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Math 530 Spring 2022, Lecture 10: digraphs

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Digraphs and multidigraphs (cont’d)

1.1. Conversions (cont’d)

1.1.1. Multigraphs to multidigraphs

Last time, we explained how to turn any multidigraph D into a multigraph
Dund by forgetting the directions of the arcs.

Conversely, we can turn a multigraph G into a multidigraph Gbidir by “du-
plicating” each edge (more precisely: turning each edge into two arcs with
opposite orientations). Here is a formal definition:

Definition 1.1.1. Let G = (V, E, φ) be a multigraph. For each edge e ∈ E,
let us choose one of the endpoints of e and call it se; the other endpoint will
then be called te. (If e is a loop, then we understand te to mean se.)

We then define Gbidir to be the multidigraph (V, E × {1, 2} , ψ), where
the map ψ : E × {1, 2} → V × V is defined as follows: For each edge e ∈ E,
we set

ψ (e, 1) = (se, te) and ψ (e, 2) = (te, se) .

We call Gbidir the bidirectionalized multidigraph of G.

Note that the map ψ depends on our choice of se’s (that is, it depends on
which endpoint of an edge e we choose to be se). This makes the definition of
Gbidir non-canonical; I don’t know if there is a good way to fix this. Fortunately,
all choices of se’s will lead to mutually isomorphic multidigraphs Gbidir. (The
notion of isomorphism for multidigraphs is exactly the one that you expect.)

Example 1.1.2. If

1 2

3

4

G = g

a

b
c

,
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then

1 2

3

4

Gbidir =

(g, 1)

(g, 2)

(a, 1)

(a, 2)

(b, 1)

(b, 2)

(c, 1)

(c, 2)

.

(Here, for example, we have chosen sa to be 2, so that ta = 3 and ψ (a, 1) =
(2, 3) and ψ (a, 2) = (3, 2).) Yes, even the loops of G are duplicated in Gbidir !

The operation that assigns a multidigraph Gbidir to a multigraph G is injective
– i.e., the original graph G can be uniquely reconstructed from Gbidir. This is
in stark difference to the operation D 7→ Dund, which destroys information (the

directions of the arcs). Note that the multigraph
(
Gbidir)und

is not isomorphic

to G, since each edge of G is doubled in
(
Gbidir)und

.

1.1.2. Simple digraphs to multidigraphs

Next, we introduce another operation: one that turns simple digraphs into
multidigraphs. This is very similar to the operation G 7→ Gmult that turns
simple graphs into multigraphs, so we will even use the same notation for it.
Its definition is as follows:

Definition 1.1.3. Let D = (V, A) be a simple digraph. Then, the correspond-
ing multidigraph Dmult is defined to be the multidigraph

(V, A, ι) ,

where ι : A → V × V is the map sending each a ∈ A to a itself.

Example 1.1.4. If

1

2

3 4D = ,
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then

1

2

3 4Dmult =

(1, 2) (2, 3)

(1, 3)

(3, 4)

.

1.1.3. Multidigraphs to simple digraphs

There is also an operation D 7→ Dsimp that turns multidigraphs into simple
digraphs:1

Definition 1.1.5. Let D = (V, A, ψ) be a multidigraph. Then, the underlying
simple digraph Dsimp of D means the simple digraph

(V, {ψ (a) | a ∈ A}) .

In other words, it is the simple digraph with vertex set V in which there is an
arc from u to v if there exists an arc from u to v in D. Thus, Dsimp is obtained
from D by “collapsing” parallel arcs (i.e., arcs having the same source and
the same target) to a single arc.

Example 1.1.6. If

1

2

3 4D =

a b

c

d

e

f
g

,

then

1

2

3 4Dsimp =

.
1I will use a notation that I probably should have introduced before: If u and v are two vertices

of a digraph, then an “arc from u to v” means an arc with source u and target v.
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Note that the arcs c and d have not been “collapsed” into one arc, since they
do not have the same source and the same target. Likewise, the loop g has
been preserved (unlike for undirected graphs).

1.1.4. Multidigraphs as a big tent

A takeaway from this all is that multidigraphs are the “most general” notion of
graphs we have introduced so far. Indeed, using the operations we have seen
so far, we can convert every notion of graphs into a multidigraph:

• Each simple graph becomes a multigraph via the G 7→ Gmult operation.

