Math 530: Graph Theory, Spring 2022: Homework 5 due 2022-05-04 at 11:00 AM Please solve 3 of the 6 problems!

Darij Grinberg

May 9, 2023

1 EXERCISE 1

1.1 PROBLEM

Let $D = (V, A, \psi)$ be a multidigraph.

For two vertices u and v of D, we shall write $u \xrightarrow{*} v$ if there exists a path from u to v. A root of D means a vertex $u \in V$ such that each vertex $v \in V$ satisfies $u \xrightarrow{*} v$.

A common ancestor of two vertices u and v means a vertex $w \in V$ such that $w \xrightarrow{*} u$ and $w \xrightarrow{*} v$.

Assume that D has at least one vertex. Prove that D has a root if and only if every two vertices in D have a common ancestor.

1.2 Solution

•••

2 EXERCISE 2

2.1 Problem

Let G be a multigraph that has no loops. Assume that there exists a vertex u of G such that

for each vertex v of G, there is a **unique** path from u to v in G.

Prove that G is a tree.

2.2 Remark

Notice the quantifiers used here: $\exists u \forall v$. This differs from the $\forall u \forall v$ in Statement T2 of the tree equivalence theorem (Theorem 1.2.4 in Lecture 13).

2.3 Solution

•••

3 Exercise 3

3.1 PROBLEM

Let F be any field¹.

Let $G = (V, E, \varphi)$ be a multigraph, where $V = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

For each edge $e \in E$, we construct a column vector $\chi_e \in F^n$ (that is, a column vector with n entries) as follows:

- If e is a loop, then we let χ_e be the zero vector.
- Otherwise, we let u and v be the two endpoints of e, and we let χ_e be the column vector that has a 1 in its u-th position, a -1 in its v-th position, and 0s in all other positions. (This depends on which endpoint we call u and which endpoint we call v, but we just make some choice and stick with it. The result will be true no matter how we choose.)

Let M be the $n \times |E|$ -matrix over F whose columns are the column vectors χ_e for all $e \in E$ (we order them in some way; the exact order doesn't matter). Prove that

$$\operatorname{rank} M = |V| - \operatorname{conn} G.$$

(Recall that $\operatorname{conn} G$ denotes the number of components of G.)

¹If you find it more convenient, you can assume that $F = \mathbb{R}$ or $F = \mathbb{C}$.

3.2 Remark

Here is an example: Let G be the multigraph

(so that n = 5). Then, if we choose the endpoints of b to be 2 and 5 in this order, then we have $\chi_b = \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}$. (Choosing them to be 5 and 2 instead, we would obtain $\chi_b = \begin{pmatrix} 0\\-1\\0\\0\\1 \end{pmatrix}$.)

If we do the same for all edges of G (that is, we choose the smaller endpoint as u and the larger endpoint as v), and if we order the columns so that they correspond to the edges a, b, c, d, e, f, g, h from left to right, then the matrix M comes out as follows:

$$M = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & -1 & -1 & -1 & 0 & -1 & 0 & 0 \end{pmatrix}.$$

It is easy to see that rank M = 4, which is precisely $|V| - \operatorname{conn} G$.

Another way of putting the claim of the exercise is that the span of the vectors χ_e for all $e \in E$ has dimension $|V| - \operatorname{conn} G$.

Topologists will recognize the matrix M as (a matrix that represents) the boundary operator $\partial : C_1(G) \to C_0(G)$, where G is viewed as a CW-complex.

3.3 SOLUTION

4 EXERCISE 4

4.1 PROBLEM

Let $G = (V, E, \varphi)$ be a connected multigraph such that $|E| \ge |V|$. Show that there exists an injective map $f: V \to E$ such that for each vertex $v \in V$, the edge f(v) contains v.

(In other words, show that we can assign to each vertex an edge that contains this vertex in such a way that no edge is assigned twice.)

...

4.2 Solution

5 EXERCISE 5

5.1 Problem

Let G be a connected multigraph. Let S be the simple graph whose vertices are the spanning trees of G, and whose edges are defined as follows: Two spanning trees T_1 and T_2 of G are adjacent (as vertices of S) if and only if T_2 can be obtained from T_1 by removing an edge and adding another (i.e., if and only if there exist an edge e_1 of T_1 and an edge e_2 of T_2 such that $e_2 \neq e_1$ and $T_2 \setminus e_2 = T_1 \setminus e_1$).

Prove that the simple graph S is itself connected. (In simpler language: Prove that any spanning tree of G can be transformed into any other spanning tree of G by a sequence of legal "remove an edge and add another" operations, where such an operation is called *legal* if its result is a spanning tree of G.)

5.2 Remark

Let G be the following multigraph:

Then, the graph \mathcal{S} looks as follows:

You must show that any two spanning trees T_1 and T_2 are path-connected in S. Induct on the number of edges of T_1 that are not edges of T_2 .

5.4 Solution

•••

6 EXERCISE 6

6.1 PROBLEM

Let $G = (V, E, \varphi)$ be a connected multigraph. Let $w : E \to \mathbb{R}$ be a map that assigns a real number w(e) to each edge e. We shall call this real number w(e) the *weight* of the edge e. If $H = (W, F, \varphi |_F)$ is a subgraph of G, then the *weight* w(H) of H is defined to be

If $H = (W, F, \varphi|_F)$ is a subgraph of G, then the *weight* w(H) of H is defined to $\sum_{f \in F} w(f)$ (that is, the sum of the weights of all edges of H).

A *w*-minimum spanning tree of G means a spanning tree of G that has the smallest weight among all spanning trees of G.

In Lecture 14, we have seen a way to construct a spanning tree of G by successively removing non-bridges until only bridges remain. (A *non-bridge* means an edge that is not a bridge.)

Now, let us perform this algorithm, but taking care to choose a non-bridge of largest weight (among all non-bridges) at each step. Prove that the result will be a w-minimum spanning tree.

6.2 Solution

•••