2

(by Theorem 1.1.8). As explained above, this completes the proof of Lemma
1.1.10.

Now, the Hard Rédei theorem has become easy:

Proof of Theorem 1.1.7. We need to prove that the # of hamps of D is odd. Lemma
1.1.10 tells us that the parity of this # does not change when we reverse a single
arc of D. Thus, of course, if we reverse several arcs of D, then this parity does
not change either. However, we can WLOG assume that the vertices of D are
1, 2, . . . , n for some n ∈ N, and then, by reversing the appropriate arcs, we can
ensure that the arcs of D are

12, 13, 14, . . . , 1n,
23, 24, . . . , 2n,

· · · ,
(n − 1) n

(i.e., each arc of D has the form ij with i < j). But at this point, the tournament
D has only one hamp: namely, (1, 2, . . . , n). So (# of hamps of D) = 1 is odd
at this point. Since the parity of the # of hamps of D has not changed as we
reversed our arcs, we thus conclude that it has always been odd. This proves
the Hard Rédei theorem (Theorem 1.1.7).

As we already mentioned, the Easy Rédei theorem follows from the Hard
Rédei theorem. But it also has a short self-contained proof ([17s-lec7, Theorem
1.4.9]).

Remark 1.1.11. Theorem 1.1.7 shows that the # of hamps in a tournament is
an odd positive integer. Can it be any odd positive integer, or are certain odd
positive integers impossible?

Surprisingly, 7 and 21 are impossible. All other odd numbers between 1
and 80555 are possible. For higher numbers, the answer is not known so far.
See MathOverflow question #232751 ([MO232751]) for more details.

1.2. Hamiltonian cycles in tournaments

By the Easy Rédei theorem, every tournament has a hamp. But of course, not
every tournament has a hamc2. One obstruction is clear:

2Recall that “hamc” is our shorthand for “Hamiltonian cycle”.
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Proposition 1.2.1. If a digraph D has a hamc, then D is strongly connected.

In general, this is only a necessary criterion for a hamc, not a sufficient one.
Not every strongly connected digraph has a hamc. However, it turns out that
for tournaments, it is also sufficient, as long as the tournament has enough
vertices:

Theorem 1.2.2 (Camion’s theorem). If a tournament D is strongly connected
and has at least two vertices, then D has a hamc.

Proof sketch. A detailed proof can be found in [17s-lec7, Theorem 1.5.5]; here is
just a very rough sketch.

Let D = (V, A) be a strongly connected tournament with at least two ver-
tices.3 We must show that D has a hamc.

It is easy to see that D has a cycle. Let c = (v1, v2, . . . , vk, v1) be a cycle of
maximum length. We shall show that c is a hamc.

Let C be the set {v1, v2, . . . , vk} of all vertices of this cycle c.
A vertex w ∈ V \ C will be called a to-vertex if there exists an arc from some

vi to w.
A vertex w ∈ V \ C will be called a from-vertex if there exists an arc from w

to some vi.
Since D is a tournament, each vertex in V \ C is a to-vertex or a from-vertex.

In theory, a vertex could be both (having an arc from some vi and also an arc
to some other vj). However, this does not actually happen. To see why, argue
as follows:

• If a to-vertex w has an arc from some vi, then it must also have an arc
from vi+1

4 (because otherwise there would be an arc from w to vi+1,
and then we could make our cycle c longer by interjecting w between vi
and vi+1; but this would contradict the fact that c is a cycle of maximum
length).

• Iterating this argument, we see that if a to-vertex w has an arc from some
vi, then it must also have an arc from vi+1, an arc from vi+2, an arc from
vi+3, and so on; i.e., it must have an arc from each vertex of c. Conse-
quently, w cannot be a from-vertex. This shows that a to-vertex cannot be
a from-vertex.

Let F be the set of all from-vertices, and let T be the set of all to-vertices.
Then, as we have just shown, F and T are disjoint. Moreover, F ∪ T = V \ C.

