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Math 222 Fall 2022, Lecture 28: Permutations

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

4. Permutations

4.3. The cycle decomposition of a permutation (cont’d)

4.3.5. Cycles and transpositions

Recall that if α and β are two permutations of a finite set X, then we denote
their composition α ◦ β by αβ. More generally, the product of any number
of permutations α1, α2, . . . , αk is defined to be their composition α1 ◦ α2 ◦ · · · ◦
αk, and will be denoted by α1α2 · · · αk. When k = 0, this composition is a
composition of 0 maps, and this composition is defined to be the identity map
idX. (A composition of 0 maps is always defined to be the identity map.)

Recall that a transposition of a set X means a permutation of the form ti,j,
where i and j are two distinct elements of X. This permutation ti,j swaps i with
j and leaves all remaining elements of X unchanged.

It turns out that every permutation of a finite set can be written as a product
of transpositions (and this is a useful fact, since transpositions are easier to
understand than permutations in general). We can even be more specific:

Theorem 4.3.23. Let n ∈ N. Let X be an n-element set. Then:
(a) Every permutation σ ∈ SX can be written as a product of at most n − 1

transpositions (if n > 0).
(b) Let σ ∈ SX be any permutation. Let

k = n − (# of orbits of σ) .

Then, σ can be written as a product of k transpositions, but not of fewer than
k transpositions. In other words, k is the smallest p ∈ N such that σ can be
written as a product of p transpositions.

Example 4.3.24. Let σ be the permutation of [10] whose OLN is

5 4 3 2 6 (10) 1 9 8 7.

(This is the permutation from Example 4.1.5 in Lecture 26.) As we know,
σ has 4 orbits. Thus, Theorem 4.3.23 (b) (applied to n = 10 and X = [10]
and k = n − 4 = 10 − 4 = 6) shows that σ can be written as a product of 6
transpositions, but not of fewer than 6 transpositions. And indeed, we can
easily verify that σ can be written as a product of 6 transpositions:

σ = t1,5 ◦ t5,6 ◦ t6,10 ◦ t7,10 ◦ t8,9 ◦ t2,4.

(There are also several other ways to write σ in this form.)

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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To prove Theorem 4.3.23, we need a little lemma, which is an easy consequence of
Lemma 4.3.13 in Lecture 27:

Lemma 4.3.25. Let X be a finite set. Let i and j be two distinct elements of X. Let
σ ∈ SX be a permutation, and let τ = ti,j ◦ σ. Then:

(a) If i σ∼ j, then (# of orbits of τ) = (# of orbits of σ) + 1.
(b) If we don’t have i σ∼ j, then (# of orbits of τ) = (# of orbits of σ)− 1.
(c) In either case, we have (# of orbits of τ) ≥ (# of orbits of σ)− 1.

Proof of Lemma 4.3.25 (sketched). (a) This is precisely Lemma 4.3.13 (a) in Lecture 27.
(b) This is precisely Lemma 4.3.13 (c) in Lecture 27.
(c) We either have i σ∼ j, or we don’t have i σ∼ j. In the former case, Lemma 4.3.25

(a) yields (# of orbits of τ) = (# of orbits of σ) + 1 ≥ (# of orbits of σ)− 1. In the latter
case, Lemma 4.3.25 (b) yields (# of orbits of τ) = (# of orbits of σ)− 1. In either case,
the claim of Lemma 4.3.25 (c) follows.

Proof of Theorem 4.3.23 (sketched). (b) We first observe that k ≥ 0 (since the # orbits of σ
cannot be larger than n), so that k ∈ N. Thus, we can induct on k:

Base case: The case k = 0 can happen only if σ = idX (because k = 0 means that σ
has n orbits, whence every orbit is a 1-element set, so that each x ∈ X is a fixed point
of σ, and therefore σ = idX). In this case, however, σ can be written as a product of
0 transpositions (since a product of 0 transpositions is idX by definition), but not of
fewer than 0 transpositions (since a product cannot have fewer than 0 factors). Thus,
Theorem 4.3.23 (b) is proved in the case k = 0.

Induction step: Let h ∈ N. Assume (as the induction hypothesis) that Theorem 4.3.23
(b) is proved in the case when k = h. We must prove that Theorem 4.3.23 (b) holds in
the case when k = h + 1.

So let σ be any permutation with

n − (# of orbits of σ) = h + 1. (1)

We must show that σ can be written as a product of h + 1 transpositions, but not of
fewer than h + 1 transpositions.

From (1), we obtain (# of orbits of σ) = n − (h + 1)︸ ︷︷ ︸
>0

< n, and therefore there are two

elements i and j of X that belong to the same orbit of σ (why?). Consider such i and j.
Thus, i σ∼ j. Let τ be the permutation ti,j ◦ σ. Then,

n − (# of orbits of τ)︸ ︷︷ ︸
=(# of orbits of σ)+1
(by Lemma 4.3.25 (a))

= n − ((# of orbits of σ) + 1) = n − (# of orbits of σ)︸ ︷︷ ︸
=h+1

−1 = h.

Hence, by the induction hypothesis, the permutation τ can be written as a product of
h transpositions, but not of fewer than h transpositions. In particular, τ can be written
as a product of h transpositions. In other words, τ can be written as

τ = ti1,j1 ◦ ti2,j2 ◦ · · · ◦ tih,jh

for some i1, j1, i2, j2, . . . , ih, jh ∈ X. Consider these i1, j1, i2, j2, . . . , ih, jh.
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Recall that ti,j ◦ ti,j = idX. Now, ti,j ◦ τ︸︷︷︸
=ti,j◦σ

= ti,j ◦ ti,j︸ ︷︷ ︸
=idX

◦σ = idX ◦σ = σ. Hence,

σ = ti,j ◦ τ︸︷︷︸
=ti1,j1◦ti2,j2◦···◦tih ,jh

= ti,j ◦ ti1,j1 ◦ ti2,j2 ◦ · · · ◦ tih,jh .

This shows that σ can be written as a product of h + 1 transpositions. It remains to
prove that σ cannot be written as a product of fewer than h + 1 transpositions.

To prove this, we assume the contrary. Thus, σ can be written as

σ = tu1,v1 ◦ tu2,v2 ◦ · · · ◦ tup,vp

for some nonnegative integer p < h + 1 and some elements u1, v1, u2, v2, . . . , up, vp ∈ X.
Consider this p and these u1, v1, u2, v2, . . . , up, vp. For each i ∈ [p + 1], we set

σi := tui ,vi ◦ tui+1,vi+1 ◦ · · · ◦ tup,vp .

Then, σ1 = tu1,v1 ◦ tu2,v2 ◦ · · · ◦ tup,vp = σ, whereas σp+1 = idX (since σp+1 = tup+1,vp+1 ◦
tup+2,vp+2 ◦ · · · ◦ tup,vp is a composition of 0 permutations and therefore equals idX by def-
inition). For each i ∈ [p], we have σi = tui ,vi ◦ σi+1 (to see why, compare the definitions
of σi and σi+1) and therefore

(# of orbits of σi) ≥ (# of orbits of σi+1)− 1 (2)

(by Lemma 4.3.25 (c), applied to σi+1, ui, vi and σi instead of σ, i, j and τ). Hence,

(# of orbits of σ) = (# of orbits of σ1) (since σ = σ1)

≥ (# of orbits of σ2)︸ ︷︷ ︸
≥(# of orbits of σ3)−1

(by (2))

−1 (by (2))

≥ (# of orbits of σ3)︸ ︷︷ ︸
≥(# of orbits of σ4)−1

(by (2))

−2

≥ (# of orbits of σ4)︸ ︷︷ ︸
≥(# of orbits of σ5)−1

(by (2))

−3

≥ · · ·
≥

(
# of orbits of σp+1

)︸ ︷︷ ︸
=n

(since σp+1=idX has n orbits)

−p = n − p.

However, (1) yields

h + 1 = n − (# of orbits of σ)︸ ︷︷ ︸
≥n−p

≤ n − (n − p) = p.

This contradicts p < h + 1. This contradiction shows that our assumption was false.
Hence, we have proved that σ cannot be written as a product of fewer than h + 1 trans-
positions. This completes the induction step, and thus Theorem 4.3.23 (b) is proved.
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(a) Assume that n > 0. Then, σ has at least 1 orbit (why?). In other words,
(# of orbits of σ) ≥ 1.