• Each multigraph, in turn, becomes a multidigraph via the G 7→ Gbidir

operation.

• Each simple digraph becomes a multidigraph via the D 7→ Dmult opera-
tion.

Since all three of these operations are injective (i.e., lose no information), we
thus can encode each of our four notions of graphs as a multidigraph. Con-
sequently, any theorem about multidigraphs can be specialized to the other
three types of graphs. This doesn’t mean that any theorem on any other type
of graphs can be generalized to multidigraphs, though (e.g., Mantel’s theorem
holds only for simple graphs) – but when it can, we will try to state it at the
most general level possible, to avoid doing the same work twice.

1.2. Walks, paths, closed walks, cycles

Let us now define various kinds of walks for simple digraphs and for multidi-
graphs.

For simple digraphs, we imitate the definitions from Lectures 3 and 4 as best
as we can, making sure to require all arcs to be traversed in the correct direction:

Definition 1.2.1. Let D be a simple digraph. Then:

(a) A walk (in D) means a finite sequence (v0, v1, . . . , vk) of vertices of D
(with k ≥ 0) such that all of the pairs v0v1, v1v2, v2v3, . . . , vk−1vk are
arcs of D. (The latter condition is vacuously true if k = 0.)

(b) If w = (v0, v1, . . . , vk) is a walk in D, then:

• The vertices of w are defined to be v0, v1, . . . , vk.

• The arcs of w are defined to be the pairs
v0v1, v1v2, v2v3, . . . , vk−1vk.
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• The nonnegative integer k is called the length of w. (This is the
number of all arcs of w, counted with multiplicity. It is 1 smaller
than the number of all vertices of w, counted with multiplicity.)

• The vertex v0 is called the starting point of w. We say that w starts
(or begins) at v0.

• The vertex vk is called the ending point of w. We say that w ends
at vk.

(c) A path (in D) means a walk (in D) whose vertices are distinct. In other
words, a path means a walk (v0, v1, . . . , vk) such that v0, v1, . . . , vk are
distinct.

(d) Let p and q be two vertices of D. A walk from p to q means a walk that
starts at p and ends at q. A path from p to q means a path that starts at
p and ends at q.

(e) A closed walk of D means a walk whose first vertex is identical with
its last vertex. In other words, it means a walk (w0, w1, . . . , wk) with
w0 = wk. Sometimes, closed walks are also known as circuits (but
many authors use this latter word for something slightly different).

(f) A cycle of D means a closed walk (w0, w1, . . . , wk) such that k ≥ 1 and
such that the vertices w0, w1, . . . , wk−1 are distinct.

Note that we replaced the condition k ≥ 3 by k ≥ 1 in the definition of a
cycle, since simple digraphs can have loops. Fortunately, with the arcs being
directed, we no longer have to worry about the same arc being traversed back
and forth, so we need no extra condition to rule this out.

Example 1.2.2. Consider the simple digraph

1

2

3 4D = .

Then, (1, 2, 3, 4) and (1, 3, 4) are two walks of D, and these walks are paths.
But (2, 3, 1) is not a walk (since you cannot use the arc 13 to get from 3 to 1).
This digraph D has no cycles, and its only closed walks have length 0.
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Example 1.2.3. Consider the simple digraph

1

2

3 4D =
.

Then, (1, 2, 3, 1) and (3, 4, 3) and (4, 4) are cycles of D. Moreover,
(1, 2, 3, 4, 3, 1) is a closed walk but not a cycle.

Now let’s define the same concepts for multidigraphs, by modifying the anal-
ogous definitions for multigraphs we saw in Lecture 7:

Definition 1.2.4. Let D = (V, A, ψ) be a multidigraph. Then:

(a) A walk in D means a list of the form

(v0, a1, v1, a2, v2, . . . , ak, vk) (with k ≥ 0) ,

where v0, v1, . . . , vk are vertices of D, where a1, a2, . . . , ak are arcs of D,
and where each i ∈ {1, 2, . . . , k} satisfies

ψ (ai) = (vi−1, vi)

(that is, each arc ai has source vi−1 and target vi). Note that we have
to record both the vertices and the arcs in our walk, since we want the
walk to “know” which arcs it traverses.

