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Math 530 Spring 2022, Lecture 11: tournaments
and Hamiltonian paths

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s
See Lecture 7 from my Spring 2017 course ( https://www.cip.ifi.lmu.de/

~grinberg/t/17s/5707lec7.pdf ) for today’s material in more detail.

1. Digraphs and multidigraphs (cont’d)

Last time, we defined hamps (Hamiltonian paths) for simple digraphs. Today,
we shall study them further. First, we introduce two more operations on simple
digraphs.

1.1. The reverse and complement digraphs

Definition 1.1.1. Let D = (V, A) be a simple digraph. Then:

(a) The elements of (V × V) \ A will be called the non-arcs of D.

(b) The reversal of a pair (i, j) ∈ V × V means the pair (j, i).

(c) We define Drev as the simple digraph (V, Arev), where

Arev = {(j, i) | (i, j) ∈ A} .

Thus, Drev is the digraph obtained from D by reversing each arc (i.e.,
swapping its source and its target). This is called the reversal of D.

(d) We define D as the simple digraph (V, (V × V) \ A). This is the di-
graph that has the same vertices as D, but whose arcs are precisely the
non-arcs of D. This digraph D is called the complement of D.

Example 1.1.2. Let

D =

1 2

3 4 .

https://www.cip.ifi.lmu.de/~grinberg/t/22s
https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
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Then,

Drev =

1 2

3 4 and D =

1 2

3 4 .

Convention 1.1.3. In the following, the symbol # means “number”. For ex-
ample,

(# of subsets of {1, 2, 3}) = 8.

We now shall try to count hamps in simple digraphs. As a warmup, here is a
particularly simple case:

Proposition 1.1.4. Let D be the simple digraph (V, A), where

V = {1, 2, . . . , n} for some n ∈ N,

and where
A = {(i, j) | i < j} .

Then, (# of hamps of D) = 1.

Proof. It is easy to see that the only hamp of D is (1, 2, . . . , n).

Proposition 1.1.5. Let D be a simple digraph. Then,

(# of hamps of Drev) = (# of hamps of D) .

Proof. The hamps of Drev are obtained from the hamps of D by walking back-
wards.

So far, so boring. What about this:

Theorem 1.1.6 (Berge). Let D be a simple digraph. Then,(
# of hamps of D

)
≡ (# of hamps of D)mod 2.

This is much less obvious or even expected. We first give an example:
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Example 1.1.7. Let D be the following digraph:

D =
1 2 3 .

This digraph has 3 hamps: (1, 2, 3) and (2, 3, 1) and (3, 1, 2).
Its complement D looks as follows:

D =
1 2 3 .

It has only 1 hamp: (1, 3, 2).
Thus, in this case, Theorem 1.1.6 says that 1 ≡ 3 mod 2.

Proof of Theorem 1.1.6. (This is an outline; see [17s-lec7, proof of Theorem 1.3.6]
for more details.)

Write the simple digraph D as D = (V, A), and assume WLOG that V ̸= ∅.
Set n = |V|.

A V-listing will mean a list of elements of V that contains each element of
V exactly once. (Thus, each V-listing is an n-tuple, and there are n! many V-
listings.) Note that a V-listing is the same as a hamp of the “complete” digraph
(V, V × V). Any hamp of D or of D is therefore a V-listing, but not every
V-listing is a hamp of D or D.

If σ = (σ1, σ2, . . . , σn) is a V-listing, then we define a set

P (σ) := {σ1σ2, σ2σ3, . . . , σn−1σn} .

We call this set P (σ) the arc set of σ. When we regard σ as a hamp of
(V, V × V), this set P (σ) is just the set of all arcs of σ. Note that this is an
(n − 1)-element set. We make a few easy observations (prove them!):

Observation 1: We can reconstruct a V-listing σ from its arc set P (σ).
In other words, the map σ 7→ P (σ) is injective.