Let k = n − (# of orbits of σ). Then, k = n − (# of orbits of σ)︸ ︷︷ ︸
≥1

≤ n − 1. However,

Theorem 4.3.23 (b) yields that σ can be written as a product of k transpositions. Hence,
σ can be written as a product of at most n − 1 transpositions (since k ≤ n − 1). This
proves Theorem 4.3.23 (a).

We can replace “transpositions” by “distinct transpositions” in Theorem 4.3.23 (but
we cannot force the transpositions to commute with each other; thus, the order of
factors in the product matters).

For X = [n], we can state something stronger:

Theorem 4.3.26. Let n ∈ N and σ ∈ Sn. Let Nonfix σ denote the set of all x ∈ [n]
that satisfy σ (x) ̸= x (that is, the set of all elements of [n] that are not fixed points
of σ). Then, we can write σ as a product of k transpositions

σ = ti1,j1 ◦ ti2,j2 ◦ · · · ◦ tik ,jk with

Nonfix σ = {i1, j1, i2, j2, . . . , ik, jk} , (3)
k = n − (# of orbits of σ) ,
i1 < i2 < · · · < ik and
ip < jp for each p ∈ [k] .

(The equality (3) does not imply that the 2k elements i1, j1, i2, j2, . . . , ik, jk are all dis-
tinct; any element of Nonfix σ can appear multiple times in this list.)

Proof idea. Perform the same induction as in the above proof of Theorem 4.3.23 (b)
(with X = [n]), but make sure to choose i and j strategically in the induction step:
Namely, let i be the smallest element of Nonfix σ, and let j = σ (i). Then, τ = ti,j ◦
σ has 1 more orbit than σ and satisfies τ (i) = i and Nonfix σ = {i, j} ∪ Nonfix τ
and Nonfix τ ⊆ {i + 1, i + 2, . . . , n}. This allows the induction hypothesis to be used.
Details are left to the reader.

4.3.6. Permutations and partitions

Permutations are connected with set partitions and also with integer partitions.
To see how, fix a finite set X. Then, for every permutation σ ∈ SX, the orbits
of σ form a set partition of X (since each element of X belongs to exactly one
orbit of σ). Thus, we obtain a map

SX = {permutations of X} → {set partitions of X} ,
σ 7→ {orbits of σ} .

For example, this map sends the permutation σ from Example 4.3.24 to the set
partition {{1, 5, 6, 10, 7} , {8, 9} , {3} , {2, 4}}.
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Furthermore, each set partition F of X yields an integer partition of |X|;
the entries of the latter partition are just the sizes of all parts of F (listed in
decreasing order). Thus, we obtain a map

{set partitions of X} → {integer partitions of |X|} ,X1, X2, . . . , Xk︸ ︷︷ ︸
distinct

 7→ (|X1| , |X2| , . . . , |Xk|) sorted in decreasing order.

For example, this map sends the set partition {{1, 5, 6, 10, 7} , {8, 9} , {3} , {2, 4}}
of [10] to the partition (5, 2, 2, 1).

Composing these two maps, we obtain a map

SX → {integer partitions of |X|} ,
σ 7→ (list of sizes of all orbits of σ, in decreasing order) .

This latter list is called the cycle type of σ. In other words:

Definition 4.3.27. Let X be a finite set. Let σ ∈ SX be a permutation of X.
Then, the cycle type of σ is defined to be the partition whose parts are the
sizes of the orbits of σ (written in decreasing order). This is a partition of |X|.

Example 4.3.28. • A transposition ti,j ∈ SX always has cycle type
(2, 1, 1, . . . , 1) (with |X| − 2 many 1’s).

• The identity map idX has cycle type (1, 1, . . . , 1) (with |X| many 1’s).

• More generally, a k-cycle in SX always has cycle type (k, 1, 1, . . . , 1) (with
|X| − k many 1’s after the k).

• The permutation σ from Example 4.3.24 has cycle type (5, 2, 2, 1).

The cycle type of a permutation σ determines the lengths of the cycles on the
cycle digraph of σ. Thus, if you know the cycle type of a permutation σ ∈ SX,
then you can draw the cycle digraph of σ except for the labels of the nodes (i.e.,
you don’t know which node corresponds to which element of X). Hence, the
cycle type of a permutation determines this permutation up to “relabelling its
elements”. So we can view integer partitions as “unlabelled permutations”.

To formalize this idea, we define the notion of isomorphism of permutations:

Definition 4.3.29. Let X and Y be two finite sets.
Let σ ∈ SX and τ ∈ SY be two permutations.
We say that these two permutations σ and τ are isomorphic (as permuta-

tions) if there exists a bijection ϕ : X → Y such that τ = ϕ ◦ σ ◦ ϕ−1. (Recall
that ϕ ◦ σ ◦ ϕ−1 is the result of “relabelling” the elements of X using ϕ in
the permutation σ; we have already used this construction in the proof of
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Lemma 1.7.6 in Lecture 12. Thus, the equality τ = ϕ ◦ σ ◦ ϕ−1 means that if
we relabel each node x in the cycle digraph of σ as ϕ (x), then we obtain the
cycle digraph of τ.)

Example 4.3.30. Let X be the 6-element set [6], and let σ ∈ SX be the permu-
tation with cycle digraph

1

3

6

2 4

5

.

Let Y be the 6-element set {4, 5, 6, 7, 8, 9}, and let τ ∈ SY be the permutation
with cycle digraph

4

6

9

8 5

7

.

It is obvious from the two cycle digraphs that τ is just σ with the elements
1, 2, 3, 4, 5, 6 relabelled as 4, 8, 6, 5, 7, 9, respectively. In other words, τ = ϕ ◦σ ◦
ϕ−1, where ϕ : X → Y is the bijection that sends 1, 2, 3, 4, 5, 6 to 4, 8, 6, 5, 7, 9,
respectively. Thus, σ and τ are isomorphic. (Note that there are several
bijections ϕ that satisfy τ = ϕ ◦ σ ◦ ϕ−1; we just picked the one most obvious
from the picture. We could just as well have taken, e.g., the one that sends
1, 2, 3, 4, 5, 6 to 6, 5, 9, 8, 7, 4, respectively.)

On the other hand, let σ′ ∈ SX be the permutation with cycle digraph

13

6

2 4

5
.
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Then, σ′ is not isomorphic to σ. This is easiest to see by observing that σ
has a fixed point whereas σ′ has none. (The property “has a fixed point”
is preserved under isomorphism, since a bijection ϕ : X → Y satisfying
τ = ϕ ◦ σ ◦ ϕ−1 would send any fixed points of σ to fixed points of τ.)

Two isomorphic permutations of the same set X are also said to be conjugate
in the symmetric group SX.

Now, what we said above about cycle types can be stated rigorously as fol-
lows:

Theorem 4.3.31 (isomorphism criterion for permutations). Let X and Y be
two finite sets.

Let σ ∈ SX and τ ∈ SY be permutations.
Then, the permutations σ and τ are isomorphic if and only if they have the

same cycle type.

Proof idea. =⇒: Assume that σ and τ are isomorphic. Thus, there exists a bijection
ϕ : X → Y satisfying τ = ϕ ◦ σ ◦ ϕ−1. This bijection ϕ must then send each orbit of σ to
an orbit of τ (why?). It furthermore preserves the sizes of these orbits (since a bijection
preserves the sizes of all subsets). Hence, the orbits of τ have the same sizes as the
orbits of σ. In other words, σ and τ have the same cycle type.
⇐=: Assume that σ and τ have the same cycle type. Let (λ1, λ2, . . . , λk) be this cycle

type.
The permutation σ has cycle type (λ1, λ2, . . . , λk). In other words, it has an orbit X1

of size λ1, an orbit X2 of size λ2, an orbit X3 of size λ3, and so on, and these altogether
k orbits X1, X2, . . . , Xk form a set partition of the set X. Consider these k orbits. For
each i ∈ [k], write the orbit Xi in the form Xi = [xi]∼ for some xi ∈ Xi, where ∼ is the
relation σ∼. Then, for each i ∈ [k], we have

Xi =
{

σ0 (xi) , σ1 (xi) , σ2 (xi) , . . . , σλi−1 (xi)
}

(why? hint: use Proposition 4.3.4 (b) in Lecture 27).
Similarly, we can analyze the orbits of τ. We learn that there are k of them, and we

can denote them as Y1, Y2, . . . , Yk and have

Yi =
{

τ0 (yi) , τ1 (yi) , τ2 (yi) , . . . , τλi−1 (yi)
}

for each i ∈ [k]

(where the elements yi are chosen appropriately).
Note that each element of X belongs to exactly one orbit Xi of σ, and thus can be

written in the form σj (xi) for a unique i ∈ [k] and a unique j ∈ {0, 1, . . . , λi − 1}.
Similarly, each element of Y can be written in the form τ j (yi) for a unique i ∈ [k] and
a unique j ∈ {0, 1, . . . , λi − 1}.

