Math 530: Graph Theory, Spring 2022: Homework 2 due 2022-04-13 at 11:00 AM

Please solve 4 of the 6 problems!

Darij Grinberg

April 24, 2022

1 Exercise 1

1.1 Problem

Let G be a simple graph.

- (a) Prove that if G has a closed walk of odd length, then G has a cycle of odd length.
- (b) Is it true that if G has a closed walk of length not divisible by 3, then G has a cycle of length not divisible by 3?
- (c) Does the answer to part (b) change if we replace "walk" by "non-backtracking walk"? (A walk **w** with edges e_1, e_2, \ldots, e_k (in this order) is said to be non-backtracking if each $i \in \{1, 2, \ldots, k-1\}$ satisfies $e_i \neq e_{i+1}$.)
- (d) Does the answer to part (b) change if we replace "walk" by "trail"? (A trail means a walk whose edges are distinct.)

(Proofs and counterexamples should be given.)

1.2 SOLUTION

. . .

2 Exercise 2

2.1 Problem

Let $n \geq 3$ be an integer. Find¹ a formula for the smallest size of a dominating set of the cycle graph C_n . You can use the *ceiling function* $x \mapsto \lceil x \rceil$, which sends a real number x to the smallest integer that is $\geq x$.

2.2 SOLUTION

•••

3 Exercise 3

3.1 Problem

Let n and k be positive integers such that $n \ge k (k+1)$ and k > 1. Recall the Kneser graph $KG_{n,k}$, whose vertices are the k-element subsets of $\{1, 2, ..., n\}$, and whose edges are the unordered pairs $\{A, B\}$ of such subsets with $A \cap B = \emptyset$.

Prove that the minimum size of a dominating set of $KG_{n,k}$ is k+1.

3.2 SOLUTION

...

4 Exercise 4

4.1 Problem

Let G = (V, E) be a connected simple graph with at least two vertices.

The distance d(v, w) between two vertices v and w of G is defined to be the smallest length of a path from v to w. (In particular, d(v, v) = 0 for each $v \in V$.)

Fix a vertex $v \in V$. Define two subsets

$$A = \{w \in V \mid d(v, w) \text{ is even}\} \qquad \text{and} \qquad B = \{w \in V \mid d(v, w) \text{ is odd}\}$$

of V.

¹Here and in what follows, "finding" includes proving your finds.

- (a) Prove that A is dominating.
- **(b)** Prove that *B* is dominating.
- (c) Prove that there exists a dominating set of G that has size $\leq |V|/2$.
- (d) Prove that the claim of part (c) holds even if we don't assume that G is connected, as long as we assume that each vertex of G has at least one neighbor.

4.2 SOLUTION

• • •

5 Exercise 5

5.1 Problem

Let G = (V, E) be a simple graph with at least one vertex. Let n = |V|. A detached pair means a pair (A, B) of two disjoint subsets A and B of V such that there exists no edge $ab \in E$ with $a \in A$ and $b \in B$.

Prove the following generalization of the Heinrich-Tittmann formula:

$$\sum_{\substack{S \text{ is a dominating} \\ \text{set of } G}} x^{|S|} = \left(1+x\right)^n - 1 + \sum_{\substack{(A,B) \text{ is a detached pair;} \\ A \neq \varnothing; \ B \neq \varnothing}} \left(-1\right)^{|A|} x^{|B|}.$$

(Here, both sides are polynomials in a single indeterminate x with coefficients in \mathbb{Z} .)

5.2 Remark

This is a generalization of the Heinrich–Tittmann formula for the number of dominating sets. (The latter formula can be obtained fairly easily by substituting x=1 into the above and subsequently cancelling the addends with $|A| \not\equiv |B| \mod 2$ against each other².) You are free to copy arguments from [Grinbe17] and change whatever needs to be changed. (Some lemmas can even be used without any changes – they can then be cited without proof.)

5.3 SOLUTION

. . .

²The addend for (A, B) cancels the addend for (B, A).

6 Exercise 6

6.1 Problem

Let G = (V, E) be a simple graph. Let S be a subset of V, and let k = |S|. Prove that

$$\sum_{v \in S} \deg v \le k (k-1) + \sum_{v \in V \setminus S} \min \left\{ \deg v, k \right\}.$$

6.2 SOLUTION

...

REFERENCES

[Grinbe17] Darij Grinberg, Notes on graph theory, draft of two chapters, 4th April 2022. https://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf