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Math 222 Fall 2022, Lecture 30: Generating
functions

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

6. A brief introduction to generating functions

We have previously seen how the concept of polynomials can be used to prove
combinatorial identities. Namely, we have used the polynomial identity trick
(Lecture 14, Corollary 2.2.5) to generalize identities from x ∈ N to x ∈ R

(under certain conditions). The underlying idea is that if two polynomials P
and Q (in a single indeterminate, with real coefficients) satisfy P (x) = Q (x)
for all x ∈ N, then they are identical as polynomials (and thus P (x) = Q (x)
also holds for all x ∈ R).

Today I will show another way to use polynomials – this time, without com-
puting any of their values. That is, we will just regard polynomials as “formal
expressions” of the form a0 + a1X + a2X2 + · · ·+ anXn, which are added and
subtracted coefficientwise and multiplied by the standard rule (distributivity
and (aXn) · (bXm) = abXn+m). We will not substitute any actual numbers
for the indeterminate X, but merely manipulate polynomials algebraically and
then extract certain coefficients. This doesn’t sound like a particularly deep or
useful activity, but it turns out to give short proofs to various binomial identities
that are otherwise far from trivial.

This activity is actually a simple instance of the technique of “generating
functions”. In general, a generating function doesn’t have to be a polynomial,
but can be any formal power series (i.e., roughly speaking, an “infinite poly-
nomial”, or “polynomial with infinitely many nonzero coefficients”, such as
1X + 2X2 + 3X3 + · · · = ∑

k∈N

kXk). A proper introduction into this technique

would work at this general level (such introductions can be found, e.g., in [21s,
Chapter 3] or [Loehr11, Chapter 7 (in the 1st edition)]1 or [Sambal22]; see also
[Niven69] for a short overview). Here, however, we will content ourselves with
polynomials.

6.1. Notations and the binomial formula revisited

Convention 6.1.1. In this whole chapter, X shall denote an indeterminate,
and we will be working mostly with polynomials in a single indeterminate
X with rational coefficients.

1I am deliberately citing the 1st edition of this text, since the 2nd edition does a worse job
properly defining formal power series.

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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Definition 6.1.2. Let P be a polynomial in the indeterminate X. Let n ∈ N.
Then, the Xn-coefficient of P (that is, the coefficient before Xn in P) will be
denoted by [Xn] P.

(Yes, this is one more meaning for square brackets we are introducing. Fortu-
nately, it does not clash with the notation [n] for the set {1, 2, . . . , n}, nor with
the notation [A] for the truth value of A.)

For example,[
X3
] (

(1 + X)5
)
=
[

X3
] (

1 + 5X + 10X2 + 10X3 + 5X4 + 1
)
= 10 and[

X8
] (

(1 + X)5
)
= 0.

Let us recall how two polynomials are multiplied:

Proposition 6.1.3. Let

P = a0X0 + a1X1 + a2X2 + · · · = ∑
m∈N

amXm and

Q = b0X0 + b1X1 + b2X2 + · · · = ∑
m∈N

bmXm

be two polynomials.2 Then,

PQ = ∑
m∈N

(
m

∑
i=0

aibm−i

)
Xm. (1)

In other words, for each m ∈ N, the coefficient of Xm in the polynomial PQ
is given by

[Xm] (PQ) =
m

∑
i=0

aibm−i =
m

∑
i=0

([
Xi
]

P
)
·
([

Xm−i
]

Q
)

. (2)

Depending on how you define polynomials, Proposition 6.1.3 is either the
definition of the product PQ or an easy consequence of that definition. It is
precisely what is obtained when you multiply the equalities P = ∑

m∈N

amXm =

2The sums are infinite, but are supposed to contain only finitely many nonzero addends. For
example, when we write P = ∑

m∈N

amXm, we assume that all sufficiently large m ∈ N satisfy

am = 0. (If we drop this requirement, then we end up with formal power series rather than
polynomials; for now let’s not go there.)
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∑
i∈N

aiXi and Q = ∑
m∈N

bmXm = ∑
j∈N

bjX j and expand (using distributivity):

PQ =

(
∑

i∈N

aiXi

)(
∑

j∈N

bjX j

)
= ∑

i∈N

∑
j∈N︸ ︷︷ ︸

= ∑
(i,j)∈N×N

aiXibjX j︸ ︷︷ ︸
=aibjXi+j

= ∑
(i,j)∈N×N

aibjXi+j = ∑
m∈N

∑
(i,j)∈N×N;

i+j=m

aibj Xi+j︸︷︷︸
=Xm

(since i+j=m)(
here, we have split up the sum
according to the value of i + j

)

= ∑
m∈N

∑
(i,j)∈N×N;

i+j=m

aibjXm = ∑
m∈N

 ∑
(i,j)∈N×N;

i+j=m

aibj


︸ ︷︷ ︸

=
m
∑

i=0
aibm−i

(since the pairs (i,j)∈N×N satisfying i+j=m
are precisely the pairs (0,m), (1,m−1), ..., (m,0),

that is, the pairs (i,m−i) for i∈{0,1,...,m})

Xm

= ∑
m∈N

(
m

∑
i=0

aibm−i

)
Xm.

This proves (1). The equality (2) easily follows from this.
Addition of polynomials is simpler: It is coefficientwise. That is, for any two

polynomials P and Q and any n ∈ N, we have

[Xn] (P + Q) = ([Xn] P) + ([Xn] Q) . (3)

Recall the binomial formula (Lecture 7, Theorem 1.3.19), which states that

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k (4)

for any n ∈ N and any real numbers x and y. Since we proved this formula by
formal algebraic manipulations, we see instantaneously that it holds not only
when x and y are real numbers, but also more generally when x and y are two
polynomials (and the same proof that we gave applies verbatim in this case).
This has a few useful consequences:
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Lemma 6.1.4. Let n ∈ N. Then:
(a) We have

(1 + X)n = ∑
m∈N

(
n
m

)
Xm.

(b) We have

(1 − X)n = ∑
m∈N

(−1)m
(

n
m

)
Xm.

(c) We have (
1 − X2

)n
= ∑

m∈N

(−1)m
(

n
m

)
X2m.

Proof. (a) We have seen that the binomial formula (4) holds for any polynomials
x and y. Hence, we can apply this formula to x = X and y = 1. We thus obtain3

(X + 1)n =
n

∑
k=0

(
n
k

)
Xk 1n−k︸︷︷︸

=1

=
n

∑
k=0

(
n
k

)
Xk

=
n

∑
m=0

(
n
m

)
Xm 0

= ∑
m∈N

(
n
m

)
Xm

(since every integer m > n satisfies
(

n
m

)
= 0 and therefore

(
n
m

)
Xm = 0Xm =

0). Since X + 1 = 1 + X, this proves Lemma 6.1.4 (a).

(b) This is similar to part (a). Namely, apply the binomial formula (4) to
x = −X and y = 1. We thus obtain

(−X + 1)n =
n

∑
k=0

(
n
k

)
(−X)k︸ ︷︷ ︸
=(−1)kXk

1n−k︸︷︷︸
=1

=
n

∑
k=0

(
n
k

)
(−1)k Xk =

n

∑
k=0

(−1)k
(

n
k

)
Xk

=
n

∑
m=0

(−1)m
(

n
m

)
Xm 0

= ∑
m∈N

(−1)m
(

n
m

)
Xm.

Since −X + 1 = 1 − X, this proves Lemma 6.1.4 (b).

(c) This is similar to part (b). Namely, apply the binomial formula (4) to

3Recall that the symbol “ 0
=” means “equal because the two sums differ only in addends

which are zero”. In other words, we write “a 0
= b” if a and b are two sums that differ only

in addends that are zero. As we know, any two such sums a and b are necessarily equal.



Lecture 30, version June 11, 2023 page 5

x = −X2 and y = 1. We thus obtain(
−X2 + 1

)n
=

n

∑
k=0

(
n
k

) (
−X2

)k

︸ ︷︷ ︸
=(−1)kX2k

1n−k︸︷︷︸
=1

=
n

∑
k=0

(
n
k

)
(−1)k X2k =

n

∑
k=0

(−1)k
(

n
k

)
X2k

=
n

∑
m=0

(−1)m
(

n
m

)
X2m 0

= ∑
m∈N

(−1)m
(

n
m

)
X2m.

Since −X2 + 1 = 1 − X2, this proves Lemma 6.1.4 (c).

6.2. A new proof of the Chu–Vandermonde identity

Now let us see some applications.
Recall the Chu–Vandermonde identity (Lecture 15, Theorem 2.3.1), which

states that (
a + b

n

)
=

n

∑
k=0

(
a
k

)(
b

n − k

)
(5)

for all a, b ∈ R and n ∈ N. (We have renamed x and y as a and b here.)
Here is a new proof of this identity:

New proof of the Chu–Vandermonde identity. As in Lecture 15, we WLOG assume
that a, b ∈ N (since we can derive the general case from this case using the
“polynomial identity trick”).

Now, Lemma 6.1.4 (a) yields

(1 + X)a = ∑
m∈N

(
a
m

)
Xm and (1 + X)b = ∑

m∈N

(
b
m

)
Xm.

Hence, the formula (1) for the product of two polynomials (applied to P =

(1 + X)a, am =

(
a
m

)
, Q = (1 + X)b and bm =

(
b
m

)
) yields

(1 + X)a · (1 + X)b = ∑
m∈N

(
m

∑
i=0

(
a
i

)(
b

m − i

))
Xm.

Hence, the coefficient of Xn in the polynomial (1 + X)a · (1 + X)b is

n

∑
i=0

(
a
i

)(
b

n − i

)
=

n

∑
k=0

(
a
k

)(
b

n − k

)
.

On the other hand, the polynomial (1 + X)a · (1 + X)b can be rewritten as fol-
lows:

(1 + X)a · (1 + X)b = (1 + X)a+b = ∑
m∈N

(
a + b

m

)
Xm
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(by Lemma 6.1.4 (a)). Hence, the coefficient of Xn in this polynomial is
(

a + b
n

)
.

Now, we have computed this coefficient in two different ways, obtaining
n
∑

k=0

(
a
k

)(
b

n − k

)
from our first way and

(
a + b

n

)
from our second. But of

course, the answers have to be equal. Thus, we obtain(
a + b

n

)
=

n

∑
k=0

(
a
k

)(
b

n − k

)
.

This proves the Chu–Vandermonde identity.

Note the strategy that we followed in our above argument: We have proved
an equality between two numbers (in our case, (5)) by

• identifying these two numbers as corresponding coefficients of two poly-
nomials (in our case, (1 + X)a · (1 + X)b and (1 + X)a+b)

• and then showing that the two polynomials are equal.

The argument looks almost magical, seeing how it transformed the trivial-
looking equality (1 + X)a · (1 + X)b = (1 + X)a+b into the nontrivial Chu–
Vandermonde identity (5). This illustrates the power of polynomials (and,
more generally, generating functions). A polynomial is not just a convenient
“package” for its coefficients, but also provides ways to manipulate them “as a
collective” that are not easily available when one works with single coefficients
by themselves. A simple manipulation of polynomials can thus “encode” rather
complicated arguments on the level of single coefficients.

To remain fully honest (and dispel the magic somewhat), I should mention that the
trivial-looking equality (1 + X)a · (1 + X)b = (1 + X)a+b is not entirely trivial: It is
a consequence of the “law of exponents” PaPb = Pa+b, which in turn is proved (by
induction on a) using associativity of multiplication. Thus, our proof tacitly relied on
the fact that the multiplication of polynomials is associative. This fact is easy to prove
(see [21s, proof of Theorem 3.2.6] for a proof), but not completely obvious (its proof
requires a bit of sum manipulation). So the above proof is not entirely effortless, at
least if you count in the effort needed to prove this fact.

The magic of the above proof is thus not one of immaculate conception. Rather, the
concept of a polynomial has allowed a simple result (such as associativity of multipli-
cation for polynomials) to cast a long shadow. This kind of “amplification” of results
is a hallmark of abstract algebra.

6.3. The alternating Chu–Vandermonde identity

So we have learnt that simple (even obvious) identities between polynomials
can turn into nontrivial identities between their coefficients if you focus on a
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single coefficient. This can often be reverse-engineered: When you want to
prove a nontrivial identity between two numbers, you might wonder whether
these two numbers could be the Xn-coefficients of two equal polynomials whose
equality is much more obvious.

This is the technique of generating functions. In its general form, instead
of using polynomials, it uses formal power series (essentially “polynomials”
that can have infinitely many nonzero coefficients). For the examples we shall
explore in today’s lecture, polynomials will suffice.

Let us try our hands at another application of the same technique. This time,
we shall prove a binomial identity that we haven’t already proved in a different
way:

Theorem 6.3.1 (“alternating Chu–Vandermonde identity”). Let n ∈ N and
x ∈ R. Then,

n

∑
k=0

(−1)k
(

x
k

)(
x

n − k

)
=

(−1)n/2
(

x
n/2

)
, if n is even;

0, if n is odd.

Proof. Since both sides are polynomial functions in x, it suffices to prove this
equality for x ∈ N (by the “polynomial identity trick” from Lecture 14). So let
us WLOG assume that x ∈ N, and let us rename x as a. Thus, we must prove
that

n

∑
k=0

(−1)k
(

a
k

)(
a

n − k

)
?
=

(−1)n/2
(

a
n/2

)
, if n is even;

0, if n is odd.

We try to prove this in the same way as we just proved the Chu–Vandermonde
identity: We interpret both sides as the Xn-coefficients of polynomials, and we
show that the polynomials are equal.

What is the polynomial whose Xn-coefficient is(−1)n/2
(

a
n/2

)
, if n is even;

0, if n is odd

for each n ∈ N ? I claim that this polynomial is
(
1 − X2)a. Indeed, Lemma
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6.1.4 (c) yields(
1 − X2

)a
= ∑

m∈N

(−1)m
(

a
m

)
X2m

=

(
a
0

)
X0 −

(
a
1

)
X2 +

(
a
2

)
X4 −

(
a
3

)
X6 ± · · ·

= ∑
m∈N

is even

(−1)m/2
(

a
m/2

)
Xm,

so that the Xn-coefficient of this polynomial
(
1 − X2)a is

[Xn]
((

1 − X2
)a)

=

(−1)n/2
(

a
n/2

)
, if n is even;

0, if n is odd.
(6)

On the other hand, what is the polynomial whose Xn-coefficient equals the
sum

n

∑
k=0

(−1)k
(

a
k

)(
a

n − k

)
?

The shape of this sum is a dead giveaway; other than the letter used for the
summation index (which is k, not i here), this is precisely the sum on the right
hand side of (2) obtained when P = (1 − X)a and Q = (1 + X)a. Indeed, if we
define the two polynomials

P := (1 − X)a = ∑
m∈N

(−1)m
(

a
m

)
Xm (by Lemma 6.1.4 (b))

and

Q := (1 + X)a = ∑
m∈N

(
a
m

)
Xm (by Lemma 6.1.4 (a)) ,

then (2) (applied to m = n) yields

[Xn] (PQ) =
n

∑
i=0

(−1)i
(

a
i

)
·
(

a
n − i

)
=

n

∑
i=0

(−1)i
(

a
i

)(
a

n − i

)
=

n

∑
k=0

(−1)k
(

a
k

)(
a

n − k

)
. (7)

However, these polynomials P and Q satisfy

PQ = (1 − X)a (1 + X)a =

(1 − X) (1 + X)︸ ︷︷ ︸
=1−X2


a

=
(

1 − X2
)a

.
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Thus, we can rewrite (7) as

[Xn]
((

1 − X2
)a)

=
n

∑
k=0

(−1)k
(

a
k

)(
a

n − k

)
.

Comparing this with (6), we obtain

n

∑
k=0

(−1)k
(

a
k

)(
a

n − k

)
=

(−1)n/2
(

a
n/2

)
, if n is even;

0, if n is odd,

which is precisely what we needed to prove. Thus, we have established Theo-
rem 6.3.1.

A more conventional proof of Theorem 6.3.1 can be found in [Grinbe15, §7.30.2].

The following neat identity is a simple consequence of Theorem 6.3.1:

Corollary 6.3.2. Let n ∈ N. Then,

n

∑
k=0

(−1)k
(

n
k

)2

=

(−1)n/2
(

n
n/2

)
, if n is even;

0, if n is odd.

Proof. Apply Theorem 6.3.1 to x = n, and simplify the left hand side by noticing that(
n
k

) (
n

n − k

)
︸ ︷︷ ︸
=

(
n
k

)
(by Lecture 6,

Theorem 1.3.9)

=

(
n
k

)(
n
k

)
=

(
n
k

)2

.

6.4. Dixon’s identity

Our next goal is to show a deeper binomial identity:

Theorem 6.4.1 (Dixon’s identity). Let a, b, c ∈ N. Then,

∑
k∈Z

(−1)k
(

b + c
c + k

)(
c + a
a + k

)(
a + b
b + k

)
=

(a + b + c)!
a!b!c!

. (8)
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Two comments are worth making here:

• It is easy to show that the sum on the LHS of (8) is well-defined (i.e., only

finitely many addends are nonzero). In fact, for example, the
(

b + c
c + k

)
factor is 0 whenever k /∈ {−c,−c + 1, . . . , b}.

• The RHS of (8) is the multinomial coefficient
(

a + b + c
a, b, c

)
. (See Lecture

22, §2.10 for the definition of multinomial coefficients.)

How can we prove Theorem 6.4.1? There are various proofs (see, e.g., [Ward91]),
but none of them is easy. Let me show a mysterious proof using polynomials.4

First, for the sake of brevity, let us denote the LHS of (8) by F (a, b, c). That
is, we set

F (a, b, c) := ∑
k∈Z

(−1)k
(

b + c
c + k

)(
c + a
a + k

)(
a + b
b + k

)
(9)

for all a, b, c ∈ N. Thus, Dixon’s identity (8) can be rewritten as

F (a, b, c) =
(a + b + c)!

a!b!c!
. (10)

Our strategy for proving this identity will be to show that both of its sides
satisfy the same recurrence and have the same base values. The base values are
an easy matter:

Lemma 6.4.2. Dixon’s identity (10) is true if a = 0 or b = 0 or c = 0.

Proof. WLOG assume that a = 0 (since the cases b = 0 and c = 0 are analogous).

4This proof is a particular case of I. J. Good’s beautiful proof of the Dyson conjecture (which
is a generalization of Theorem 6.4.1, although not in a very obvious way). See Good’s short
note [Good70] or Andrews’s more detailed writeup [MacMah78, §3.3] for the latter proof.
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Then,

F (a, b, c) = ∑
k∈Z

(−1)k
(

b + c
c + k

)(
c + a
a + k

)(
a + b
b + k

)
= ∑

k∈Z

(−1)k
(

b + c
c + k

)(
c
k

)(
b

b + k

)
(since a = 0)

= ∑
k∈Z;
k<0

(−1)k
(

b + c
c + k

) (
c
k

)
︸︷︷︸
=0

(since k<0)

(
b

b + k

)

+ (−1)0︸ ︷︷ ︸
=1

(
b + c
c + 0

)
︸ ︷︷ ︸
=

(
b + c

c

)
(

c
0

)
︸︷︷︸
=1

(
b

b + 0

)
︸ ︷︷ ︸
=

(
b
b

)
=1

+ ∑
k∈Z;
k>0

(−1)k
(

b + c
c + k

)(
c
k

) (
b

b + k

)
︸ ︷︷ ︸

=0
(since k>0

and thus b+k>b)

=

(
b + c

c

)
=

(b + c)!
b!c!

(
an easy consequence of

the factorial formula for BCs

)
=

(a + b + c)!
a!b!c!

(an easy consequence of a = 0) .

In other words, (10) is true. This proves Lemma 6.4.2.

Next, let us find a recurrence relation that both sides of (10) should satisfy.
For the RHS, this is rather easy:

Lemma 6.4.3. Let a, b, c be positive integers. Then,

(a + b + c)!
a!b!c!

=
((a − 1) + b + c)!

(a − 1)!b!c!
+

(a + (b − 1) + c)!
a! (b − 1)!c!

+
(a + b + (c − 1))!

a!b! (c − 1)!
.

Proof. Upon bringing all fractions to a common denominator (using the identity
n! = (n − 1)! · n, which holds for every n > 0), this simplifies to a + b + c =
a + b + c, which is indeed true.

(Alternatively, Lemma 6.4.3 is a particular case of Proposition 2.10.4 (d) in
Lecture 22.)

Now to the hard part: We must show that the LHS F (a, b, c) of (10) satisfies
the same recurrence as the RHS. In other words, we must prove that

F (a, b, c) = F (a − 1, b, c) + F (a, b − 1, c) + F (a, b, c − 1)
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for every three positive integers a, b, c.
Now is the time to pull the polynomial rabbit out of our hat. This time,

we will use polynomials in three indeterminates X, Y, Z. We shall use the
notation

[
XiY jZk] P for the XiY jZk-coefficient of a polynomial P. For exam-

ple,
[
X1Y0Z1] ((2 − X) (2 − Y) (2 − Z)) = 2. For another example, for any

a, b, c ∈ N, we have[
XaYbZc

] (
(X + Y + Z)a+b+c

)
=

(
a + b + c

a, b, c

)
by the multinomial formula (Lecture 23, Theorem 2.10.5).

For any a, b, c ∈ N, we define a polynomial

Pa,b,c := (Y − Z)b+c · (Z − X)c+a · (X − Y)a+b . (11)

This is a polynomial in X, Y, Z (so we might call it Pa,b,c (X, Y, Z), but we would
soon tire of carrying the X, Y, Z arguments around). The main reason why this
polynomial is useful is that F (a, b, c) turns out to be one of its coefficients (up
to sign):

Lemma 6.4.4. For any a, b, c ∈ N, we have

F (a, b, c) = (−1)a+b+c ·
[

X2aY2bZ2c
]
(Pa,b,c) .

Proof. Let us first observe the following general fact: If n, m ∈ N and k ∈ Z are
arbitrary, then (

n + m
n − k

)
=

(
n + m
m + k

)
. (12)

(Indeed, this follows easily from the symmetry of BCs (Lecture 6, Theorem
1.3.9)5.)

As we already said, the binomial formula (4) holds not just for numbers,
but also for polynomials. This includes multivariate polynomials (for the same
reasons). Thus, in particular, we can apply (4) to n = b + c, x = Y and y = −Z.
We thus obtain

(Y − Z)b+c =
b+c

∑
k=0

(
b + c

k

)
Yk (−Z)b+c−k =

b+c

∑
i=0

(
b + c

i

)
Yi (−Z)b+c−i

0
= ∑

i∈Z

(
b + c

i

)
Yi (−Z)b+c−i (13)

5In more detail: Let n, m ∈ N and k ∈ Z. Then, the symmetry of BCs (Lecture 6, Theorem
1.3.9) yields (

n + m
n − k

)
=

(
n + m

(n + m)− (n − k)

)
=

(
n + m
m + k

)
.

This proves (12).
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(since every i ∈ Z \ {0, 1, . . . , b + c} satisfies
(

b + c
i

)
= 0). 6

Similarly,

(Z − X)c+a = ∑
j∈Z

(
c + a

j

)
Zj (−X)c+a−j (14)

and

(X − Y)a+b = ∑
k∈Z

(
a + b

k

)
Xk (−Y)a+b−k . (15)

Now, the definition of Pa,b,c yields

Pa,b,c = (Y − Z)b+c · (Z − X)c+a · (X − Y)a+b

=

(
∑
i∈Z

(
b + c

i

)
Yi (−Z)b+c−i

)
·
(

∑
j∈Z

(
c + a

j

)
Zj (−X)c+a−j

)

·
(

∑
k∈Z

(
a + b

k

)
Xk (−Y)a+b−k

)
(by (13), (14) and (15))

= ∑
i∈Z

∑
j∈Z

∑
k∈Z︸ ︷︷ ︸

= ∑
(i,j,k)∈Z3(

b + c
i

)
Yi (−Z)b+c−i

(
c + a

j

)
Zj (−X)c+a−j

(
a + b

k

)
Xk (−Y)a+b−k︸ ︷︷ ︸

=(−1)(b+c−i)+(c+a−j)+(a+b−k)

(
b + c

i

)(
c + a

j

)(
a + b

k

)
Xc+a−j+kYa+b−k+iZb+c−i+j

= ∑
(i,j,k)∈Z3

(−1)(b+c−i)+(c+a−j)+(a+b−k)︸ ︷︷ ︸
=(−1)i+j+k

(since (b+c−i)+(c+a−j)+(a+b−k)
=2a+2b+2c−(i+j+k)≡i+j+k mod 2)

(
b + c

i

)(
c + a

j

)(
a + b

k

)

Xc+a−j+kYa+b−k+iZb+c−i+j

= ∑
(i,j,k)∈Z3

(−1)i+j+k
(

b + c
i

)(
c + a

j

)(
a + b

k

)
Xc+a−j+kYa+b−k+iZb+c−i+j.

(16)

What is the coefficient of X2aY2bZ2c in this polynomial? This coefficient is

6You may wonder about the negative powers of Y that are contained in this sum (in the ad-
dends with i < 0). However, these powers can be ignored, since they are getting multiplied

with 0 anyway (since
(

b + c
i

)
= 0). The same holds for the negative powers of −Z (which

are contained in the addends with i > b + c).
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clearly

∑
(i,j,k)∈Z3;

c+a−j+k=2a;
a+b−k+i=2b;
b+c−i+j=2c

(−1)i+j+k
(

b + c
i

)(
c + a

j

)(
a + b

k

)
,

since the addend for any given triple (i, j, k) ∈ Z3 contributes to this coefficient
if and only if the exponents c + a − j + k, a + b − k + i and b + c − i + j equal
2a, 2b and 2c, respectively. In other words, we have[

X2aY2bZ2c
]
(Pa,b,c)

= ∑
(i,j,k)∈Z3;

c+a−j+k=2a;
a+b−k+i=2b;
b+c−i+j=2c

(−1)i+j+k
(

b + c
i

)(
c + a

j

)(
a + b

k

)
. (17)

Let us now simplify the sum on the RHS of this equality. The three equations
c + a − j + k = 2a, a + b − k + i = 2b and b + c − i + j = 2c are dependent:
More precisely, the third of them follows from the first two (since the sum of all
three equations is 2a + 2b + 2c = 2a + 2b + 2c). Thus, we can remove the third
equation, transforming the sum into

∑
(i,j,k)∈Z3;

c+a−j+k=2a;
a+b−k+i=2b

(−1)i+j+k
(

b + c
i

)(
c + a

j

)(
a + b

k

)
.

