# Math 530 Spring 2022, Lecture 11: tournaments and Hamiltonian paths

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

See Lecture 7 from my Spring 2017 course ( https://www.cip.ifi.lmu.de/ ~grinberg/t/17s/5707lec7.pdf ) for today's material in more detail.

## 1. Digraphs and multidigraphs (cont'd)

Last time, we defined hamps (Hamiltonian paths) for simple digraphs. Today, we shall study them further. First, we introduce two more operations on simple digraphs.

#### 1.1. The reverse and complement digraphs

**Definition 1.1.1.** Let D = (V, A) be a simple digraph. Then:

- (a) The elements of  $(V \times V) \setminus A$  will be called the **non-arcs** of *D*.
- **(b)** The **reversal** of a pair  $(i, j) \in V \times V$  means the pair (j, i).
- (c) We define  $D^{\text{rev}}$  as the simple digraph  $(V, A^{\text{rev}})$ , where

$$A^{\text{rev}} = \{(j,i) \mid (i,j) \in A\}.$$

Thus,  $D^{rev}$  is the digraph obtained from D by reversing each arc (i.e., swapping its source and its target). This is called the **reversal** of D.

(d) We define  $\overline{D}$  as the simple digraph  $(V, (V \times V) \setminus A)$ . This is the digraph that has the same vertices as D, but whose arcs are precisely the non-arcs of D. This digraph  $\overline{D}$  is called the **complement** of D.

Example 1.1.2. Let





**Convention 1.1.3.** In the following, the symbol # means "number". For example,

(# of subsets of  $\{1, 2, 3\}$ ) = 8.

We now shall try to count hamps in simple digraphs. As a warmup, here is a particularly simple case:

**Proposition 1.1.4.** Let *D* be the simple digraph (V, A), where

 $V = \{1, 2, \dots, n\} \qquad \text{for some } n \in \mathbb{N},$ 

and where

$$A = \{ (i,j) \mid i < j \}.$$

Then, (# of hamps of D) = 1.

*Proof.* It is easy to see that the only hamp of D is (1, 2, ..., n).

**Proposition 1.1.5.** Let *D* be a simple digraph. Then,

(# of hamps of  $D^{rev}$ ) = (# of hamps of D).

*Proof.* The hamps of  $D^{rev}$  are obtained from the hamps of D by walking backwards.

So far, so boring. What about this:

**Theorem 1.1.6** (Berge). Let *D* be a simple digraph. Then,

(# of hamps of  $\overline{D}$ )  $\equiv$  (# of hamps of D) mod 2.

This is much less obvious or even expected. We first give an example:

**Example 1.1.7.** Let *D* be the following digraph:



This digraph has 3 hamps: (1,2,3) and (2,3,1) and (3,1,2). Its complement  $\overline{D}$  looks as follows:



It has only 1 hamp: (1,3,2).

Thus, in this case, Theorem 1.1.6 says that  $1 \equiv 3 \mod 2$ .

*Proof of Theorem 1.1.6.* (This is an outline; see [17s-lec7, proof of Theorem 1.3.6] for more details.)

Write the simple digraph *D* as D = (V, A), and assume WLOG that  $V \neq \emptyset$ . Set n = |V|.

A *V*-listing will mean a list of elements of *V* that contains each element of *V* exactly once. (Thus, each *V*-listing is an *n*-tuple, and there are *n*! many *V*-listings.) Note that a *V*-listing is the same as a hamp of the "complete" digraph  $(V, V \times V)$ . Any hamp of *D* or of  $\overline{D}$  is therefore a *V*-listing, but not every *V*-listing is a hamp of *D* or  $\overline{D}$ .