This allows us to define ϕ : X → Y to be the map that sends each σj (xi) ∈ X (for
each i ∈ [k] and each j ∈ {0, 1, . . . , λi − 1}) to the respective τ j (yi) ∈ Y. This map ϕ is
a bijection (why?) and satisfies τ ◦ ϕ = ϕ ◦ σ (why?), thus τ = ϕ ◦ σ ◦ ϕ−1. This shows
that σ and τ are isomorphic.
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As a curiosity, let me mention another relation between permutations and
partitions: a formula for the # of times that two permutations of a given set X
commute. This formula is surprising in its simplicity:

Theorem 4.3.32. Let n ∈ N and let X be an n-element set. Then,

(# of pairs (α, β) ∈ SX × SX such that αβ = βα) = n! · p (n) .

Here, p (n) denotes the # of all partitions of n.

Proof idea. This theorem’s natural habitat is finite group theory. In fact, if G is any
finite group, then the # of pairs (α, β) ∈ G × G such that αβ = βα equals |G| ·

∣∣∣G̃∣∣∣,
where G̃ is the set of all conjugacy classes of G. See https://math.stackexchange.
com/a/1401276/ or https://math.stackexchange.com/a/3023502/ for a proof of this
fact (which appears to have been first found by Erdös and Turán in 1968). Applying this
fact to G = SX yields the claim of Theorem 4.3.32, after observing that the conjugacy
classes of SX are in bijection with the partitions of n (an easy consequence of Theorem
4.3.31).

4.4. Inversions and lengths

In the previous section, we have mostly been discussing permutations of ar-
bitrary finite sets X. Let us next discuss some features that are specific to
permutations of [n] (or, more generally, of totally ordered sets, but for us [n]
will suffice). Specifically, we will study the inversions and the length of a per-
mutation, and find out how to express any permutation of [n] as a product of
simple transpositions (as opposed to arbitrary transpositions, which we know
how to do from Theorem 4.3.23). We will only scratch the surface (and only
sketch the proof); more details can be found in [21s, §5.3] and in [Grinbe15,
§5.2, §5.5, §5.8].

4.4.1. Definitions

Definition 4.4.1. Let n ∈ N. Let σ ∈ Sn be a permutation.
(a) An inversion of σ means a pair (i, j) ∈ [n] × [n] such that i < j and

σ (i) > σ (j).
(b) The Coxeter length ℓ (σ) of σ (also denoted inv σ) is the # of inversions

of σ.

Example 4.4.2. Consider the permutation σ ∈ S5 whose OLN is 31452. (Thus,
σ (1) = 3 and σ (2) = 1 and σ (3) = 4 and σ (4) = 5 and σ (5) = 2.)

https://math.stackexchange.com/a/1401276/
https://math.stackexchange.com/a/1401276/
https://math.stackexchange.com/a/3023502/
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Then, the inversions of σ are

(1, 2) (since 1 < 2 but σ (1) = 3 > 1 = σ (2)) ,
(1, 5) (since 1 < 5 but σ (1) = 3 > 2 = σ (5)) ,
(3, 5) (since 3 < 5 but σ (3) = 4 > 2 = σ (5)) ,
(4, 5) (since 4 < 5 but σ (4) = 5 > 2 = σ (5)) .

So the Coxeter length ℓ (σ) of σ is 4.

Note that the inversions of a permutation σ ∈ Sn can be easily read off from its
OLN: Namely, every time you see a bigger number before1 a smaller number
in the OLN of σ, you have an inversion. Note, however, that the entries of the
inversion are not the bigger number and the smaller number, but rather their
positions in the OLN. For example, the permutation σ ∈ S3 with OLN 312 has
inversion (1, 2) not because the 1 stands before the 2 (it doesn’t), but because
the entry in position 1 is larger than the entry in position 2.

Recall: Given n ∈ N, we define the simple transpositions s1, s2, . . . , sn−1 ∈
Sn by si := ti,i+1. Each of these simple transpositions has Coxeter length ℓ (si) =
1 (since its only inversion is (i, i + 1), as you can easily check).

4.4.2. Counting

Now, another counting question suggests itself: How many permutations σ ∈
Sn have Coxeter length k for a given n and a given k ?

Some simple results first:

Proposition 4.4.3. Let n ∈ N. Then:

(a) For every σ ∈ Sn, we have ℓ (σ) ∈
{

0, 1, . . . ,
(

n
2

)}
.

(b) The only permutation σ ∈ Sn satisfying ℓ (σ) = 0 is id[n].

(c) The only permutation σ ∈ Sn satisfying ℓ (σ) =

(
n
2

)
is the permutation

that sends each k ∈ [n] to n + 1 − k. Its OLN is (n, n − 1, . . . , 2, 1). It is
occasionally denoted by w0.

(d) Assume that n > 0. Then, there are exactly n − 1 permutations σ ∈ Sn
satisfying ℓ (σ) = 1, namely the simple transpositions s1, s2, . . . , sn−1.

Proof idea. (a) There are only
(

n
2

)
different pairs (i, j) ∈ [n]× [n] with i < j.

(b) If a permutation σ ∈ Sn satisfies ℓ (σ) = 0, then it must satisfy σ (1) ≤ σ (2) ≤
· · · ≤ σ (n) (since σ (i) > σ (i + 1) would cause (i, i + 1) to be an inversion of σ) and

1“Before” does not mean “immediately before”. For instance, 3 is before 2 in 312.
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thus σ (1) < σ (2) < · · · < σ (n) (since σ is injective), which easily leads to σ = id[n]

(why?2).

(c) Left to the reader (similar to part (b)).

(d) Left to the reader (nice exercise).

Okay, but what about the other possible Coxeter lengths? As there is no
simple explicit answer to our counting question, we introduce a notation for it:

Definition 4.4.4. Let n ∈ N and k ∈ Z. Then, w (n, k) shall denote the # of
permutations σ ∈ Sn satisfying ℓ (σ) = k.

Thus,

• we have w (n, 0) = 1 for any n ∈ N (by Proposition 4.4.3 (b));

• we have w
(

n,
(

n
2

))
= 1 for any n ∈ N (by Proposition 4.4.3 (c));

• we have w (n, 1) = n − 1 for any n > 0 (by Proposition 4.4.3 (d));

• we have w (n, k) = 0 for every n ∈ N and k /∈
{

0, 1, . . . ,
(

n
2

)}
(by Propo-

sition 4.4.3 (a)).

More can be said (in particular, it is not too hard to check that w (n, 2) =
(n − 2) (n + 1)

2
for any n ≥ 2). Alas, there is no explicit formula for w (n, k) in

general. However, there is a recursion:

Proposition 4.4.5. For any positive integer n and any k ∈ Z, we have

w (n, k) =
k

∑
i=k−n+1

w (n − 1, i) .

Proof idea. We shall be sloppy and identify any permutation σ ∈ Sn with its OLN
(σ (1) , σ (2) , . . . , σ (n)); thus, the “i-th entry” of σ shall mean σ (i), and we shall be
speaking of “removing an entry from a permutation” (meaning, of course, removing it
from its OLN).

Fix a positive integer n and any k ∈ Z. Then, if σ is a permutation of [n], then
removing the entry n from σ (that is, from the OLN of σ) yields a permutation of
[n − 1] (because the remaining n − 1 entries will be 1, 2, . . . , n − 1 in some order). Let
us denote the latter permutation of [n − 1] by σ. For example, if n = 5 and σ = 31254
(in OLN), then σ = 3124 ∈ S4 (again in OLN).