The remaining two equations c + a − j + k = 2a and a + b − k + i = 2b uniquely
determine i and j in terms of k: namely,

i = 2b − (a + b − k) = b − a + k and
j = (c + a + k)− 2a = c − a + k.

Thus, instead of summing over all triples (i, j, k) ∈ Z3 satisfying these two
equations, we can just as well sum over all k ∈ Z and substitute b − a + k for i
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and c − a + k for j in the sum. Hence,

∑
(i,j,k)∈Z3;

c+a−j+k=2a;
a+b−k+i=2b

(−1)i+j+k
(

b + c
i

)(
c + a

j

)(
a + b

k

)

= ∑
k∈Z

(−1)(b−a+k)+(c−a+k)+k
(

b + c
b − a + k

)(
c + a

c − a + k

)(
a + b

k

)
= ∑

k∈Z

(−1)(b−a+(a−k))+(c−a+(a−k))+(a−k)︸ ︷︷ ︸
=(−1)a+b+c−3k=(−1)a+b+c+k

(since −3k≡k mod 2)

(
b + c

b − a + (a − k)

)
︸ ︷︷ ︸

=

(
b + c
b − k

)
(

c + a
c − a + (a − k)

)
︸ ︷︷ ︸

=

(
c + a
c − k

)
(

a + b
a − k

)

(here, we have substituted a − k for k in the sum)

= ∑
k∈Z

(−1)a+b+c+k︸ ︷︷ ︸
=(−1)a+b+c(−1)k

(
b + c
b − k

)
︸ ︷︷ ︸
=

(
b + c
c + k

)
(by (12))

(
c + a
c − k

)
︸ ︷︷ ︸
=

(
c + a
a + k

)
(by (12))

(
a + b
a − k

)
︸ ︷︷ ︸
=

(
a + b
b + k

)
(by (12))

= (−1)a+b+c ∑
k∈Z

(−1)k
(

b + c
c + k

)(
c + a
a + k

)(
a + b
b + k

)
︸ ︷︷ ︸

=F(a,b,c)
(by (9))

= (−1)a+b+c F (a, b, c) .

Now, (17) becomes[
X2aY2bZ2c

]
(Pa,b,c)

= ∑
(i,j,k)∈Z3;

c+a−j+k=2a;
a+b−k+i=2b;
b+c−i+j=2c

(−1)i+j+k
(

b + c
i

)(
c + a

j

)(
a + b

k

)

= ∑
(i,j,k)∈Z3;

c+a−j+k=2a;
a+b−k+i=2b

(−1)i+j+k
(

b + c
i

)(
c + a

j

)(
a + b

k

)

(
since, as we said, the third equation b + c − i + j = 2c
under the summation sign follows from the other two

)
= (−1)a+b+c F (a, b, c) .
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Solving this for F (a, b, c), we obtain

F (a, b, c) =
[
X2aY2bZ2c] (Pa,b,c)

(−1)a+b+c = (−1)a+b+c ·
[

X2aY2bZ2c
]
(Pa,b,c) .

This proves Lemma 6.4.4.

The next lemma is a straightforward computation:

Lemma 6.4.5. Let Q be a polynomial in X, Y, Z that is divis-
ible by (Y − Z) (Z − X) (X − Y) (that is, Q can be written as
(Y − Z) (Z − X) (X − Y) R for some polynomial R). Then,

X2Q
(X − Y) (Z − X)

+
Y2Q

(Y − Z) (X − Y)
+

Z2Q
(Z − X) (Y − Z)

= −Q.

It would be easier to restate this lemma in the form

X2

(X − Y) (Z − X)
+

Y2

(Y − Z) (X − Y)
+

Z2

(Z − X) (Y − Z)
= −1.

However, this requires working with rational functions (i.e., formal ratios of poly-
nomials) instead of polynomials. To keep our arguments maximally elementary, we
prefer to stay among the polynomials, and thus we only divide polynomials by other
polynomials if the former are divisible by the latter.

Proof of Lemma 6.4.5. Bringing the fractions to a common denominator, we find

X2Q
(X − Y) (Z − X)

+
Y2Q

(Y − Z) (X − Y)
+

Z2Q
(Z − X) (Y − Z)

=
X2 (Y − Z) Q + Y2 (Z − X) Q + Z2 (X − Y) Q

(Y − Z) (Z − X) (X − Y)

=

(
X2 (Y − Z) + Y2 (Z − X) + Z2 (X − Y)

)
Q

(Y − Z) (Z − X) (X − Y)

=
− (Y − Z) (Z − X) (X − Y) Q
(Y − Z) (Z − X) (X − Y) since a straightforward expansion of both sides

verifies that X2 (Y − Z) + Y2 (Z − X) + Z2 (X − Y)
= − (Y − Z) (Z − X) (X − Y)


= −Q.