If  $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$  is a *V*-listing, then we define a set

$$P(\sigma) := \{\sigma_1 \sigma_2, \sigma_2 \sigma_3, \ldots, \sigma_{n-1} \sigma_n\}.$$

We call this set  $P(\sigma)$  the **arc set** of  $\sigma$ . When we regard  $\sigma$  as a hamp of  $(V, V \times V)$ , this set  $P(\sigma)$  is just the set of all arcs of  $\sigma$ . Note that this is an (n-1)-element set. We make a few easy observations (prove them!):

*Observation 1:* We can reconstruct a *V*-listing  $\sigma$  from its arc set  $P(\sigma)$ . In other words, the map  $\sigma \mapsto P(\sigma)$  is injective.

*Observation 2:* Let  $\sigma$  be a *V*-listing. Then,  $\sigma$  is a hamp of *D* if and only if  $P(\sigma) \subseteq A$ .

*Observation 3:* Let  $\sigma$  be a *V*-listing. Then,  $\sigma$  is a hamp of  $\overline{D}$  if and only if  $P(\sigma) \subseteq (V \times V) \setminus A$ .

Now, let *N* be the # of pairs ( $\sigma$ , *B*), where  $\sigma$  is a *V*-listing and *B* is a subset of *A* satisfying  $B \subseteq P(\sigma)$ . Thus,

$$N = \sum_{\sigma \text{ is a } V\text{-listing}} N_{\sigma},$$

where

 $N_{\sigma} = (\# \text{ of subsets } B \text{ of } A \text{ satisfying } B \subseteq P(\sigma)).$ 

But we also have

$$N = \sum_{B \text{ is a subset of } A} N^B,$$

where

$$N^{B} = (\# \text{ of } V \text{-listings } \sigma \text{ satisfying } B \subseteq P(\sigma)).$$

Let us now relate these two sums to hamps. We begin with  $\sum_{\sigma \text{ is a } V \text{-listing }} N_{\sigma}$ .

We shall use the **Iverson bracket notation**: i.e., the notation  $[\mathcal{A}]$  for the truth value of a statement  $\mathcal{A}$ . This truth value is defined to be the number 1 if  $\mathcal{A}$  is true, and 0 if  $\mathcal{A}$  is false. For instance,

$$[2+2=4] = 1$$
 and  $[2+2=5] = 0.1$ 

For any *V*-listing  $\sigma$ , we have

$$N_{\sigma} = (\# \text{ of subsets } B \text{ of } A \text{ satisfying } B \subseteq P(\sigma))$$

$$= (\# \text{ of subsets } B \text{ of } A \cap P(\sigma))$$

$$= 2^{|A \cap P(\sigma)|}$$

$$\equiv [|A \cap P(\sigma)| = 0] \qquad (\text{since } 2^{m} \equiv [m = 0] \text{ mod } 2 \text{ for each } m \in \mathbb{N})$$

$$= [A \cap P(\sigma) = \varnothing] \qquad (\text{ since equivalent statements have the} \\ \text{ same truth value} \end{pmatrix}$$

$$= [P(\sigma) \subseteq (V \times V) \setminus A] \qquad (\text{since } P(\sigma) \text{ is always a subset of } V \times V)$$

$$= [\sigma \text{ is a hamp of } \overline{D}] \text{ mod } 2 \qquad (\text{by Observation } 3).$$

So

$$N = \sum_{\sigma \text{ is a } V\text{-listing}} \underbrace{N_{\sigma}}_{\equiv [\sigma \text{ is a hamp of } \overline{D}] \mod 2}$$

$$\equiv \sum_{\sigma \text{ is a } V\text{-listing}} [\sigma \text{ is a hamp of } \overline{D}]$$

$$= (\# \text{ of } V\text{-listings } \sigma \text{ that are hamps of } \overline{D})$$

$$\begin{pmatrix} \text{because} \sum_{\sigma \text{ is a } V\text{-listing}} [\sigma \text{ is a hamp of } \overline{D}] \text{ is a sum} \\ \text{ of several } 1\text{ 's and several } 0\text{ 's, and the } 1\text{ 's in this} \\ \text{ sum correspond precisely to} \\ \text{ the } V\text{-listings } \sigma \text{ that are hamps of } \overline{D} \end{pmatrix}$$

$$= (\# \text{ of hamps of } \overline{D}) \mod 2.$$
What about the other expression for  $N$ ? Recall that