Now, fix any p ∈ [n]. If σ ∈ Sn is any permutation satisfying σ (p) = n, then:

2See [Grinbe15, Exercise 5.2 (d)] for the details of this step.
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• We have ℓ (σ) = ℓ (σ)− (n − p). (Indeed, σ (p) = n shows that the entry n lies in
the p-th position of the OLN of σ, and therefore all the n − p pairs

(p, p + 1) , (p, p + 2) , (p, p + 3) , . . . , (p, n)

are inversions of σ. All these n − p inversions are lost when we remove the entry
n from σ. Any other inversions of σ are preserved when we remove the entry n
from σ, although they can change slightly (specifically, if (i, j) is an inversion of
σ with i ̸= p, then it becomes (i′, j′) after removing the entry n from σ, where

i′ :=

{
i, if i < p;
i − 1, if i > p

and j′ :=

{
j, if j < p;
j − 1, if j > p

). Altogether, the permutation

σ thus loses n − p inversions when we remove the entry n from it. In other
words, ℓ (σ) = ℓ (σ) − (n − p), since σ is precisely the result of removing the
entry n from σ.)

• Hence, ℓ (σ) = k holds if and only if ℓ (σ) = k − (n − p).

• We can uniquely reconstruct σ from σ. (Indeed, σ is obtained from σ by removing
the entry n, which lies in the p-th position of the OLN. Thus, in order to undo
this removal, we simply need to reinsert n into the p-th position, shifting all later
entries one position to the right.)

Thus, we obtain a map

{σ ∈ Sn | σ (p) = n and ℓ (σ) = k} → {τ ∈ Sn−1 | ℓ (τ) = k − (n − p)} ,
σ 7→ σ.

This map is bijective3. Hence, the bijection principle yields

(# of σ ∈ Sn satisfying σ (p) = n and ℓ (σ) = k)
= (# of τ ∈ Sn−1 satisfying ℓ (τ) = k − (n − p))
= w (n − 1, k − (n − p)) (4)

(by the definition of w (n − 1, k − (n − p))).
Now, forget that we fixed p. We have thus proved (4) for each p ∈ [n]. However, for

each permutation σ ∈ Sn, there is a unique p ∈ [n] satisfying σ (p) = n. Thus, by the
sum rule, we have

(# of σ ∈ Sn satisfying ℓ (σ) = k)

= ∑
p∈[n]

(# of σ ∈ Sn satisfying σ (p) = n and ℓ (σ) = k)︸ ︷︷ ︸
=w(n−1, k−(n−p))

(by (4))

= ∑
p∈[n]

w (n − 1, k − (n − p)) =
k

∑
i=k−n+1

w (n − 1, i)

3Indeed, it is injective (since we can uniquely reconstruct σ from σ, as we have already seen
above) and surjective (since the just-mentioned method for reconstructing σ can be applied
to any permutation τ ∈ Sn−1 satisfying ℓ (τ) = k− (n − p), and thus provides a permutation
σ ∈ Sn satisfying σ (p) = n and ℓ (σ) = k and σ = τ).
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(here, we have substituted i for k − (n − p) in the sum). Since the left hand side of this
equality is w (n, k), we thus have proved Proposition 4.4.5.

Equivalently, there is a generating function formula for the w (n, k):

Proposition 4.4.6. Consider polynomials in an indeterminate X. For any
n ∈ N, we have

∑
σ∈Sn

Xℓ(σ)

=
n

∏
i=1

(
1 + X + X2 + · · ·+ Xi−1

)
= (1 + X)

(
1 + X + X2

) (
1 + X + X2 + X3

)
· · ·

(
1 + X + X2 + · · ·+ Xn−1

)
.

Note that the LHS here is ∑
k∈Z

w (n, k) Xk.

Proof idea. This can be proved by induction on n using Proposition 4.4.5. A different
proof can be found in [21s, Proposition 5.3.5].

We remark that the distribution of the Coxeter lengths of all permutations

σ ∈ Sn is symmetric around
(

n
2

)
/2. In other words:

Remark 4.4.7. We have w (n, k) = w
(

n,
(

n
2

)
− k

)
for all n ∈ N and k ∈ Z.

Proof idea. Nice (and easy) exercise.

4.4.3. Products of simple transpositions

Theorem 4.3.23 (b) shows that any permutation σ of a finite set X can be writ-
ten as a product of transpositions, and describes the smallest # of transpositions
needed for this. In this subsection, we shall prove a similar result about simple
transpositions (i.e., the transpositions si = ti,i+1) instead of arbitrary transposi-
tions. For this, of course, we need X to be [n] (otherwise, simple transpositions
aren’t defined), and we should expect that writing σ as a product of simple
transpositions will require more factors than writing σ as a product of transpo-
sitions (since simple transpositions are more restrictive).

This is indeed the case. In order to get to our result, we first need some
properties of Coxeter lengths:

Proposition 4.4.8. Let n ∈ N. Let σ ∈ Sn. Then, ℓ
(
σ−1) = ℓ (σ).

Proof idea. Find the bijection! Or look it up in [21s, Proposition 5.3.13].
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The next result is a crucial lemma, which characterizes how the Coxeter
length of a permutation σ changes when we multiply σ by a simple trans-
position sk (either from the left or from the right):

Lemma 4.4.9 (single swap lemma). Let n ∈ N. Let σ ∈ Sn and k ∈ [n − 1].
Then:

(a) We have

ℓ (σsk) =

{
ℓ (σ) + 1, if σ (k) < σ (k + 1) ;
ℓ (σ)− 1, if σ (k) > σ (k + 1) .

(b) We have

ℓ (skσ) =

{
ℓ (σ) + 1, if σ−1 (k) < σ−1 (k + 1) ;
ℓ (σ)− 1, if σ−1 (k) > σ−1 (k + 1) .

[Note: The OLN of σsk is obtained from the OLN of σ by swapping the
k-th and (k + 1)-st entries, whereas the OLN of skσ is obtained from the OLN
of σ by swapping the entries k and k + 1 (wherever they lie). The condition
σ (k) < σ (k + 1) means that the k-th entry in the OLN of σ is smaller than the
(k + 1)-th entry. The condition σ−1 (k) < σ−1 (k + 1) means that the entry k
is to the left of the entry k + 1 in the OLN of σ.]

Proof idea. (a) A pair (i, j) will be called active if it is (k, k + 1), and inactive otherwise.
Thus, there is exactly one active pair, which is (k, k + 1).

If σ (k) < σ (k + 1), then the active pair (k, k + 1) is an inversion of σsk but not of σ.
If σ (k) > σ (k + 1), then it is the other way round. Hence, we have

(# of active inversions of σ) =

{
0, if σ (k) < σ (k + 1) ;
1, if σ (k) > σ (k + 1)

(5)

and

(# of active inversions of σsk) =

{
1, if σ (k) < σ (k + 1) ;
0, if σ (k) > σ (k + 1) .

(6)

What about the inactive pairs? We claim that the permutations σ and σsk have
the same # of inactive inversions. In fact, the permutation σsk is obtained from σ by
swapping the k-th and (k + 1)-st entries in the OLN; thus, the k-th entry moves one
position to its right, while the (k + 1)-st entry moves one position to its left, and all
remaining entries stay where they are. Hence, if a bigger entry comes before a smaller
entry in the OLN of σ, then the former bigger entry will still come before the latter
smaller entry in the OLN of σsk, unless these two entries were the k-th and the (k + 1)-
st entries to begin with. In other words, any inactive inversion (i, j) of σ gives rise to an
inactive inversion (sk (i) , sk (j)) of σsk (the “sk”s in the latter inversion are coming from
the fact that the k-th and the (k + 1)-st entries got moved from σ to σsk). Conversely,
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any inactive inversion of σsk can be obtained in this way (why?). Thus, we obtain a
bijection

{inactive inversions of σ} → {inactive inversions of σsk} ,
(i, j) 7→ (sk (i) , sk (j)) .