Observation 2: Let σ be a V-listing. Then, σ is a hamp of D if and
only if P (σ) ⊆ A.

Observation 3: Let σ be a V-listing. Then, σ is a hamp of D if and
only if P (σ) ⊆ (V × V) \ A.

Now, let N be the # of pairs (σ, B), where σ is a V-listing and B is a subset of
A satisfying B ⊆ P (σ). Thus,

N = ∑
σ is a V-listing

Nσ,
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where
Nσ = (# of subsets B of A satisfying B ⊆ P (σ)) .

But we also have
N = ∑

B is a subset of A
NB,

where
NB = (# of V-listings σ satisfying B ⊆ P (σ)) .

Let us now relate these two sums to hamps. We begin with ∑
σ is a V-listing

Nσ.

We shall use the Iverson bracket notation: i.e., the notation [A] for the truth
value of a statement A. This truth value is defined to be the number 1 if A is
true, and 0 if A is false. For instance,

[2 + 2 = 4] = 1 and [2 + 2 = 5] = 0.

For any V-listing σ, we have

Nσ = (# of subsets B of A satisfying B ⊆ P (σ))

= (# of subsets B of A ∩ P (σ))

= 2|A∩P(σ)|

≡ [|A ∩ P (σ)| = 0] (since 2m ≡ [m = 0]mod 2 for each m ∈ N)

= [A ∩ P (σ) = ∅]

(
since equivalent statements have the

same truth value

)
= [P (σ) ⊆ (V × V) \ A] (since P (σ) is always a subset of V × V)

=
[
σ is a hamp of D

]
mod 2 (by Observation 3) .

So

N = ∑
σ is a V-listing

Nσ︸︷︷︸
≡[σ is a hamp of D]mod 2

≡ ∑
σ is a V-listing

[
σ is a hamp of D

]
=

(
# of V-listings σ that are hamps of D

)
because ∑

σ is a V-listing

[
σ is a hamp of D

]
is a sum

of several 1’s and several 0’s, and the 1’s in this
sum correspond precisely to

the V-listings σ that are hamps of D


=

(
# of hamps of D

)
mod 2.

What about the other expression for N ? Recall that

N = ∑
B is a subset of A

NB,
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where
NB = (# of V-listings σ satisfying B ⊆ P (σ)) .

We want to prove that this sum equals (# of hamps of D), at least modulo 2.
So let B be a subset of A. We want to know NB mod 2. In other words, we

want to know when NB is odd.
Let us first assume that NB is odd, and see what follows from this.
Since NB is odd, we have NB > 0. Thus, there exists at least one V-listing σ

satisfying B ⊆ P (σ). We shall now draw some conclusions from this.
First, a definition: A path cover of V means a set of paths in the “complete”

digraph (V, V × V) such that each vertex v ∈ V is contained in exactly one of
these paths. The set of arcs of such a path cover is simply the set of all arcs of
all its paths. For example, if V = {1, 2, 3, 4, 5, 6, 7}, then

{(1, 3, 5) , (2) , (6) , (7, 4)}

is a path cover of V, and its set of arcs is {13, 35, 74}.
Now, ponder the following: If we remove an arc vivi+1 from a path (v1, v2, . . . , vk),

then this path breaks up into two paths (v1, v2, . . . , vi) and (vi+1, vi+2, . . . , vk).
Thus, if we remove some arcs from the arc set P (σ) of a V-listing σ, then we
obtain the set of arcs of a path cover of V. (For instance, removing the arcs
52, 26 and 67 from the arc set P (σ) of the V-listing σ = (1, 3, 5, 2, 6, 7, 4) yields
precisely the path cover {(1, 3, 5) , (2) , (6) , (7, 4)} that we just showed as an
example.)