 $N = \sum_{B \text{ is a subset of } A} N^B,$ 

where

$$N^{B} = (\# \text{ of } V \text{-listings } \sigma \text{ satisfying } B \subseteq P(\sigma)).$$

We want to prove that this sum equals (# of hamps of *D*), at least modulo 2.

So let *B* be a subset of *A*. We want to know  $N^B \mod 2$ . In other words, we want to know when  $N^B$  is odd.

Let us first assume that  $N^B$  is odd, and see what follows from this.

Since  $N^B$  is odd, we have  $N^B > 0$ . Thus, there exists **at least one** *V*-listing  $\sigma$  satisfying  $B \subseteq P(\sigma)$ . We shall now draw some conclusions from this.

First, a definition: A **path cover** of *V* means a set of paths in the "complete" digraph  $(V, V \times V)$  such that each vertex  $v \in V$  is contained in exactly one of these paths. The **set of arcs** of such a path cover is simply the set of all arcs of all its paths. For example, if  $V = \{1, 2, 3, 4, 5, 6, 7\}$ , then

$$\{(1,3,5), (2), (6), (7,4)\}$$

is a path cover of V, and its set of arcs is  $\{13, 35, 74\}$ .

Now, ponder the following: If we remove an arc  $v_i v_{i+1}$  from a path  $(v_1, v_2, ..., v_k)$ , then this path breaks up into two paths  $(v_1, v_2, ..., v_i)$  and  $(v_{i+1}, v_{i+2}, ..., v_k)$ . Thus, if we remove some arcs from the arc set  $P(\sigma)$  of a *V*-listing  $\sigma$ , then we obtain the set of arcs of a path cover of *V*. (For instance, removing the arcs 52, 26 and 67 from the arc set  $P(\sigma)$  of the *V*-listing  $\sigma = (1,3,5,2,6,7,4)$  yields precisely the path cover  $\{(1,3,5), (2), (6), (7,4)\}$  that we just showed as an example.)

Now, recall that there exists **at least one** *V*-listing  $\sigma$  satisfying  $B \subseteq P(\sigma)$ . Hence, *B* is obtained by removing some arcs from the arc set  $P(\sigma)$  of this *V*-listing  $\sigma$ . Therefore, *B* is the set of arcs of a path cover of *V* (by the claim of the preceding paragraph). Let us say that this path cover consists of exactly *r* paths. Then,

(# of *V*-listings  $\sigma$  satisfying  $B \subseteq P(\sigma)$ ) = r!,

because any such *V*-listing  $\sigma$  can be constructed by concatenating the *r* paths in our path cover in some order (and there are *r*! possible orders).

Thus,  $N^B = (\# \text{ of } V \text{-listings } \sigma \text{ satisfying } B \subseteq P(\sigma)) = r!$ . But we have assumed that  $N^B$  is odd. So r! is odd. Since r is positive (because  $V \neq \emptyset$ , so our path cover must contain at least one path), this entails that r = 1. So our path cover is just a single path; this path is a path of D (since its set of arcs B is a subset of A) and therefore is a hamp of D (since it constitutes a path cover of V all by itself). If we denote it by  $\sigma$ , then we have  $B = P(\sigma)$  (since B is the set of arcs of the path cover that consists of  $\sigma$  alone).

Forget our assumption that  $N^B$  is odd. We have thus shown that if  $N^B$  is odd, then  $B = P(\sigma)$  for some hamp  $\sigma$  of D.

Conversely, it is easy to see that if  $B = P(\sigma)$  for some hamp  $\sigma$  of D, then  $N^B$  is odd (and actually equals 1).