The bijection principle therefore yields

(# of inactive inversions of σ) = (# of inactive inversions of σsk) . (7)

Now, the definition of Coxeter length yields

ℓ (σsk) = (# of inversions of σsk)

= (# of active inversions of σsk)︸ ︷︷ ︸
=

1, if σ (k) < σ (k + 1) ;
0, if σ (k) > σ (k + 1)

(by (6))

+ (# of inactive inversions of σsk)︸ ︷︷ ︸
=(# of inactive inversions of σ)

(by (7))

=

{
1, if σ (k) < σ (k + 1) ;
0, if σ (k) > σ (k + 1)

+ (# of inactive inversions of σ)

and

ℓ (σ) = (# of inversions of σ)

= (# of active inversions of σ)︸ ︷︷ ︸
=

0, if σ (k) < σ (k + 1) ;
1, if σ (k) > σ (k + 1)

(by (5))

+ (# of inactive inversions of σ)

=

{
0, if σ (k) < σ (k + 1) ;
1, if σ (k) > σ (k + 1)

+ (# of inactive inversions of σ) .

The right hand sides of these two equalities differ by 1 or −1 depending on whether
σ (k) < σ (k + 1) or σ (k) > σ (k + 1). Thus, so do the left hand sides. In other words,

ℓ (σsk) = ℓ (σ) +

{
1, if σ (k) < σ (k + 1) ;
−1, if σ (k) > σ (k + 1)

=

{
ℓ (σ) + 1, if σ (k) < σ (k + 1) ;
ℓ (σ)− 1, if σ (k) > σ (k + 1) .

This proves Lemma 4.4.9 (a).

(b) Apply Lemma 4.4.9 (a) to σ−1 instead of σ, and translate back using Proposition
4.4.8 (and s−1

k = sk).

The following theorem is a counterpart to Theorem 4.3.23 for simple trans-
positions (instead of arbitrary transpositions):
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Theorem 4.4.10. Let n ∈ N and σ ∈ Sn. Then:
(a) We can write σ as a product of ℓ (σ) simple transpositions (which are

not necessarily distinct!).
(b) The number ℓ (σ) is the smallest p ∈ N such that σ can be written as a

product of p simple transpositions.

Example 4.4.11. Let n = 5, and let σ ∈ S5 be the permutation whose OLN
is 32415. Then, there are several ways to write σ as a product of 4 simple
transpositions:

σ = s1s3s2s1 = s3s1s2s1 = s3s2s1s2,

as well as infinitely many ways to write σ as a product of more than 4 simple
transpositions (for example, σ = s2s3s2s3s1s2). This is well in line with what
Theorem 4.4.10 claims (since ℓ (σ) = 4).

Proof idea for Theorem 4.4.10. What follows is but a brief sketch; see [21s, Theorem 5.3.17]
for more details.

(a) Induct on ℓ (σ).
Base case: The case ℓ (σ) = 0 follows from Proposition 4.4.3 (b).
Induction step: If ℓ (σ) = h + 1 > 0, then there exists some k ∈ [n − 1] such that

σ (k) > σ (k + 1) (why?), and then Lemma 4.4.9 (a) shows that ℓ (σsk) = h, which
allows us to apply the induction hypothesis to σsk instead of σ.

(b) Assume that σ = si1 si2 · · · sip for some i1, i2, . . . , ip. We must show that p ≥ ℓ (σ).
Set σj := si1 si2 · · · sij for each j ∈ {0, 1, . . . , p}. Argue (using Lemma 4.4.9 (a)) that

ℓ
(
σj
)
≤ ℓ

(
σj−1

)
+ 1 for each j ∈ [p]. Conclude that ℓ

(
σp
)
≤ ℓ (σ0) + p. In view of

σp = σ and σ0 = id, this can be simplified to ℓ (σ) ≤ p, qed.

Note that Theorem 4.4.10 is the reason why the Coxeter length ℓ (σ) is called
a “length”: It really is the length of σ if we regard σ as a string of simple
transpositions... And people often do view permutations in this way; in fact,
this is the idea behind the Coxeter group approach to the symmetric group (see,
e.g., [Willia03, Chapter 1] for an introduction).

Using Lemma 4.4.9 and Theorem 4.4.10 (a), we can easily prove the following
fact:

Proposition 4.4.12. Let n ∈ N. Let α, β ∈ Sn be two permutations. Then:
(a) We have ℓ (αβ) ≤ ℓ (α) + ℓ (β).
(b) We have ℓ (αβ) ≡ ℓ (α) + ℓ (β)mod 2. (In other words, the integers

ℓ (αβ) and ℓ (α) + ℓ (β) are either both even or both odd.)

Proof idea. See [21s, Corollary 5.3.20 (b)] for part (a), and [21s, Corollary 5.3.20 (a)] for
part (b).

(Here is the proof in a nutshell: Use Theorem 4.4.10 (a) to write β as a product of ℓ (β)
simple transpositions: β = sk1 sk2 · · · skℓ(β)

. Thus, the permutation αβ can be obtained by
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successively multiplying α with the ℓ (β) simple transpositions sk1 , sk2 , . . . , skℓ(β)
. How-

ever, when we multiply a permutation σ by a single simple transposition sk (on the left
or on the right), its Coxeter length ℓ (σ) either increases by 1 or decreases by 1 (accord-
ing to Lemma 4.4.9). Hence, this length ℓ (σ) changes its parity (i.e., becomes even if
it was odd, and becomes odd if it was even), and increases by at most 1. Therefore,
when we successively multiply α with the ℓ (β) simple transpositions sk1 , sk2 , . . . , skℓ(β)

,
the length ℓ (α) changes its parity ℓ (β) many times in total, and increases by at most
ℓ (β) in total. This yields both parts of Proposition 4.4.12.)

4.5. Signs of permutations

One of the most useful features of a permutation is its sign (aka signature). For
a permutation of [n], the easiest way to define the sign is as follows:

Definition 4.5.1. Let n ∈ N. The sign of a permutation σ ∈ Sn is defined to
be the integer (−1)ℓ(σ).

We denote it by (−1)σ. (Other common notations for it are sgn (σ) or
sign (σ) or ε (σ). It is also known as the signature of σ.)

Thus, the sign (−1)σ of a permutation σ ∈ Sn is 1 if its Coxeter length ℓ (σ) is
even, and −1 if ℓ (σ) is odd. Thus, many properties of signs follow easily from
properties of Coxeter lengths. Here is a collection of basic properties of signs:

Proposition 4.5.2. Let n ∈ N.
(a) The sign of the permutation id ∈ Sn is (−1)id = 1.
(b) For any two distinct elements i and j of [n], the transposition ti,j ∈ Sn

has sign (−1)ti,j = −1.
(c) For any positive integer k and any distinct elements i1, i2, . . . , ik ∈ [n],

the k-cycle cyci1,i2,...,ik
has sign (−1)cyci1,i2,...,ik = (−1)k−1.

(d) We have (−1)αβ = (−1)α · (−1)β for any α ∈ Sn and β ∈ Sn.
(e) We have (−1)σ1σ2···σp = (−1)σ1 (−1)σ2 · · · (−1)σp for any σ1, σ2, . . . , σp ∈

Sn.
(f) We have (−1)σ−1

= (−1)σ for any σ ∈ Sn. (The left hand side here has

to be understood as (−1)(σ−1).)
(g) We have

(−1)σ = ∏
1≤i<j≤n

σ (i)− σ (j)
i − j

for each σ ∈ Sn.

(The product sign “ ∏
1≤i<j≤n

” means a product over all pairs (i, j) of integers

satisfying 1 ≤ i < j ≤ n. There are
(

n
2

)
such pairs.)
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(h) If x1, x2, . . . , xn are any numbers, and if σ ∈ Sn, then

∏
1≤i<j≤n

(
xσ(i) − xσ(j)

)
= (−1)σ ∏

1≤i<j≤n

(
xi − xj

)
.

(i) If σ ∈ Sn is a permutation with exactly k orbits, then (−1)σ = (−1)n−k.

Proof sketch. (a) This is [Grinbe15, Proposition 5.15 (a)], and follows easily from ℓ (id) =
0.

(d) This is [Grinbe15, Proposition 5.15 (c)], and follows easily from Proposition 4.4.12
(b). A different proof appears in [Strick13, Proposition B.13].