3By the way, a tournament with exactly two vertices cannot be strongly connected (as it has
only 1 arc). Thus, by requiring D to have at least two vertices, we have actually guaranteed
that D has at least three vertices.

4Here, indices are periodic modulo k, so that vk+1 means v1.
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Since a to-vertex cannot be a from-vertex, we furthermore conclude that any to-
vertex has an arc from each vertex of c (otherwise, it would be a from-vertex),
and that any from-vertex has an arc to each vertex of c (otherwise, it would be
a to-vertex).

Next, we argue that there cannot be an arc from a to-vertex t to a from-vertex
f . Indeed, if there was such an arc, then we could make the cycle c longer by
interjecting t and f between (say) v1 and v2.

In total, we now know that every vertex of D belongs to one of the three
disjoint sets C, F and T, and furthermore there is no arc from T to F, no arc
from T to C, and no arc from C to F. Thus, there exists no walk from a vertex
in T to a vertex in C (because there is no way out of T). This would contradict
the fact that D is strongly connected, unless the set T is empty. Hence, T must
be empty. Similarly, F must be empty. Since F ∪ T = V \ C, this entails that
V \ C is empty, so that V = C. In other words, each vertex of D is on our cycle
c. Therefore, c is a hamc. This proves Camion’s theorem.

1.3. Application of tournaments to the Vandermonde
determinant

To wrap up the topic of tournaments, let me briefly discuss a curious appli-
cation of their theory: a combinatorial proof of the Vandermonde determinant
formula. See [17s-lec8] for the many details I’ll be omitting.

Recall the Vandermonde determinant formula:

Theorem 1.3.1 (Vandermonde determinant formula). Let x1, x2, . . . , xn be n
numbers (or, more generally, elements of a commutative ring). Consider the
n × n-matrix

V :=


1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
... . . . ...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n

 =
(

xi−1
j

)
1≤i≤n, 1≤j≤n

.

Then, its determinant is

det V = ∏
1≤i<j≤n

(
xj − xi

)
.

There are many simple proofs of this theorem (e.g., a few on its ProofWiki
page, which works with the transpose matrix). I will now outline a combina-
torial one, using tournaments. This proof goes back to Ira Gessel’s 1979 paper
[Gessel79].

https://proofwiki.org/wiki/Value_of_Vandermonde_Determinant/Formulation_1
https://proofwiki.org/wiki/Value_of_Vandermonde_Determinant/Formulation_1
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First, how do det V and ∏
1≤i<j≤n

(
xi − xj

)
relate to tournaments?

As a warmup, let’s assume that we have some number y(i,j) given for each
pair (i, j) of integers, and let’s expand the product(

y(1,2) + y(2,1)

) (
y(1,3) + y(3,1)

) (
y(2,3) + y(3,2)

)
.

The result is a sum of 8 products, one for each way to pluck an addend out of
each of the three little sums:(

y(1,2) + y(2,1)

) (
y(1,3) + y(3,1)

) (
y(2,3) + y(3,2)

)
= y(1,2)y(1,3)y(2,3) + y(1,2)y(1,3)y(3,2) + y(1,2)y(3,1)y(2,3) + y(1,2)y(3,1)y(3,2)

+ y(2,1)y(1,3)y(2,3) + y(2,1)y(1,3)y(3,2) + y(2,1)y(3,1)y(2,3) + y(2,1)y(3,1)y(3,2).

Note that each of the 8 products obtained has the form yaybyc, where

• a is one of the pairs (1, 2) and (2, 1),

• b is one of the pairs (1, 3) and (3, 1), and

• c is one of the pairs (2, 3) and (3, 2).

We can view these pairs a, b and c as the arcs of a tournament with vertex
set {1, 2, 3}. Thus, our above expansion can be rewritten more compactly as
follows: (

y(1,2) + y(2,1)

) (
y(1,3) + y(3,1)

) (
y(2,3) + y(3,2)

)
= ∑

D is a tournament
with vertex set {1,2,3}

∏
(i,j) is an arc of D

y(i,j).
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For reference, here are all the 8 tournaments with vertex set {1, 2, 3}:

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

.