The next lemma is about how the coefficients of a polynomial get shifted
when that polynomial is multiplied by a power of X:
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Lemma 6.4.6. Let P be a polynomial in X, Y, Z. Let u, i, j, k ∈ N. Then,[
XiY jZk

]
P =

[
Xi+uY jZk

]
(XuP) .

Proof. Let us first prove the analogous fact about polynomials in one variable:
If P is a polynomial in a single variable X, and if u, i ∈ N, then[

Xi
]

P =
[

Xi+u
]
(XuP) . (18)

Indeed, write P in the form P = ∑
n∈N

anXn. Then,
[
Xi] P = ai. However, from

P = ∑
n∈N

anXn, we obtain

XuP = Xu ∑
n∈N

anXn = ∑
n∈N

an XuXn︸ ︷︷ ︸
=Xu+n=Xn+u

= ∑
n∈N

anXn+u,

which is clearly a polynomial whose Xi+u-coefficient is ai. In other words,[
Xi+u] (XuP) = ai. Comparing this with

[
Xi] P = ai, we obtain

[
Xi] P =[

Xi+u] (XuP). Thus, (18) is proved.
The case of three variables X, Y, Z is analogous; the only difference is that

there are now two further variables Y and Z that passively tag along.

Now to the crucial step:

Lemma 6.4.7. Let a, b, c be positive integers. Then,

F (a, b, c) = F (a − 1, b, c) + F (a, b − 1, c) + F (a, b, c − 1) .

Proof. Since a, b, c are positive integers, we have a, b, c ≥ 1. Thus, the exponents
b + c, c + a and a + b in (11) are ≥ 2 each. Hence, they are ≥ 1 each. Therefore,
the polynomial Pa,b,c is divisible by (Y − Z) (Z − X) (X − Y).

The definition of Pa−1,b,c yields

Pa−1,b,c = (Y − Z)b+c · (Z − X)c+a−1︸ ︷︷ ︸
=
(Z − X)c+a

Z − X

· (X − Y)a−1+b︸ ︷︷ ︸
=
(X − Y)a+b

X − Y

= (Y − Z)b+c · (Z − X)c+a

Z − X
· (X − Y)a+b

X − Y

=
(Y − Z)b+c · (Z − X)c+a · (X − Y)a+b

(X − Y) (Z − X)

=
Pa,b,c

(X − Y) (Z − X)
(by (11)) . (19)
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Lemma 6.4.4 yields

F (a, b, c) = (−1)a+b+c ·
[

X2aY2bZ2c
]
(Pa,b,c) .

However, we can also apply Lemma 6.4.4 to a − 1 instead of a (since a ≥ 1, so
that a − 1 ∈ N). Thus, we obtain

F (a − 1, b, c) = (−1)a−1+b+c︸ ︷︷ ︸
=−(−1)a+b+c

·
[

X2(a−1)Y2bZ2c
]
(Pa−1,b,c)︸ ︷︷ ︸

=[X2(a−1)+2Y2bZ2c](X2Pa−1,b,c)
(by Lemma 6.4.6, applied to P=Pa−1,b,c

and i=2(a−1) and j=2b and k=2c and u=2)

= − (−1)a+b+c ·

X2(a−1)+2︸ ︷︷ ︸
=X2a

Y2bZ2c




X2 Pa−1,b,c︸ ︷︷ ︸
=

Pa,b,c

(X − Y) (Z − X)
(by (19))


= − (−1)a+b+c ·

[
X2aY2bZ2c

] (
X2 · Pa,b,c

(X − Y) (Z − X)

)
= − (−1)a+b+c ·

[
X2aY2bZ2c

] X2Pa,b,c

(X − Y) (Z − X)
.

Similarly,

F (a, b − 1, c) = − (−1)a+b+c ·
[

X2aY2bZ2c
] Y2Pa,b,c

(Y − Z) (X − Y)
and

F (a, b, c − 1) = − (−1)a+b+c ·
[

X2aY2bZ2c
] Z2Pa,b,c

(Z − X) (Y − Z)
.
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Summing these three equations together, we find

F (a − 1, b, c) + F (a, b − 1, c) + F (a, b, c − 1)

= − (−1)a+b+c ·
[

X2aY2bZ2c
] X2Pa,b,c

(X − Y) (Z − X)

− (−1)a+b+c ·
[

X2aY2bZ2c
] Y2Pa,b,c

(Y − Z) (X − Y)

− (−1)a+b+c ·
[

X2aY2bZ2c
] Z2Pa,b,c

(Z − X) (Y − Z)

= − (−1)a+b+c ·
[

X2aY2bZ2c
] ( X2Pa,b,c

(X − Y) (Z − X)
+

Y2Pa,b,c

(Y − Z) (X − Y)
+

Z2Pa,b,c

(Z − X) (Y − Z)

)
︸ ︷︷ ︸

=−Pa,b,c
(by Lemma 6.4.5, applied to Q=Pa,b,c)(

since
([

XiY jZk]U
)
+
([

XiY jZk]V
)
=
[
XiY jZk] (U + V)

for any i, j, k ∈ N and any two polynomials U, V

)
= − (−1)a+b+c ·

[
X2aY2bZ2c

]
(−Pa,b,c)︸ ︷︷ ︸

=−[X2aY2bZ2c]Pa,b,c

= (−1)a+b+c ·
[

X2aY2bZ2c
]
(Pa,b,c) = F (a, b, c) (by Lemma 6.4.4) .

