Math 530: Graph Theory, Spring 2022: Homework 1 due 2022-04-06 at 11:00 AM Please solve 4 of the 8 problems!

Darij Grinberg

April 6, 2023

1 Exercise 1

1.1 PROBLEM

Let G = (V, E) be a simple graph. Set n = |V|. Prove that we can find some edges e_1, e_2, \ldots, e_k of G and some triangles t_1, t_2, \ldots, t_ℓ of G such that $k + \ell \le n^2/4$ and such that each edge $e \in E \setminus \{e_1, e_2, \ldots, e_k\}$ is a subset of (at least) one of the triangles t_1, t_2, \ldots, t_ℓ .

1.2 Remark

This is a generalization of Mantel's theorem (because if G has no triangles, then ℓ must be 0, and thus e_1, e_2, \ldots, e_k must be all edges of G, so that we conclude that $|E| = k \leq k + \ell \leq n^2/4$).

1.3 SOLUTION

•••

2 EXERCISE 2

2.1 Problem

Let G be a simple graph with n vertices and k edges, where n > 0. Prove that G has at least $\frac{k}{3n} (4k - n^2)$ triangles.

2.2 Hint

First argue that for any edge vw of G, the total number of triangles that contain v and w is at least deg v+deg w-n. Then, use the inequality $n(a_1^2 + a_2^2 + \cdots + a_n^2) \ge (a_1 + a_2 + \cdots + a_n)^2$, which holds for any n real numbers a_1, a_2, \ldots, a_n . (This is a particular case of the Cauchy–Schwarz inequality or the Chebyshev inequality or the Jensen inequality – pick your favorite!)

2.3 Remark

This, too, is a generalization of Mantel's theorem: If $k > n^2/4$, then $\frac{k}{3n}(4k - n^2) > 0$, so the exercise entails that G has at least one triangle.

3 Exercise 3

3.1 Problem

Let n be a positive integer. Let S be a simple graph with 2n vertices. Prove that S has two distinct vertices that have an even number of common neighbors.

3.2 Solution

•••

...

4 EXERCISE 4

4.1 PROBLEM

Let $n \ge 2$ be an integer. Let G be a connected simple graph with n vertices.

- (a) Describe G if the degrees of the vertices of G are 1, 1, 2, 2, ..., 2 (exactly two 1's and n-2 many 2's).
- (b) Describe G if the degrees of the vertices of G are 1, 1, ..., 1, n 1.

(c) Describe G if the degrees of the vertices of G are $2, 2, \ldots, 2$.

Here, to "describe" G means to explicitly determine (with proof) a graph that is isomorphic to G.

4.2 Remark

The situations in this exercise are, in a sense, exceptional. Typically, the degrees of the vertices of a connected graph do not uniquely determine the graph up to isomorphism. For example, the two connected graphs

are not isomorphic¹, but have the same degrees (namely, each vertex of either graph has degree 3).

4.3 SOLUTION

5 EXERCISE 5

5.1 Problem

A simple graph G = (V, E) is said to be *optibip* (short for "optimal bipartite") if the set V can be partitioned into two subsets V_1 and V_2 such that $|V_1| - |V_2| \in \{0, 1\}$ and such that $E = \{v_1v_2 \mid v_1 \in V_1 \text{ and } v_2 \in V_2\}$. (The word "partitioned" means that V_1 and V_2 are two disjoint sets whose union is V.)

Let G = (V, E) be a simple graph with n vertices and k edges. Prove that the following two statements are equivalent:

- 1. The graph G has no triangles and satisfies $k = \lfloor n^2/4 \rfloor$.
- 2. The graph G is optibip.

¹The easiest way to see this is to observe that the second graph has a triangle (i.e., three distinct vertices that are mutually adjacent), while the first graph does not.

5.2 Remark

This characterizes when equality holds in (the contrapositive of) Mantel's theorem.

5.3 Solution

...

6 EXERCISE 6

6.1 PROBLEM

Let G be a simple graph with n vertices. Assume that each vertex of G has at least one neighbor.

A matching of G shall mean a set F of edges of G such that no two edges in F have a vertex in common. Let m be the largest size of a matching of G.

An *edge cover* of G shall mean a set F of edges of G such that each vertex of G is contained in at least one edge $e \in F$. Let c be the smallest size of an edge cover of G.

Prove that c + m = n.

6.2 Hint

Prove that $c \leq n - m$ and that $m \geq n - c$.

6.3 Remark

Let G be the graph

Then, $\{12, 34\}$ is a matching of G of largest possible size (why?), whereas $\{12, 34, 25\}$ is an edge cover of G of smallest possible size (why?). So the exercise says that 2 + 3 = 5 here, which is indeed true.

6.4 Solution

•••

7 Exercise 7

7.1 Problem

Let G = (V, E) be a simple graph.

. . .

An edge $e = \{u, v\}$ of G will be called *odd* if the number deg $u + \deg v$ is odd. Prove that the number of odd edges of G is even.

7.2 Hint

One solution uses modular arithmetic. Note in particular that $m^2 \equiv m \mod 2$ for every integer m. (There is also a solution without all of this.)

7.3 Solution

8 EXERCISE 8

8.1 PROBLEM

Let $n \geq 2$ be an integer. Let G be a simple graph with n vertices.

- (a) Describe G if the degrees of the vertices of G are 1, 1, ..., 1, n-1.
- (b) Let a and b be two positive integers such that a + b = n. Describe G if the degrees of the vertices of G are 1, 1, ..., 1, a, b.

Here, to "describe" G means to explicitly determine (with proof) a graph that is isomorphic to G.

8.2 Remark

This is a variation on Exercise 4 above. Note that G is not required to be connected here.

References

[Grinbe20] Darij Grinberg, Math 235: Mathematical Problem Solving, 10 August 2021. https://www.cip.ifi.lmu.de/~grinberg/t/20f/mps.pdf