Math 222: Enumerative Combinatorics, Fall 2022: Midterm 1

Darij Grinberg

November 21, 2022

due date: Friday, 2022-11-04 at 11:59 PM on gradescope.

Please solve **4 of the 8 exercises**! Collaboration is **not allowed** on this midterm!

1 EXERCISE 1

1.1 Problem

Let $n \in \mathbb{N}$. Prove that

$$\prod_{i=0}^{n} \binom{2i}{i}^{2} = 2^{n} \prod_{i=0}^{n} \left(\binom{n+i}{i} \binom{n}{i} \right).$$

1.2 Solution

[...]

2 EXERCISE 2

2.1 PROBLEM

Let n be a positive integer, and let $m \in \mathbb{N}$. Let $p_1, p_2, \ldots, p_n \in \mathbb{N}$ be fixed. Prove that

$$\sum_{\substack{(a_1,a_2,\ldots,a_n)\in\mathbb{N}^n;\\a_1+a_2+\cdots+a_n=m}} \binom{a_1}{p_1}\binom{a_2}{p_2}\cdots\binom{a_n}{p_n} = \binom{m+n-1}{p_1+p_2+\cdots+p_n+n-1}.$$

2.2 HINT

You are free to use results stated in the notes, such as the Chu–Vandermonde identity.

2.3 Solution

[...]

3 EXERCISE 3

3.1 Problem

Let $n \in \mathbb{N}$. Give a closed-form expression (no summation signs) for $\sum_{k=0}^{n} \left\lfloor \frac{k}{2} \right\rfloor \binom{n}{k}$.

3.2 Solution

[...]

4 EXERCISE 4

4.1 PROBLEM

A set S of integers will be called *almost-lacunar* if there exists exactly one $i \in S$ satisfying $i + 1 \in S$.

Let $n \in \mathbb{N}$ and $k \in \mathbb{N}$. Find the # of k-element almost-lacunar subsets of [n].

4.2 Solution

[...]

5 Exercise 5

5.1 PROBLEM

For each $n \in \mathbb{N}$, define the polynomial

$$T_{n}(x) := \sum_{T \text{ is a domino tiling of } R_{n,2}} (-1)^{h(T)} (2x)^{v_{+}(T)} x^{v_{1}(T)}$$

in a single indeterminate x with integer coefficients, where

- $h(T) \in \mathbb{N}$ denotes the # of horizontal dominos in the bottom row of T;
- $v_+(T) \in \mathbb{N}$ denotes the # of vertical dominos in columns 2, 3, ..., n of T;
- $v_1(T) \in \{0, 1\}$ denotes the # of vertical dominos in column 1 of T.

For instance, because of the three domino tilings

of $R_{3,2}$, we have

$$T_3(x) = (-1)^0 (2x)^2 x^1 + (-1)^1 (2x)^1 x^0 + (-1)^1 (2x)^0 x^1$$

= 4x³ - 2x - x = 4x³ - 3x.

- (a) Prove that $T_n(x) = 2xT_{n-1}(x) T_{n-2}(x)$ for any $n \ge 2$.
- (b) Prove that $\cos(n\alpha) = T_n(\cos \alpha)$ for any $n \in \mathbb{N}$ and any angle α .
- (c) Prove that $\frac{z^n + z^{-n}}{2} = T_n\left(\frac{z + z^{-1}}{2}\right)$ for any $n \in \mathbb{N}$ and any nonzero $z \in \mathbb{C}$.
- (d) Prove that $T_m(T_n(w)) = T_{mn}(w)$ for any $m, n \in \mathbb{N}$ and $w \in \mathbb{C}$.

5.2 Remark

The polynomials T_0, T_1, T_2, \ldots are known as the *Chebyshev polynomials of the first kind*. (However, they aren't usually defined in such an explicit way.)

5.3 Hint

You can use trigonometric identities (but not ones that involve the Chebyshev polynomials). Don't forget that the empty rectangle $R_{0,2}$ has a single domino tiling (which is itself an empty set, i.e., contains no dominos).

5.4 Solution

[...]

6 EXERCISE 6

6.1 PROBLEM

Let $n \in \mathbb{N}$. Prove that

$$\sum_{k=0}^{n} (-2)^k \binom{n}{k} \binom{2n-k}{n-k} = \begin{cases} (-1)^{n/2} \binom{n}{n/2}, & \text{if } n \text{ is even;} \\ 0, & \text{if } n \text{ is odd.} \end{cases}$$

6.2 Solution

[...]

7 EXERCISE 7

7.1 PROBLEM

For nonnegative integers
$$x, n, u$$
, and v , set

$$F_{x,n}(u,v) := \sum_{i=0}^{v} \binom{x+u}{n-i} \binom{u+i}{i} \binom{v}{i}.$$

Prove that

$$F_{x,n}\left(u,v\right) = F_{x,n}\left(v,u\right)$$

for any $x, n, u, v \in \mathbb{N}$.

[...]

8 EXERCISE 8

8.1 PROBLEM

Let k be a positive integer. A set S of integers will be called "lakunar" if there exists no $i \in S$ such that $i + k \in S$. (Thus, the lacunar sets are precisely the lalunar sets.)

For any $n \in \mathbb{N}$, let $a_{n,k}$ denote the maximum size of a lakunar subset of [n].

(a) Make a table of $a_{n,k}$ for all $1 \le n \le 8$ and $1 \le k \le 8$.

(b) Prove that
$$a_{n,k} \leq \frac{n+k}{2}$$
 for all $n \in \mathbb{N}$.

(c) Is this always an equality?

- (d) Find the sequence of the $a_{n,2}$ in the OEIS.
- (e)* Prove a "rule" (not necessarily stated as a formula) that makes the computation of $a_{n,k}$ easy and quick.

8.2 HINT

If you are using SageMath, note that Subsets(n, k) yields the set of all k-element subsets of [n].

8.3 Solution

[...]

References

[Math222] Darij Grinberg, Enumerative Combinatorics: class notes, 13 September 2022. http://www.cip.ifi.lmu.de/~grinberg/t/19fco/n/n.pdf Also available on the mirror server http://darijgrinberg.gitlab.io/t/19fco/n/n.pdf