This proves Lemma 6.4.7.

We are now ready to prove Theorem 6.4.1:

Proof of Theorem 6.4.1. We must prove (8). As we recall, the equality (10) is just
a restatement of (8), so it suffices to prove (10) instead.

The proof is completely straightforward at this point: The LHS F (a, b, c) of

(10) satisfies a recurrence (Lemma 6.4.7), but the RHS
(a + b + c)!

a!b!c!
satisfies the

same recurrence (by Lemma 6.4.3). Furthermore, the starting values (i.e., the
values when one of a, b, c is 0) are also the same (by Lemma 6.4.2). It thus
follows that the LHS and the RHS are always equal, so that (10) holds.

For the sake of completeness, here is the proof in more detail:
We shall prove (10) by induction on a + b + c.
Base case: If a + b + c = 0, then a = b = c = 0, and thus (10) holds by Lemma 6.4.2.
Induction step: Let m be a positive integer. Assume (as the induction hypothesis) that

(10) holds whenever a + b + c = m − 1. We must now prove (10) in the case when
a + b + c = m.

So let a, b, c ∈ N satisfy a + b + c = m. We must prove (10). If a = 0 or b = 0 or
c = 0, then (10) follows directly from Lemma 6.4.2. Thus, we WLOG assume that none
of a, b, c is 0. Hence, a, b, c are positive integers. Thus, Lemma 6.4.7 yields

F (a, b, c) = F (a − 1, b, c) + F (a, b − 1, c) + F (a, b, c − 1) . (20)
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However, from a + b + c = m, we obtain (a − 1) + b + c = a + b + c︸ ︷︷ ︸
=m

−1 = m − 1. Thus,

by our induction hypothesis, (10) holds for a − 1 instead of a. In other words, we have

F (a − 1, b, c) =
((a − 1) + b + c)!

(a − 1)!b!c!
.

Similarly,

F (a, b − 1, c) =
(a + (b − 1) + c)!

a! (b − 1)!c!
and

F (a, b, c − 1) =
(a + b + (c − 1))!

a!b! (c − 1)!
.

In light of these three equalities, we can rewrite (20) as

F (a, b, c) =
((a − 1) + b + c)!

(a − 1)!b!c!
+

(a + (b − 1) + c)!
a! (b − 1)!c!

+
(a + b + (c − 1))!

a!b! (c − 1)!

=
(a + b + c)!

a!b!c!
(by Lemma 6.4.3) .

In other words, (10) holds for our a, b, c. This completes the induction step. Thus, by
induction, we have proved (10), and with it Theorem 6.4.1.

Oof. I don’t remember where I learned the above proof, nor do I have a good
explanation of “where it comes from” (or, more pragmatically, how to find such
proofs). However, it is an impressive exhibition of the power of polynomials.

Let us mention the following consequence of Theorem 6.4.1 (similar to Corollary
6.3.2, but significantly harder):

Corollary 6.4.8. Let n ∈ N. Then,

n

∑
k=0

(−1)k
(

n
k

)3

=

(−1)n/2 (3n/2)!
(n/2)!3

, if n is even;

0, if n is odd.

Proof sketch. When n is odd, the sum
n
∑

k=0
(−1)k

(
n
k

)3

is easily seen to be 0 since its

addends cancel out in pairs (namely, (−1)k
(

n
k

)3

cancels (−1)n−k
(

n
n − k

)3

). So we
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WLOG assume that n is even. Then,

n

∑
k=0

(−1)k
(

n
k

)3

0
= ∑

k∈Z

(−1)k
(

n
k

)3

= ∑
k∈Z

(−1)n/2+k︸ ︷︷ ︸
=(−1)n/2(−1)k

(
n

n/2 + k

)3 (
here, we have substituted n/2 + k

for k in the sum

)

= (−1)n/2 ∑
k∈Z

(−1)k
(

n
n/2 + k

)3

︸ ︷︷ ︸
=

(
n/2 + n/2

n/2 + k

)3

=

(
n/2 + n/2

n/2 + k

)(
n/2 + n/2

n/2 + k

)(
n/2 + n/2

n/2 + k

)
= (−1)n/2 ∑

k∈Z

(−1)k
(

n/2 + n/2
n/2 + k

)(
n/2 + n/2

n/2 + k

)(
n/2 + n/2

n/2 + k

)
︸ ︷︷ ︸

=
(n/2 + n/2 + n/2)!
(n/2)! (n/2)! (n/2)!

(by Theorem 6.4.1, applied to a=n/2 and b=n/2 and c=n/2)

= (−1)n/2 (n/2 + n/2 + n/2)!
(n/2)! (n/2)! (n/2)!

= (−1)n/2 (3n/2)!
(n/2)!3

.

Thus, Corollary 6.4.8 is proved.

With Corollary 6.3.2 and Corollary 6.4.8, we have paid off all our proof debts from

Lecture 15, Remark 2.3.5. As we said, neither
n
∑

k=0

(
n
k

)3

nor
n
∑

k=0
(−1)k

(
n
k

)4

seem to

have explicit expressions, so the series of binomial identities we have proved has come
to a natural end.

And so has this lecture. More applications of generating functions can be found
in [21s, Chapter 3], [Loehr11, Chapter 7 (in the 1st edition)], [Sambal22], [Wilf04],
[Stanle11] and many other texts on combinatorics (as well as probability theory, where
they are perhaps even more central).
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