Combining these two results, we see that  $N^{B}$  is odd **if and only if**  $B = P(\sigma)$  for some hamp  $\sigma$  of D. Therefore,

$$[N^{B} \text{ is odd}] = [B = P(\sigma) \text{ for some hamp } \sigma \text{ of } D].$$

However,

$$N^{B} \equiv \begin{bmatrix} N^{B} \text{ is odd} \end{bmatrix} \quad (\text{since } m \equiv [m \text{ is odd}] \mod 2 \text{ for any } m \in \mathbb{Z})$$
$$= \begin{bmatrix} B = P(\sigma) \text{ for some hamp } \sigma \text{ of } D \end{bmatrix} \mod 2.$$

We have proved this congruence for every subset *B* of *A*. Thus,

$$N = \sum_{B \text{ is a subset of } A} \sum_{\equiv [B=P(\sigma) \text{ for some hamp } \sigma \text{ of } D] \mod 2} \sum_{B \text{ is a subset of } A} [B=P(\sigma) \text{ for some hamp } \sigma \text{ of } D]$$
  
= (# of subsets B of A such that  $B=P(\sigma)$  for some hamp  $\sigma$  of D)  
= (# of sets of the form  $P(\sigma)$  for some hamp  $\sigma$  of D)  
 $\begin{pmatrix} \text{because each set of the form } P(\sigma) \text{ for some hamp } \sigma \text{ of } D) \\ \text{because each set of the form } P(\sigma) \text{ for some hamp } \sigma \text{ of } D) \end{pmatrix}$   
= (# of hamp  $\sigma$  of D is a subset of A (by Observation 2))

= (# of hamps of *D*) mod 2

(indeed, Observation 1 shows that different hamps  $\sigma$  have different sets  $P(\sigma)$ , so counting the sets  $P(\sigma)$  for all hamps  $\sigma$  is equivalent to counting the hamps  $\sigma$  themselves).

Now we have proved that  $N \equiv (\# \text{ of hamps of } \overline{D}) \mod 2$  and  $N \equiv (\# \text{ of hamps of } D) \mod 2$ . Comparing these two congruences, we obtain

(# of hamps of  $\overline{D}$ )  $\equiv$  (# of hamps of D) mod 2.

This proves Berge's theorem.

#### 1.2. Tournaments

We now introduce a special class of simple digraphs.

**Definition 1.2.1.** A digraph *D* is said to be **loopless** if it has no loops.

**Definition 1.2.2.** A **tournament** is defined to be a loopless simple digraph *D* that satisfies the

• **Tournament axiom:** For any two distinct vertices *u* and *v* of *D*, **exactly** one of (*u*, *v*) and (*v*, *u*) is an arc of *D*.

Equivalently:

**Proposition 1.2.3.** A simple digraph *D* is a tournament if and only if  $D^{rev}$  is  $\overline{D}$  without the loops.

**Example 1.2.4.** The following digraph is a tournament:



The following digraph is a tournament as well:



However, the following digraph is not a tournament:



because the tournament axiom is not satisfied for u = 1 and v = 3. Nor is the following digraph a tournament:



because the tournament axiom is not satisfied for u = 1 and v = 2. Finally,



is not a tournament either, since it is not loopless. The digraph *D* in Proposition 1.1.4 always is a tournament.

Which tournaments have hamps? The answer is surprisingly simple:

**Theorem 1.2.5** (Easy Rédei theorem). A tournament always has at least one hamp.

Even better, and perhaps even more surprisingly:

Theorem 1.2.6 (Hard Rédei theorem). Let *D* be a tournament. Then,

(# of hamps of D) is odd.

I will prove both theorems in the next lecture.

### References

[17s-lec7] Darij Grinberg, UMN, Spring 2017, Math 5707: Lecture 7 (Hamiltonian paths in digraphs), 14 May 2022. https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf