Math 530: Graph Theory, Spring 2022: Homework 7 due 2022-05-25 at 11:00 AM Please solve 4 of the 8 problems!

Darij Grinberg

May 23, 2022

1 EXERCISE 1

1.1 PROBLEM

Let $D = (V, A, \psi)$ be a multidigraph. Assume that $V = \{1, 2, ..., n\}$ for some positive integer n. Let L be the Laplacian of D.

Prove the following:

(a) If r and s are two vertices of D, then

(# of spanning arborescences of D rooted to r) = $(-1)^{r+s} \det (L_{\sim r,\sim s})$.

(b) For each $r \in V$, we let $\tau(D, r)$ be the # of spanning arborescences of D rooted to r. Let f be the row vector $(\tau(D, 1), \tau(D, 2), \ldots, \tau(D, n))$. Then, fL = 0 (the zero vector).

1.2 HINT

Part (a) generalizes the Matrix-Tree Theorem (which is its particular case for s = r). However, both parts can actually be derived using the properties of L we know from class (without any new combinatorial input).

1.3 SOLUTION

2 EXERCISE 2

2.1 Problem

Let *n* be a positive integer. Let $N = \{1, 2, ..., n\}$. A map $f : N \to N$ is said to be *n*-potent if each $i \in N$ satisfies $f^{n-1}(i) = n$. (As usual, f^k denotes the *k*-fold composition $f \circ f \circ \cdots \circ f$.)

Prove that the # of *n*-potent maps $f: N \to N$ is n^{n-2} .

2.2 Solution

...

...

3 EXERCISE 3

3.1 PROBLEM

Let n = 2m + 1 > 2 be an odd integer. Let e be an edge of the (undirected) complete graph K_n . Prove that the # of Eulerian circuits of K_n that start with e is a multiple of $(m-1)!^n$.

3.2 HINT

Argue that each Eulerian circuit of K_n is a Eulerian circuit of a unique balanced tournament. Here, a "balanced tournament" means a balanced digraph obtained from K_n by orienting each edge.

3.3 Solution

•••

4 EXERCISE 4

4.1 PROBLEM

Let $G = (V, E, \varphi)$ be a multigraph. Let L be the Laplacian of the digraph G^{bidir} . Prove that L is positive semidefinite.

4.2 HINT

Write L as $N^T N$, where N or N^T is some matrix you have seen before.

Note that the statement is not true if we replace G^{bidir} by an arbitrary digraph D.

4.3 SOLUTION

•••

5 EXERCISE 5

5.1 Problem

Let *n* be a positive integer. Let Q_n be the *n*-hypercube graph (as defined in Lecture 6). Recall that its vertex set is the set $V := \{0, 1\}^n$ of length-*n* bitstrings, and that two vertices are adjacent if and only if they differ in exactly one bit. Our goal is to compute the # of spanning trees of Q_n .

Let D be the digraph Q_n^{bidir} . Let L be the Laplacian of D. We regard L as a $V \times V$ -matrix (i.e., as a $2^n \times 2^n$ -matrix whose rows and columns are indexed by bitstrings in V).

We shall use the notation a_i for the *i*-th entry of a bitstring a. Thus, each bitstring $a \in V$ has the form $a = (a_1, a_2, \ldots, a_n)$. (We shall avoid the shorthand notation $a_1 a_2 \cdots a_n$ here, as it could be mistaken for an actual product.)

For any two bitstrings $a, b \in V$, we define the number $\langle a, b \rangle$ to be the integer $a_1b_1 + a_2b_2 + \cdots + a_nb_n$.

(a) Prove that every bitstring $a \in V$ satisfies

$$\sum_{b \in V} (-1)^{\langle a, b \rangle} = \begin{cases} 2^n, & \text{if } a = \mathbf{0}; \\ 0, & \text{otherwise.} \end{cases}$$

Here, **0** denotes the bitstring $(0, 0, \ldots, 0) \in V$.

Now, define a further $V \times V$ -matrix G by requiring that its (a, b)-th entry is

$$G_{a,b} = (-1)^{\langle a,b \rangle}$$
 for any $a, b \in V$.

Furthermore, define a diagonal $V \times V$ -matrix D by requiring that its (a, a)-th entry is

$$D_{a,a} = 2 \cdot (\# \text{ of } i \in \{1, 2, \dots, n\} \text{ such that } a_i = 1)$$
$$= 2 \cdot (\text{the number of 1s in } a) \qquad \text{for any } a \in V$$

(and its off-diagonal entries are 0).

Prove the following:

- (b) We have $G^2 = 2^n \cdot I$, where I is the identity $V \times V$ -matrix.
- (c) We have $GLG^{-1} = D$.

- (d) The eigenvalues of L are 2k for all $k \in \{0, 1, ..., n\}$, and each eigenvalue 2k appears with multiplicity $\binom{n}{k}$.
- (e) The # of spanning trees of Q_n is

$$\frac{1}{2^n}\prod_{k=1}^n (2k)^{\binom{n}{k}}.$$

5.2 Remark

As an example, here is the case n = 3. In this case, the graph Q_n looks as follows:

The matrices L, G and D are

where the rows and the columns are ordered by listing the eight bitstrings $a \in V$ in the order 000, 001, 010, 011, 100, 101, 110, 111.

5.3 SOLUTION

...

6 EXERCISE 6

6.1 PROBLEM

Let $n \ge 5$ be an integer. Let G be the simple graph with vertex set $\{1, 2, ..., n\}$, and with edges

12, 23, 34, ...,
$$(n-2)(n-1)$$
, $(n-1)n$, $n1$,
13, 24, 35, ..., $(n-2)n$, $(n-1)1$, $n2$.

(That is, its edges are $\{i, i+1\}$ and $\{i, i+2\}$ for all $i \in \{1, 2, ..., n\}$, where we identify the elements n + 1 and n + 2 with 1 and 2, respectively.)

Prove that the # of spanning trees of G is nf_n^2 , where f_n is the *n*-th Fibonacci number. (The *Fibonacci numbers* are the number sequence $(f_0, f_1, f_2, ...)$ defined recursively by $f_0 = 0$ and $f_1 = 1$ and $f_k = f_{k-1} + f_{k-2}$ for all $k \ge 2$.)

6.2 Remark

Here is the graph G for n = 6:

6.3 Solution

•••

7 Exercise 7

7.1 Problem

Fix two positive integers n and k with $n \ge 2k > 0$. Let $S = \{1, 2, ..., n\}$. Consider the k-Kneser graph $K_{S,k}$ as defined in Lecture 3. Prove that $K_{S,k}$ has a proper (n - 2k + 2)-coloring.

7.2 Hint

What can you say about the minima (i.e., smallest elements) of two disjoint subsets of S? (Being distinct is a good first step.)

7.3 Remark

Lóvasz has proved in 1978 (using topology!) that this result is optimal – in the sense that n - 2k + 2 is the smallest integer q such that $K_{S,k}$ has a proper q-coloring.

7.4 Solution

•••

8 EXERCISE 8

8.1 PROBLEM

Let n and k be two positive integers. Let K be a set of size k. Let D be the de Bruijn digraph – i.e., the multidigraph constructed in the proof of Theorem 1.1.2 in Lecture 20. Let G be the result of removing all loops from the undirected graph D^{und} . Prove that G has a proper (k + 1)-coloring.

8.2 Solution

•••