Here, for convenience, we are drawing an arc ij in blue if i < j and in red
otherwise.

This expansion can be generalized: We have

∏
1≤i<j≤n

(
y(i,j) + y(j,i)

)
= ∑

D is a tournament
with vertex set {1,2,...,n}

∏
(i,j) is an arc of D

y(i,j).
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Substituting y(i,j) =

{
xj, if i < j;
−xj, if i ≥ j

in this equality, we obtain

∏
1≤i<j≤n

(
xj − xi

)
= ∑

D is a tournament
with vertex set {1,2,...,n}

∏
(i,j) is an arc of D

{
xj, if i < j;
−xj, if i ≥ j︸ ︷︷ ︸

=(−1)(# of red arcs of D)
n
∏
j=1

xdeg− j
j

(where deg− j means the indegree of j in D,
and where the “red arcs” are the arcs ij with i>j)

= ∑
D is a tournament

with vertex set {1,2,...,n}

(−1)(# of red arcs of D)
n

∏
j=1

xdeg− j
j .

We shall refer to this sum as the “big sum”.
On the other hand, if we let Sn be the group of permutations of {1, 2, . . . , n},

and if we denote the sign of a permutation σ by sign σ, then we have

det V = det
(

VT
)
= ∑

σ∈Sn

sign σ ·
n

∏
j=1

xσ(j)−1
j

(by the definition of a determinant). We shall refer to this sum as the “small
sum”.

Our goal is to prove that the big sum equals the small sum. To prove this, we
must verify the following:

1. Each addend of the small sum is an addend of the big sum. Indeed, for
each permutation σ ∈ Sn, there is a certain tournament Tσ that has

(−1)(# of red arcs of Tσ)
n

∏
j=1

xdeg− j
j = sign σ ·

n

∏
j=1

xσ(j)−1
j .

Can you find this Tσ ?

2. All the addends of the big sum that are not addends of the small sum
cancel each other out. Why?

The basic idea is to argue that if a tournament D appears in the big sum
but not in the small sum, then D has a 3-cycle (i.e., a cycle of length
3). When we reverse such a 3-cycle (i.e., we reverse each of its arcs), the
indegrees of all vertices are preserved, but the sign (−1)(# of red arcs of D) is
flipped (since three arcs change their orientation).

This suffices to show that for each addend that appears in the big sum but
not in the small sum, there is another addend with the same magnitude
but with opposite sign. Unfortunately, this in itself does not suffice to
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ensure that all these addends cancel out; for example, the sum 1+ 1+ 1+
(−1) has the same property but does not equal 0. We need to show that
the # of addends with positive sign (i.e., with (−1)(# of red arcs of D) = 1)
and a given magnitude equals the # of addends with negative sign (i.e.,
with (−1)(# of red arcs of D) = −1) and the same magnitude.

One way to achieve this would be by constructing a bijection (aka “perfect
matching”) between the “positive” and the “negative” addends. This is
tricky here: We would have to decide which 3-cycle to reverse (as there
are usually many of them), and this has to be done in a bijective way
(so that two “positive” addends don’t get assigned the same “negative”
partner).

A less direct, but easier way is the following: Fix a positive integer k,
and consider only the tournaments with exactly k many 3-cycles. For
each such tournament, we can reverse any of its k many 3-cycles. It can
be shown (nice exercise!) that reversing the arcs of a 3-cycle does not
change the # of all 3-cycles; thus, we don’t accidentally change our k in the
process. Thus, we find a “k-to-k” correspondence between the “positive”
addends of a given magnitude and the “negative” addends of the same
magnitude. As one can easily see, this entails that the former and the
latter are equinumerous, and thus really cancel out. The addends that
remain are exactly those in the small sum.

As already mentioned, this is only a rough summary of the proof; the details
can be found in [17s-lec8].
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