Math 222: Enumerative Combinatorics, Fall 2022: Midterm 3

Darij Grinberg

December 19, 2022

due date: Monday, 2022-12-12 at 11:59 PM on gradescope.

Please solve **3 of the 7 exercises**! Collaboration is **not allowed** on this midterm!

1 EXERCISE 1

1.1 PROBLEM

Let n be a positive integer.

- (a) Compute the Stirling number of the 1st kind $\begin{bmatrix} n \\ n-1 \end{bmatrix}$. (Express the result without summation signs.)
- (b) Let H_{n-1} denote the (n-1)-st harmonic number, defined as the sum $\frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n-1}$. Prove that

$$\begin{bmatrix} n\\2 \end{bmatrix} = (n-1)!H_{n-1}.$$

1.2 Solution

[...]

2 EXERCISE 2

2.1 Problem

Let $n \in \mathbb{N}$ and $k \in \mathbb{N}$. Prove that

$$\sum_{p=0}^{n} {n \brack p} {p \choose k} = {n+1 \brack k+1}.$$

2.2 Hint

Substitute X + 1 for X in the polynomial identity

$$X(X+1)(X+2)\cdots(X+n-1) = \sum_{k=0}^{n} {n \brack k} X^{k}.$$

Then expand the right hand side and multiply by X.

2.3 Solution

[...]

3 Exercise 3

3.1 Problem

Let $n \in \mathbb{N}$. How many (ordered) pairs (A, B) of two nonempty subsets of [n] have the property that $\min A > |B|$ and $\min B > |A|$?

[Example: If n = 7, then the pair $(\{3, 5, 7\}, \{4, 5\})$ qualifies, since min $\{3, 5, 7\} = 3 > 2 = |\{4, 5\}|$ and min $\{4, 5\} = 4 > 3 = |\{3, 5, 7\}|$. However, the pair $(\{2, 5, 7\}, \{4, 5\})$ does not qualify, since min $\{2, 5, 7\} \le |\{4, 5\}|$.]

3.2 Solution

[...]

4 EXERCISE 4

4.1 Problem

Let n and k be two positive integers such that k > 1.

Let u be the # of compositions α of n such that each entry of α is congruent to 1 modulo k.

Let v be the # of compositions β of n + k - 1 such that each entry of β is $\geq k$.

4.2 Remark

The equality u = w was Exercise 2 on homework set #5, and can be used without proof now.

4.3 Solution

[...]

5 EXERCISE 5

5.1 Problem

Let n be an integer such that n > 1.

- (a) Find the # of all permutations $\sigma \in S_n$ such that $\sigma(1) = \sigma^{-1}(1)$.
- (b) Find the # of all permutations $\sigma \in S_n$ such that $\sigma(1) < \sigma^{-1}(1)$.

5.2 HINT

For part (b), relate the sizes of the three sets

$$\begin{aligned} A_{<} &:= \left\{ \sigma \in S_{n} \mid \sigma \left(1 \right) < \sigma^{-1} \left(1 \right) \right\}, \\ A_{=} &:= \left\{ \sigma \in S_{n} \mid \sigma \left(1 \right) = \sigma^{-1} \left(1 \right) \right\}, \\ A_{>} &:= \left\{ \sigma \in S_{n} \mid \sigma \left(1 \right) > \sigma^{-1} \left(1 \right) \right\} \end{aligned}$$

to one another.

5.3 Solution

[...]

6 EXERCISE 6

6.1 Problem

Let $n \in \mathbb{N}$, and let $k \in [n]$. For any permutation $\sigma \in S_n$, we let $m_k(\sigma)$ be the # of orbits of σ that have size k (that is, the # of k-cycles in the disjoint cycle decomposition of σ). Prove that

$$\sum_{\sigma \in S_n} m_k\left(\sigma\right) = \frac{n!}{k}.$$

6.2 Remark (and perhaps a hint)

In other words, this claims that the expected # of orbits of size k in a permutation $\sigma \in S_n$ is $\frac{1}{k}$. In particular, for k = 1, this shows that the expected # of fixed points of a permutation $\sigma \in S_n$ is 1 (since the fixed points of σ correspond to the orbits of size 1). See, e.g., [17f-hw7s, solution to Exercise 2] or [20f, §7.4.3] for a proof of this particular case.

6.3 SOLUTION

7 Exercise 7

7.1 Problem

Let $a, b, c \in \mathbb{N}$. Show that

$$\sum_{k\in\mathbb{Z}} \left(-1\right)^k \binom{2a}{a+k} \binom{2b}{b+k} \binom{2c}{c+k} = \frac{(a+b+c)! \cdot (2a)! \cdot (2b)! \cdot (2c)!}{a!b!c! \cdot (b+c)! \cdot (c+a)! \cdot (a+b)!}.$$

7.2 Hint

The proof is quite short using what was done in class.

[...]

References

- [17f-hw7s] Darij Grinberg, UMN Fall 2017 Math 4990 homework set #7 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw7os.pdf
- [20f] Darij Grinberg, Math 235: Mathematical Problem Solving, 22 March 2021. http://www.cip.ifi.lmu.de/~grinberg/t/20f/mps.pdf
- [Math222] Darij Grinberg, Enumerative Combinatorics: class notes, 13 September 2022. http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/t/19fco/n/n.pdf