# Math 530: Graph Theory, Spring 2022: Homework 4 due 2022-04-27 at 11:00 AM **Please solve 3 of the 6 problems!**

Darij Grinberg

May 3, 2023

# 1 EXERCISE 1

### 1.1 PROBLEM

- (a) Let G = (V, E) be a simple graph, and let u and v be two distinct vertices of G that are not adjacent. Let n = |V|. Assume that  $\deg u + \deg v \ge n$ . Let  $G' = (V, E \cup \{uv\})$  be the simple graph obtained from G by adding a new edge uv. Assume that G' has a hame. Prove that G has a hame.
- (b) Does this remain true if we replace "hamc" by "hamp"?

#### 1.2 Solution

...

### $2 \ \text{Exercise} \ 2$

### 2.1 Problem

Let D be a multidigraph with at least one vertex. Prove the following:

- (a) If each vertex v of D satisfies  $\deg^+ v > 0$ , then D has a cycle.
- (b) If each vertex v of D satisfies  $\deg^+ v = \deg^- v = 1$ , then each vertex of D belongs to exactly one cycle of D. Here, two cycles are considered to be identical if one can be obtained from the other by cyclic rotation.

### 2.2 Solution

### 3 EXERCISE 3

### 3.1 Problem

Prove the directed Euler–Hierholzer theorem:

Let  ${\cal D}$  be a weakly connected multidigraph. Then:

- (a) The multidigraph D has an Eulerian circuit if and only if each vertex v of D satisfies  $\deg^+ v = \deg^- v$ .
- (b) The multidigraph D has an Eulerian walk if and only if all but two vertices v of D satisfy  $\deg^+ v = \deg^- v$ , and the remaining two vertices v satisfy  $\left|\deg^+ v \deg^- v\right| \le 1$ .

### 3.2 Solution

## 4 EXERCISE 4

### 4.1 PROBLEM

(a) Let  $D = (V, A, \psi)$  be a multidigraph, where  $V = \{1, 2, ..., n\}$  for some  $n \in \mathbb{N}$ . If M is any matrix, and if i and j are two positive integers, then  $M_{i,j}$  shall denote the (i, j)-th entry of M (that is, the entry of M in the i-th row and the j-th column). Let C be the  $n \times n$ -matrix (with real entries) defined by

 $C_{i,j} = (\text{the number of all arcs } a \in A \text{ with source } i \text{ and target } j)$  for all  $i, j \in V$ .

Let  $k \in \mathbb{N}$ , and let  $i, j \in V$ . Prove that  $(C^k)_{i,j}$  equals the number of all walks of D having starting point i, ending point j and length k.

(b) Let E be the following multidigraph:



Let  $n \in \mathbb{N}$ . Compute the number of walks from 1 to 1 having length n.

#### 4.2 Remark

The matrix C in part (a) of this problem is known as the *adjacency matrix* of D. For example, if the multidigraph is



then its adjacency matrix is

| (0         | 1 | 1 | $0 \rangle$ |
|------------|---|---|-------------|
| 0          | 0 | 1 | 0           |
| 1          | 0 | 0 | 2           |
| $\sqrt{0}$ | 0 | 0 | 1/          |

The adjacency matrix of a multidigraph D determines D up to the identities of the arcs, and thus is often used as a convenient way to encode a multidigraph.

4.3 Solution

5 EXERCISE 5

#### 5.1 PROBLEM

Consider a multidigraph  $D = (V, A, \psi)$ . Let  $\ell(a)$  be a real number for each arc  $a \in A$ . We view  $\ell(a)$  as a measure of "length" of the arc a (essentially modeling how long it takes or how hard it is to get from the source of a to the target of a by walking along this arc). For any walk  $\mathbf{w} = (w_0, a_1, w_1, a_2, w_2, \ldots, a_k, w_k)$  of D, we define the *weighted length* of  $\mathbf{w}$  to be the sum  $\ell(a_1) + \ell(a_2) + \cdots + \ell(a_k)$  of the lengths of all arcs of  $\mathbf{w}$ . We denote this weighted length by  $\ell(\mathbf{w})$ .

(Note that if we set  $\ell(a) = 1$  for each arc a, then this weighted length is just the usual length of  $\mathbf{w}$ .)

. . .

We are looking for a quick way of finding, for any two vertices u and v of D, the smallest weighted length of a walk from u to v (if such a walk exists), and at least one walk having this smallest weighted length. (This models quite a few real-life optimization problems, if the digraph D and the lengths  $\ell(a)$  are chosen appropriately.)

It turns out that the best way to approach this problem is to compute these data for all vertices v simultaneously, while keeping u fixed. Here is one way to organize this:

For any  $k \in \mathbb{N}$  any two vertices u and v of D, we define a k-optimal u-v-walk to mean a walk from u to v that has length k and has the smallest weighted length among all such walks. If a k-optimal u-v-walk exists, then we denote its length by  $d_{\ell,k}(u,v)$ . If not, then we define  $d_{\ell,k}(u,v)$  to be  $\infty$ .

Prove the following:

(a) For any positive integer k and any two vertices u and v, we have

 $d_{\ell,k}(u,v) = \min \left\{ d_{\ell,k-1}(u,w) + d_{\ell,1}(w,v) \mid w \in V \right\}.$ 

(b) For any positive integer k and any two vertices u and v, we have the following: Let  $w \in V$  be chosen in such a way that  $d_{\ell,k-1}(u,w) + d_{\ell,1}(w,v)$  is minimum. Let **a** be a (k-1)-optimal u-w-walk. Let **b** be a 1-optimal w-v-walk (i.e., a walk consisting of a single arc from w to v, which has to have minimum length among all arcs from w to v). Then, **a** \* **b** is a k-optimal u-v-walk.

Now, assume that the weighted length of each cycle of D is nonnegative. Prove the following:

- (c) If u and v are any two vertices of V, then the smallest weighted length of a walk from u to v equals the smallest weighted length of a **path** from u to v.
- (d) Let n = |V|. If u and v are any two vertices of V, then the smallest weighted length of a walk from u to v equals min  $\{d_{\ell,k}(u,v) \mid 0 \le k \le n-1\}$ .

#### 5.2 Remark

This gives an easy recursive way to find shortest paths between any two vertices of a digraph (and thus also of a graph, because if G is a graph, then the digraph  $G^{\text{bidir}}$  can be used as a standin for G).

It doesn't take much thought to see that all we need are *signposts*: For any two vertices u and v and any  $k \in \mathbb{N}$ , we need to know the weighted length and the first arc of a k-optimal u-v-walk. We can imagine this information being written on a signpost at u. Using these signposts, we can find the entire k-optimal u-v-walk by following them successively until we reach v. This is essentially the Bellman–Ford algorithm.

#### 5.3 Solution

•••

# 6 EXERCISE 6

### 6.1 Problem

Let D be a simple digraph with n vertices and a arcs. Assume that D has no loops, and that we have  $a > n^2/2$ . Prove that D has a cycle of length 3.

### 6.2 Remark

Note that this is both an analogue and a generalization (why?) of Mantel's theorem.

### 6.3 Solution

•••