The vertices of a walk (v0, a1, v1, a2, v2, . . . , ak, vk) are v0, v1, . . . , vk; the
arcs of this walk are a1, a2, . . . , ak. This walk is said to start at v0 and
end at vk; it is also said to be a walk from v0 to vk. Its starting point is
v0, and its ending point is vk. Its length is k.

(b) A path means a walk whose vertices are distinct.

(c) A closed walk (or circuit) means a walk (v0, a1, v1, a2, v2, . . . , ak, vk) with
vk = v0.

(d) A cycle means a closed walk (v0, a1, v1, a2, v2, . . . , ak, vk) such that

• the vertices v0, v1, . . . , vk−1 are distinct;

• we have k ≥ 1.

(This automatically implies that the arcs a1, a2, . . . , ak are distinct, since
each arc ai has source vi−1.)
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Example 1.2.5. Consider the multidigraph

1

2

3 4D =

a b

c

d

e

f
g

.

Then, (1, a, 2, b, 3, d, 1) and (3, d, 1, c, 3) and (4, g, 4) are three cycles of D,
whereas (3, d, 1, a, 2, b, 3, d, 1, c, 3) is a circuit but not a cycle.

Now, let us see which properties of walks, paths, closed walks and cycles
remain valid for digraphs.

In Lecture 3, we saw how two walks in a simple graph could be combined
(“spliced together”) if the ending point of the first is the starting point of the
second. In Lecture 8, we generalized this to multigraphs. The same holds for
multidigraphs:

Proposition 1.2.6. Let D be a multidigraph. Let u, v and w be three ver-
tices of D. Let a = (a0, e1, a1, . . . , ek, ak) be a walk from u to v. Let
b = (b0, f1, b1, . . . , fℓ, bℓ) be a walk from v to w. Then,

(a0, e1, a1, . . . , ek, ak, f1, b1, f2, b2, . . . , fℓ, bℓ)
= (a0, e1, a1, . . . , ak−1, ek, b0, f1, b1, . . . , fℓ, bℓ)
= (a0, e1, a1, . . . , ak−1, ek, v, f1, b1, . . . , fℓ, bℓ)

is a walk from u to w. This walk shall be denoted a ∗ b.

Proof. The same (trivial) argument as for undirected graphs works here.

However, unlike for undirected graphs, we can no longer reverse walks or
paths. Thus, it often happens that there is a walk from u to v, but no walk from
v to u.

Reducing a walk to a path (as we did in Lecture 3 for simple graphs and in
Lecture 8 for multigraphs) still works for multidigraphs:

Proposition 1.2.7. Let D be a multidigraph. Let u and v be two vertices of D.
Let a be a walk from u to v. Let k be the length of a. Assume that a is not a
path. Then, there exists a walk from u to v whose length is smaller than k.

Corollary 1.2.8 (When there is a walk, there is a path). Let D be a multidi-
graph. Let u and v be two vertices of D. Assume that there is a walk from u
to v of length k for some k ∈ N. Then, there is a path from u to v of length
≤ k.
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The proofs of these facts are the same as for multigraphs.
The following proposition is an analogue of Proposition 1.2.4 from Lecture 4

for multidigraphs:

Proposition 1.2.9. Let D be a multidigraph. Let w be a walk of D. Then, w
either is a path or contains a cycle (i.e., there exists a cycle of D whose arcs
are arcs of w).

Proof. This follows by the same argument as Proposition 1.2.4 in Lecture 4.

1.3. Connectivity

We defined the “path-connected” relation for undirected graphs using the exis-
tence of paths. For a digraph, however, the relations “there is a walk from u to
v” and “there is a walk from v to u” are (in general) distinct and non-symmetric,
so I prefer not to give them a symmetric-looking symbol such as ≃D. Instead,
we define strong path-connectedness to mean the existence of both walks:

Definition 1.3.1. Let D be a multidigraph. We define a binary relation ≃D on
the set V (D) as follows: For two vertices u and v of D, we shall have u ≃D v
if and only if there exists a walk from u to v in D and there exists a walk
from v to u in D.

This binary relation ≃D is called “strong path-connectedness”. When two
vertices u and v satisfy u ≃D v, we say that “u and v are strongly path-
connected”.

Example 1.3.2. Let D be as in Example 1.2.5. Then, 1 ≃D 2, because there
exists a walk from 1 to 2 in D (for instance, (1, a, 2)) and there also exists a
walk from 2 to 1 in D (for instance, (2, b, 3, d, 1)). However, we don’t have
3 ≃D 4. Indeed, while there exists a walk from 3 to 4 in D, there exists no
walk from 4 to 3 in D.

Proposition 1.3.3. Let D be a multidigraph. Then, the relation ≃D is an
equivalence relation.

Proof. Easy, like for simple graphs.

Again, we can replace “walk” by “path” in the definition of the relation ≃D:

Proposition 1.3.4. Let D be a multidigraph. Let u and v be two vertices of D.
Then, u ≃D v if and only if there exist a path from u to v and a path from v
to u.

Proof. Easy, like for simple graphs.
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Definition 1.3.5. Let D be a multidigraph. The equivalence classes of the
equivalence relation ≃D are called the strong components of D.

Definition 1.3.6. Let D be a multidigraph. We say that D is strongly con-
nected if D has exactly one strong component.

Thus, a multidigraph D is strongly connected if and only if it has at least one
vertex and there is a path from any vertex to any vertex.

In comparison, here is a weaker notion of connected components and con-
nectivity:

Definition 1.3.7. Let D be a multidigraph. Consider its underlying undi-
rected multigraph Dund. The components of this undirected multigraph Dund

(that is, the equivalence classes of the equivalence relation ≃Dund) are called
the weak components of D. We say that D is weakly connected if D has
exactly one weak component (i.e., if Dund is connected).

Example 1.3.8. Let D be the following simple digraph:

1

2

3

4

5

6

7

D =

.

We treat D as a multidigraph (namely, Dmult).
The weak components of D are {1, 2, 3, 4, 5} and {6, 7}.
The strong components of D are {1}, {2}, {3, 4, 5}, {6} and {7}. (Indeed,

for example, we have 1 ̸≃D 2 ̸≃D 3 but 3 ≃D 4 ≃D 5.)
So D is neither strongly nor weakly connected, but has more strong than

weak components.

Example 1.3.9. The digraph from Example 1.2.2 is weakly connected, but not
at all strongly connected (indeed, each of its strong components has size 1).
The digraph from Example 1.2.3, on the other hand, is strongly connected.

Proposition 1.3.10. Any strongly connected digraph is weakly connected.

Proof. Let D be a multidigraph. Then, any walk of D is (or, more precisely,
gives rise to) a walk of Dund. Hence, if two vertices u and v of D are strongly
path-connected in D, then they are path-connected in Dund. Therefore, if D is
strongly connected, then Dund is connected, but this means that D is weakly
connected.
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Let us take a look at what bidirectionalization (i.e., the operation G 7→ Gbidir

that sends a multigraph G to the multidigraph Gbidir) does to walks, paths,
closed walks and cycles:

Proposition 1.3.11. Let G be a multigraph. Then:

(a) The walks of G are “more or less the same as” the walks of the multi-
digraph Gbidir. More precisely, each walk of G gives rise to a walk of
Gbidir (with the same starting point and the same ending point), and
conversely, each walk of Gbidir gives rise to a walk of G. If G has no
loops, then this is a one-to-one correspondence (i.e., a bijection) be-
tween the walks of G and the walks of Gbidir.

(b) The paths of G are “more or less the same as” the paths of the multi-
digraph Gbidir. This is always a one-to-one correspondence, since paths
cannot contain loops.

(c) The closed walks of G are “more or less the same as” the closed walks
of the multidigraph Gbidir.

(d) The cycles of G are not quite the same as the cycles of Gbidir. In fact, if e
is an edge of G with two distinct endpoints u and v, then (u, e, v, e, u) is
not a cycle of G, but either (u, (e, 1) , v, (e, 2) , u) or (u, (e, 2) , v, (e, 1) , u)
is a cycle of Gbidir (this is best seen on a picture: G has the edge

u v
e

whereas Gbidir has the arc-pair

u v
(e, 1)

(e, 2) ), so Gbidir

usually has more cycles than G has. But it is true that each cycle of G
gives rise to a cycle of Gbidir.

1.4. Eulerian walks and circuits

We have studied Eulerian walks and circuits for (undirected) multigraphs in
Lectures 8 and 9. Let us now define analogous concepts for multidigraphs:

Definition 1.4.1. Let D be a multidigraph.

(a) A walk of D is said to be Eulerian if each arc of D appears exactly once
in this walk.

(In other words: A walk (v0, a1, v1, a2, v2, . . . , ak, vk) of D is said to be
Eulerian if for each arc a of D, there exists exactly one i ∈ {1, 2, . . . , k}
such that a = ai.)
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(b) An Eulerian circuit of D means a circuit (i.e., closed walk) of D that is
Eulerian.

The Euler–Hierholzer theorem gives a necessary and sufficient criterion for a
multigraph to have an Eulerian circuit or walk. For multidigraphs, there is an
analogous result:

Theorem 1.4.2 (diEuler, diHierholzer). Let D be a weakly connected multidi-
graph. Then:

(a) The multidigraph D has an Eulerian circuit if and only if each vertex v
of D satisfies deg+ v = deg− v.

(b) The multidigraph D has an Eulerian walk if and only if all but two
vertices v of D satisfy deg+ v = deg− v, and the remaining two vertices
v satisfy

∣∣deg+ v − deg− v
∣∣ ≤ 1.

Proof. Homework set #4.

Incidentally, the “each vertex v of D satisfies deg+ v = deg− v” condition has
a name:

Definition 1.4.3. A multidigraph D is said to be balanced if each vertex v of
D satisfies deg+ v = deg− v.

So balancedness is necessary and sufficient for the existence of an Eulerian
circuit in a weakly connected multidigraph.

The following proposition is obvious:

Proposition 1.4.4. Let G be a multigraph. Then, the multidigraph Gbidir is
balanced.

Proof. The definition of Gbidir yields that each vertex v of Gbidir satisfies deg+ v =
deg v and deg− v = deg v, where deg v denotes the degree of v as a vertex of
G. Hence, each vertex v of Gbidir satisfies deg+ v = deg v = deg− v. In other
words, Gbidir is balanced.

Combining this proposition with Theorem 1.4.2 (a), we can obtain a curious
fact about undirected(!) multigraphs:

Theorem 1.4.5. Let G be a connected multigraph. Then, the multidigraph
Gbidir has an Eulerian circuit. In other words, there is a circuit of G that
contains each edge exactly twice, and uses it once in each direction.
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Proof. The multidigraph Gbidir is balanced (as we just saw) and weakly con-
nected (this follows easily from the connectedness of G). Hence, Theorem 1.4.2
(a) can be applied to D = Gbidir. Thus, Gbidir has a Eulerian circuit. Reinterpret-
ing this circuit as a circuit of G, we obtain a circuit of G that contains each edge
exactly twice, and uses it once in each direction. This proves the theorem.

1.5. Hamiltonian cycles and paths

We can define Hamiltonian paths and cycles for simple digraphs in the same
way as we defined them for simple graphs:

Definition 1.5.1. Let D = (V, A) be a simple digraph.

(a) A Hamiltonian path in D means a walk of D that contains each vertex
of D exactly once. Obviously, it is a path.

(b) A Hamiltonian cycle in D means a cycle (v0, v1, . . . , vk) of D such that
each vertex of D appears exactly once among v0, v1, . . . , vk−1.

Convention 1.5.2. In the following, we will abbreviate:

• “Hamiltonian path” as “hamp”;

• “Hamiltonian cycle” as “hamc”.

We might wonder what can be said about hamps and hamcs for digraphs. Is
there an analogue of Ore’s theorem? The answer is “yes”, but it is significantly
harder to prove:

Theorem 1.5.3 (Meyniel). Let D = (V, A) be a strongly connected loopless
simple digraph with n vertices. Assume that for each pair (u, v) ∈ V × V of
two vertices u and v satisfying u ̸= v and (u, v) /∈ A and (v, u) /∈ A, we have
deg u + deg v ≥ 2n − 1. Here, deg w means deg+ w + deg− w. Then, D has a
hamc.

For the (rather complicated) proof of this, see [BonTho77] or [Berge91, §10.3,
Theorem 7]. Note that the “strongly connected” condition is needed.
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