Now, recall that there exists at least one V-listing σ satisfying B ⊆ P (σ).
Hence, B is obtained by removing some arcs from the arc set P (σ) of this V-
listing σ. Therefore, B is the set of arcs of a path cover of V (by the claim of
the preceding paragraph). Let us say that this path cover consists of exactly r
paths. Then,

(# of V-listings σ satisfying B ⊆ P (σ)) = r!,

because any such V-listing σ can be constructed by concatenating the r paths
in our path cover in some order (and there are r! possible orders).

Thus, NB = (# of V-listings σ satisfying B ⊆ P (σ)) = r!. But we have as-
sumed that NB is odd. So r! is odd. Since r is positive (because V ̸= ∅, so our
path cover must contain at least one path), this entails that r = 1. So our path
cover is just a single path; this path is a path of D (since its set of arcs B is a
subset of A) and therefore is a hamp of D (since it constitutes a path cover of V
all by itself). If we denote it by σ, then we have B = P (σ) (since B is the set of
arcs of the path cover that consists of σ alone).

Forget our assumption that NB is odd. We have thus shown that if NB is odd,
then B = P (σ) for some hamp σ of D.

Conversely, it is easy to see that if B = P (σ) for some hamp σ of D, then NB

is odd (and actually equals 1).
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Combining these two results, we see that NB is odd if and only if B = P (σ)
for some hamp σ of D. Therefore,[

NB is odd
]
= [B = P (σ) for some hamp σ of D] .

However,

NB ≡
[

NB is odd
]

(since m ≡ [m is odd]mod 2 for any m ∈ Z)

= [B = P (σ) for some hamp σ of D]mod 2.

We have proved this congruence for every subset B of A. Thus,

N = ∑
B is a subset of A

NB︸︷︷︸
≡[B=P(σ) for some hamp σ of D]mod 2

≡ ∑
B is a subset of A

[B = P (σ) for some hamp σ of D]

= (# of subsets B of A such that B = P (σ) for some hamp σ of D)

= (# of sets of the form P (σ) for some hamp σ of D)(
because each set of the form P (σ) for some

hamp σ of D is a subset of A (by Observation 2)

)
= (# of hamps of D)mod 2

(indeed, Observation 1 shows that different hamps σ have different sets P (σ),
so counting the sets P (σ) for all hamps σ is equivalent to counting the hamps
σ themselves).

Now we have proved that N ≡
(
# of hamps of D

)
mod 2 and

N ≡ (# of hamps of D)mod 2. Comparing these two congruences, we obtain(
# of hamps of D

)
≡ (# of hamps of D)mod 2.

This proves Berge’s theorem.

1.2. Tournaments

We now introduce a special class of simple digraphs.

Definition 1.2.1. A digraph D is said to be loopless if it has no loops.

Definition 1.2.2. A tournament is defined to be a loopless simple digraph D
that satisfies the

• Tournament axiom: For any two distinct vertices u and v of D, exactly
one of (u, v) and (v, u) is an arc of D.

Equivalently:
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Proposition 1.2.3. A simple digraph D is a tournament if and only if Drev is
D without the loops.

Example 1.2.4. The following digraph is a tournament:

1

2

3 .

The following digraph is a tournament as well:

1

2

3 .

However, the following digraph is not a tournament:

1

2

3 ,

because the tournament axiom is not satisfied for u = 1 and v = 3. Nor is
the following digraph a tournament:

1

2

3 ,

because the tournament axiom is not satisfied for u = 1 and v = 2. Finally,
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the digraph

1

2

3

is not a tournament either, since it is not loopless.
The digraph D in Proposition 1.1.4 always is a tournament.

Which tournaments have hamps? The answer is surprisingly simple:

Theorem 1.2.5 (Easy Rédei theorem). A tournament always has at least one
hamp.

Even better, and perhaps even more surprisingly:

Theorem 1.2.6 (Hard Rédei theorem). Let D be a tournament. Then,

(# of hamps of D) is odd.

I will prove both theorems in the next lecture.
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