(e) This is [Grinbe15, Proposition 5.28], and follows by induction from Proposition
4.5.2 (d).

(f) This is [Grinbe15, Proposition 5.15 (d)], and follows easily from Proposition 4.5.2
(d) or from Proposition 4.4.8.

(h) This is [Grinbe15, Exercise 5.13 (a)]. The proof is fairly easy: Each factor xσ(i) −
xσ(j) on the left hand side appears also on the right hand side, albeit with a different
sign if (i, j) is an inversion of σ. Thus, the products on both sides agree up to a sign,
which is precisely (−1)ℓ(σ) = (−1)σ.

(g) This is [Grinbe15, Exercise 5.13 (c)], and is a particular case of Proposition 4.5.2
(h).

(b) This is [Grinbe15, Exercise 5.10 (b)], but can also be proved rather directly:
Let i and j be two distinct elements of [n]. Assume WLOG that i < j (else, swap
i with j). Then, the inversions of the transposition ti,j are the pairs (i, k) for all
k ∈ {i + 1, i + 2, . . . , j − 1}, as well as the pairs (k, j) for all k ∈ {i + 1, i + 2, . . . , j − 1},
as well as the pair (i, j). The total # of these inversions is therefore 2 (j − i − 1) + 1. In

other words, ℓ
(
ti,j

)
= 2 (j − i − 1) + 1. Hence, (−1)ti,j = (−1)ℓ(ti,j) = (−1)2(j−i−1)+1 =

−1.
(c) This is [Grinbe15, Exercise 5.17 (d)], and follows easily from Proposition 4.5.2 (e)

and from the fact that

cyci1,i2,...,ik
= ti1,i2 ◦ ti2,i3 ◦ · · · ◦ tik−1,ik

(check this!).
(i) This is [21s, Proposition 5.5.7] (since σ has k orbits if and only if σ has k cycles

in its DCD). Alternatively, this follows easily from Proposition 4.5.2 (e) combined with
Theorem 4.3.23 (b) (just keep in mind that our k here is not the k from Theorem 4.3.23
(b)).

Using the signs, the permutations of [n] can be classified into “even” and
“odd” ones:

Definition 4.5.3. Let n ∈ N. A permutation σ ∈ Sn is said to be

• even if (−1)σ = 1 (that is, if ℓ (σ) is even);

• odd if (−1)σ = −1 (that is, if ℓ (σ) is odd).
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We note that the even and the odd permutations of [n] are equinumerous
when n ≥ 2:

Corollary 4.5.4. Let n ≥ 2. Then,

(# of even permutations σ ∈ Sn) = (# of odd permutations σ ∈ Sn) = n!/2.

Proof idea. (See [Grinbe15, Exercise 5.4] for details.) Argue that the map

{even permutations σ ∈ Sn} → {odd permutations σ ∈ Sn} ,
σ 7→ σs1

(this is the map that swaps the first two entries in the OLN of a permutation) is a
bijection.

The sign and the “parity” (i.e., evenness/oddness) of a permutation have
applications all around mathematics. Most prominently, the determinant det A
of an n × n-matrix

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

an,1 an,2 · · · an,n


is defined as follows:

det A := ∑
σ∈Sn

(−1)σ a1,σ(1)a2,σ(2) · · · an,σ(n).

Note how the sign (−1)σ appears in this sum, making some of its addends
positive and some negative. The sign of a permutation also appears as a useful
invariant in the analysis of permutation puzzles (such as Rubik’s cube and the
15-game; see [Mulhol21, Chapters 7–8 and Theorem 20.2.1] for example).

4.6. Descents and Eulerian numbers
Imagine you are drawing the “naive” plot of a permutation σ ∈ Sn by marking the
points (1, σ (1)), (2, σ (2)), . . ., (n, σ (n)) on the Cartesian plane and connecting them
with line segments. For instance, if σ is the permutation S6 whose OLN is 314562, then
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this plot looks as follows:

x

y

(8)

(where both axes start at 0 and end at 7). This kind of plot can hardly be called
combinatorially meaningful (after all, σ is just a map on a finite set, and it makes no
combinatorial sense to “connect the dots” with line segments), but it serves a good
purpose in making some properties of σ clear. In particular, we see that our map σ
decreases on the interval [1, 2], then increases on [2, 5], then decreases again on [5, 6].
This kind of increasing-decreasing behavior is typically subsumed under the notion of
“descents”:

Definition 4.6.1. Let n ∈ N. Let σ ∈ Sn be a permutation. Then, a descent of σ
means an i ∈ [n − 1] such that σ (i) > σ (i + 1).

For example, the permutation σ ∈ S6 that we have “plotted” in (8) has descents 1
(since σ (1) > σ (2)) and 5 (since σ (5) > σ (6)).

We can restate the definition of a descent as follows: A descent of a permutation
σ ∈ Sn is an i ∈ [n − 1] such that (i, i + 1) is an inversion of σ. Thus, descents can be
viewed as special kinds of inversions (up to the fact that a descent is not a pair).

Just as we defined descents, we can define “ascents”: An ascent of a permutation
σ ∈ Sn means an i ∈ [n − 1] such that σ (i) < σ (i + 1). Of course, the ascents of σ are
just the elements of [n − 1] that are not descents of σ (since the injectivity of σ rules out
the “third option” σ (i) = σ (i + 1)). Thus, studying descents is equivalent to studying
ascents.

Definition 4.6.2. Let n ∈ N. Let σ ∈ Sn be a permutation. Then, the descent set of
σ is defined to be the set of all descents of σ. It is denoted by Des σ.

Thus,
Des σ = {i ∈ [n − 1] | σ (i) > σ (i + 1)}

for each σ ∈ Sn. For instance, the permutation σ ∈ S6 that we have “plotted” in (8) has
descent set Des σ = {1, 5}.
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The concepts we have just introduced suggest some counting problems. We begin
with some of the easy ones:

Exercise 1. Fix an integer n ≥ 4.
(a) How many permutations σ ∈ Sn satisfy 1 ∈ Des σ (that is, σ (1) > σ (2)) ?
(b) How many permutations σ ∈ Sn satisfy 1, 2 ∈ Des σ (that is, σ (1) > σ (2) >

σ (3)) ?
(c) How many permutations σ ∈ Sn satisfy 1, 3 ∈ Des σ (that is, σ (1) > σ (2) and

σ (3) > σ (4)) ?

Hints. Here are the rough ideas (see [18s-mt1s, §0.2] for the details).

(a) The answer is
n!
2

. Indeed, the # of permutations σ ∈ Sn satisfying σ (1) > σ (2)

equals the # of permutations σ ∈ Sn satisfying σ (1) < σ (2), since there is a bijection
from the former permutations to the latter (given by swapping the first two values of
σ, or, equivalently, by sending σ to σ ◦ t1,2). But the two #s clearly add up to n!, so they

both must be
n!
2

.

(b) The answer is
n!
6

. Indeed, there are 6 ways in which the first three values

σ (1) , σ (2) , σ (3) of a permutation σ ∈ Sn can be relatively ordered (namely, σ (1) <
σ (2) < σ (3) and σ (1) < σ (3) < σ (2) and σ (2) < σ (1) < σ (3) and σ (2) < σ (3) <
σ (1) and σ (3) < σ (1) < σ (2) and σ (3) < σ (2) < σ (1)), and they are all equally
likely (since there are bijections going between the corresponding permutations σ), so

each of them appears exactly
n!
6

times.

(c) The answer is
n!
4

. Indeed, there are 4 ways in which the two inequality signs in

“σ (1) ≶ σ (2)” and “σ (3) ≶ σ (4)” may point, and they are all equally likely again.

Here is a subtler counting problem: How many permutations σ ∈ Sn have a given #
of descents? The answer to this problem has a name:

Definition 4.6.3. Let n ∈ N and k ∈ Z. Then, the Eulerian number
〈

n
k

〉
is defined

to be the # of all permutations σ ∈ Sn that have exactly k descents (i.e., that satisfy
|Des σ| = k).

Example 4.6.4. We have
〈

4
2

〉
= 11, since there are exactly 11 permutations σ ∈ S4

that have exactly 2 descents. Indeed, these 11 permutations are (written in OLN)

1432, 2143, 2431, 3142, 3214, 3241,
3421, 4132, 4231, 4213, 4312.
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Here is a table of some Eulerian numbers:〈
n
k

〉
n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

k = 0 1 1 1 1 1 1 1 1

k = 1 0 0 1 4 11 26 57 120

k = 2 0 0 0 1 11 66 302 1191

k = 3 0 0 0 0 1 26 302 2416

k = 4 0 0 0 0 0 1 57 1191

k = 5 0 0 0 0 0 0 1 120

k = 6 0 0 0 0 0 0 0 1

k = 7 0 0 0 0 0 0 0 0

(see the Wikipedia page for more). Here are some basic properties:

Proposition 4.6.5. (a) We have
〈

n
k

〉
= 0 for any n, k ∈ N satisfying k ≥ n and k > 0.

(b) We have
〈

n
0

〉
= 1 for any n ∈ N.

(c) We have
〈

n
n − 1

〉
= 1 for any n > 0.

(d) We have
〈

n
k

〉
=

〈
n

n − 1 − k

〉
for any integer n > 0 and any k ∈ Z.

(e) We have
〈

n
1

〉
= 2n − (n + 1) for any n > 0.

(f) We have
〈

n
k

〉
= 0 for any n ∈ N and any negative k ∈ Z.

Proof idea. (a) A permutation σ ∈ Sn cannot have more than n− 1 descents unless n = 0
(since Des σ ⊆ [n − 1]). Thus, part (a) follows.

(f) This is even more obvious than part (a).

(b) A permutation σ ∈ Sn that has 0 descents must satisfy σ (1) ≤ σ (2) ≤ · · · ≤ σ (n)
and therefore σ = id (why?4). Thus, there is exactly 1 such permutation σ. Hence,〈

n
0

〉
= 1.

(d) (See [18f-hw4s, Exercise 3] for details.) Let n > 0 and k ∈ Z. Let w0 be the
permutation in Sn that sends each i ∈ [n] to n + 1 − i. In other words, w0 is the
permutation in Sn whose OLN is (n, n − 1, n − 2, . . . , 2, 1). Then, it is easy to see that
the descents of a permutation σ ∈ Sn are precisely the ascents of the permutation
w0 ◦ σ (since σ (i) > σ (i + 1) is equivalent to (w0 ◦ σ) (i) < (w0 ◦ σ) (i + 1)). Hence, a

4See [Grinbe15, Exercise 5.2 (d)] for a detailed proof.

https://en.wikipedia.org/wiki/Eulerian_number
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permutation σ ∈ Sn has k descents if and only if the permutation w0 ◦ σ has k ascents,
i.e., has n − 1 − k descents. Thus, we obtain a map

from {permutations σ ∈ Sn that have k descents}
to {permutations σ ∈ Sn that have n − 1 − k descents} ,

which sends each σ to w0 ◦ σ. This map is a bijection (why?). The bijection principle
thus yields

(# of all permutations σ ∈ Sn that have k descents)
= (# of all permutations σ ∈ Sn that have n − 1 − k descents) .

In other words,
〈

n
k

〉
=

〈
n

n − 1 − k

〉
. This proves Proposition 4.6.5 (d).

(c) Let n > 0. Then, Proposition 4.6.5 (d) yields
〈

n
n − 1

〉
=

〈
n

n − 1 − (n − 1)

〉
=〈

n
0

〉
= 1 (by Proposition 4.6.5 (b)).

(e) Let n > 0. Then, the definition of
〈

n
1

〉
yields〈

n
1

〉
= (# of all permutations σ ∈ Sn having exactly 1 descent)

=
n−1

∑
i=1

(# of all permutations σ ∈ Sn with Des σ = {i})

(by the sum rule). Now, let us compute the addends on the right hand side.
Indeed, let i ∈ [n − 1]. How does a permutation σ ∈ Sn with Des σ = {i} look like?

Such a permutation σ must satisfy the chain of inequalities

σ (1) < σ (2) < · · · < σ (i) > σ (i + 1) < σ (i + 2) < · · · < σ (n)

(all inequality signs in this chain are < except for the sign between σ (i) and σ (i + 1)).
This chain of inequalities is moreover necessary and sufficient for Des σ = {i}.

Now, how many permutations σ ∈ Sn satisfy this chain of inequalities? Let us
first ignore the > sign between σ (i) and σ (i + 1). This breaks our chain into two
chains σ (1) < σ (2) < · · · < σ (i) and σ (i + 1) < σ (i + 2) < · · · < σ (n). The # of
all permutations σ ∈ Sn satisfying both σ (1) < σ (2) < · · · < σ (i) and σ (i + 1) <

σ (i + 2) < · · · < σ (n) is
(

n
i

)
5. Only one of these

(
n
i

)
permutations satisfies

5Proof. Any such permutation σ can be uniquely constructed by the following procedure:

1. Choose the i-element subset {σ (1) , σ (2) , . . . , σ (i)} of [n]. (There are
(

n
i

)
options

for this subset.)

2. Let σ (1) , σ (2) , . . . , σ (i) be the i elements of this subset in increasing order.

3. Let σ (i + 1) , σ (i + 2) , . . . , σ (n) be the n − i elements of [n] that don’t belong to this
subset (again listed in increasing order).
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σ (i) ≤ σ (i + 1) (namely, the identity permutation id). Hence, the remaining
(

n
i

)
− 1

permutations satisfy σ (i) > σ (i + 1) and therefore

σ (1) < σ (2) < · · · < σ (i) > σ (i + 1) < σ (i + 2) < · · · < σ (n) .

Hence,

(# of all permutations σ ∈ Sn satisfying the chain of
inequalities σ (1) < σ (2) < · · · < σ (i) > σ (i + 1) < σ (i + 2) < · · · < σ (n))

=

(
n
i

)
− 1.

In other words,

(# of all permutations σ ∈ Sn with Des σ = {i})

=

(
n
i

)
− 1 (9)

(since we have previously observed that the chain of inequalities σ (1) < σ (2) < · · · <
σ (i) > σ (i + 1) < σ (i + 2) < · · · < σ (n) is necessary and sufficient for Des σ = {i}).

Forget that we fixed i. We thus have proved (9) for each i ∈ [n − 1]. Now, as we
know, 〈

n
1

〉
=

n−1

∑
i=1

(# of all permutations σ ∈ Sn with Des σ = {i})︸ ︷︷ ︸
=

(
n
i

)
−1

(by (9))

=
n−1

∑
i=1

((
n
i

)
− 1

)
=

n−1

∑
i=1

(
n
i

)
︸ ︷︷ ︸

=
n
∑

i=0

(
n
i

)
−

(
n
0

)
−

(
n
n

)
− (n − 1)

=
n

∑
i=0

(
n
i

)
︸ ︷︷ ︸

=2n

(by Corollary 1.3.32
in Lecture 7)

−
(

n
0

)
︸︷︷︸
=1

−
(

n
n

)
︸︷︷︸
=1

− (n − 1) = 2n − 1 − 1 − (n − 1)

= 2n − (n + 1) .

This proves Proposition 4.6.5 (e).

The Eulerian numbers also satisfy a recursion:

Proposition 4.6.6. For any positive integer n and any integer k, we have〈
n
k

〉
= (k + 1)

〈
n − 1

k

〉
+ (n − k)

〈
n − 1
k − 1

〉
.
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Proof idea. See [18f-mt2s, Exercise 1 (c)]. (Ignore the assumption that k be positive; this
assumption is not actually used.)

More surprisingly, there is an explicit formula for the Eulerian numbers:

Theorem 4.6.7. Let n ∈ N and k ∈ N. Then,〈
n
k

〉
=

k

∑
i=0

(−1)i
(

n + 1
i

)
(k + 1 − i)n .

Proof sketch. (The below argument is taken from [Bona22, proof of Theorem 1.11]; it is
due to Hugh Thomas and Richard Stanley.)

A k-barper (this is short for “k-barred permutation”) shall mean an n-tuple con-
taining each of the numbers 1, 2, . . . , n exactly once (i.e., the one-line notation of some
σ ∈ Sn), with (altogether) k bars placed between some of its entries (or at the very
start, or at the very end). The bars subdivide the n-tuple into k + 1 (possibly empty)
compartments, each of which consists of the entries between two consecutive bars (or
between the beginning of the n-tuple and the very first bar, or between the very last
bar and the end of the n-tuple).

For example, for n = 8, here are some examples of 5-barpers:

β1 = 5 | 1 3 | 8 | | 2 4 6 | 7;
β2 = 5 | 1 3 8 | 2 4 | | | 6 7;
β3 = 5 | 1 8 3 | 2 4 | | 6 7 |;
β4 = | | 5 | 1 3 8 | 2 4 6 7 |;
β5 = 5 1 | 3 8 2 | | 4 | 6 | 7

(we are omitting the commas between the entries of the tuples, and the parentheses
around the tuples). We note that several bars can be placed between two consecutive
entries (or at the start, or at the end). The six compartments of β2 are (5), (1, 3, 8),
(2, 4), (), () and (6, 7).

A compartment of a k-barper is said to be good if its entries are in increasing order.
In the above example, the second compartment of β3 is not good (since its entries 1 8 3
are not in increasing order), and the first two compartments of β5 are not good (since
5 > 1 and 8 > 2), but all other compartments are good.

A k-barper is said to be good if all its compartments are good. In the above example,
the k-barpers β1, β2, β4 are good, whereas β3 and β5 are not.

We observe that
(# of good k-barpers) = (k + 1)n . (10)

(Indeed, in order to construct a good k-barper, we only need to decide, for each i ∈ [n],
which of the k + 1 compartments we want to place i in. The “goodness” then takes care
of the ordering of the entries in each compartment.)

Some more notations are in order. If β is a good k-barper, then:

• A wall of β means a bar of β that is not immediately followed by another bar. In
other words, a wall of β means a bar of β that marks the beginning of a nonempty
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compartment or has no walls to its right. For example, in the good k-barper β2
from the above examples, the first, second and fifth bars are walls, whereas the
third and fourth bars are not. In the good k-barper β4, all bars except for the first
are walls.

• A useless wall of β means a wall of β such that removing this wall yields a good
(k − 1)-barper. In other words, a useless wall of β means a wall of β such that
each entry in the compartment just to its left is smaller than each entry in the
compartment just to its right. For example, in the 5-barper β1 = 5 | 1 3 | 8 |
| 2 4 6 | 7 from the above examples, the second wall is useless (since removing
it yields 5 | 1 3 8 | | 2 4 6 | 7, which is a good 4-barper), but the first wall
is not (since removing it yields 5 1 3 | 8 | | 2 4 6 | 7, which is not good).
Likewise, the third wall (= the fourth bar) in β1 is useless (since removing it
yields 5 | 1 3 | 8 | 2 4 6 | 7, which is a good 4-barper), and so is the fourth wall (=
the fifth bar). Note, in particular, that a wall placed at the very end or the very
start of the tuple is automatically useless.

Now, we claim that〈
n
k

〉
= (# of good k-barpers with no useless walls) . (11)

[Proof of (11): If σ ∈ Sn is a permutation having exactly k descents, then we can turn
the OLN of this permutation σ into a k-barper βσ by putting a bar “at each descent
of σ” (that is, for each descent i of σ, we put a bar between σ (i) and σ (i + 1) in the
OLN of σ). For example, if σ ∈ S7 is the permutation with OLN 4261375, then the
resulting k-barper βσ will be 4 | 2 6 | 1 3 7 | 5. Note that the k-barper βσ is good
(since σ (i) < σ (i + 1) whenever i is not a descent of σ) and has no useless walls (since
σ (i) > σ (i + 1) for each descent i of σ). Thus, we obtain a map

from {permutations σ ∈ Sn having exactly k descents}
to {good k-barpers with no useless walls}

which sends each σ to βσ. This map is easily seen to be a bijection, because a good
k-barper with no useless walls can always be read as the OLN of a permutation σ ∈ Sn
having exactly k descents (just drop the bars)6. Thus, the bijection principle yields

(# of permutations σ ∈ Sn having exactly k descents)
= (# of good k-barpers with no useless walls) .

But this is precisely (11), since the LHS equals
〈

n
k

〉
.]

Now, we shall compute the RHS of (11) using the Principle of Inclusion and Exclu-
sion.

6To see this, it helps to observe that if a k-barper β has no useless walls, then each bar of β is a
wall (since otherwise, the next wall to the right of this bar would be useless), and there are
no bars at the very beginning or the very end of β (for the same reason).



Lecture 28, version December 24, 2022 page 26

Let
U := {all good k-barpers} .

For each i ∈ [n + 1], let Ai be the set of all good k-barpers that have a useless wall
between the (i − 1)-st and the i-th entries7. Then,

{all good k-barpers with no useless walls}
= U \ (A1 ∪ A2 ∪ · · · ∪ An+1) ,

so that

(# of good k-barpers with no useless walls)
= |U \ (A1 ∪ A2 ∪ · · · ∪ An+1)|

= ∑
I⊆[n+1]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
(by Theorem 2.7.6 in Lecture 19). Hence, (11) becomes〈

n
k

〉
= ∑

I⊆[n+1]
(−1)|I|

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ . (12)

Now, we shall compute the sizes on the RHS of this equality. We claim that∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ =
{
(k − |I|+ 1)n , if |I| ≤ k;
0, if |I| > k

(13)

for every subset I of [n + 1].
[Proof of (13): Let I be a subset of [n + 1]. Then,

⋂
i∈I

Ai is the set of all good k-barpers

that have a useless wall between the (i − 1)-st and the i-th entries for each i ∈ I. 8

Obviously, such k-barpers can exist only if |I| ≤ k (since a k-barper has only k bars,
thus at most k useless walls). Thus, the set

⋂
i∈I

Ai is empty when |I| > k. In other words,∣∣∣∣⋂
i∈I

Ai

∣∣∣∣ = 0 when |I| > k. It remains to prove that
∣∣∣∣⋂
i∈I

Ai

∣∣∣∣ = (k − |I|+ 1)n when |I| ≤ k.

Let us thus assume that |I| ≤ k. Thus, k − |I| ∈ N.
Let β ∈ ⋂

i∈I
Ai be arbitrary. Thus, β is a good k-barper that has a useless wall between

the (i − 1)-st and the i-th entries for each i ∈ I. If we delete all these |I| many useless
walls from β (leaving all other useless walls in place, if there are any), then we obtain

7If i = 1, then this means having a useless wall before the first entry. If i = n + 1, then this
means having a useless wall at the very end.

8Note that a good k-barper cannot have more than one wall between the same two adjacent
entries (since only the last bar between these two entries counts as a wall).
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a good (k − |I|)-barper9, which we shall call β′. This yields a map

from
⋂
i∈I

Ai to {good (k − |I|) -barpers}

that sends each β ∈ ⋂
i∈I

Ai to the respective β′. This map is injective (since we can

always reinsert the |I| useless walls that we removed10) and surjective (since we can
always start with any good (k − |I|)-barper and insert a wall between its (i − 1)-st and
the i-th entries for each i ∈ I; then, all these inserted walls will be useless11, and the
resulting k-barper will belong to

⋂
i∈I

Ai). Hence, it is bijective. The bijection principle

therefore yields∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = (# of good (k − |I|) -barpers) = (k − |I|+ 1)n

(by (10), applied to k − |I| instead of k). This completes the proof of (13).]

9This is not completely obvious. By definition, if we delete a single useless wall from β, then
the resulting (k − 1)-barper is good. But what we need to show is that if we delete j useless
walls at the same time, then the resulting (k − j)-barper is still good. To convince yourself
of this, observe that if the i-th entry of β is larger than the (i + 1)-st entry, then these two
entries are separated in β by a bar that is not a useless wall (i.e., either by a non-useless wall,
or by a bar that is not a wall), and therefore they cannot end up in the same compartment
upon removal of several useless walls.

10The positions at which they have to be reinserted are uniquely determined, since a wall
separating two adjacent entries must always stand to the right of all bars separating these
two entries.

11since the original (k − |I|)-barper was good
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Now, (12) becomes12〈
n
k

〉
= ∑

I⊆[n+1]
(−1)|I|

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣
= ∑

I⊆[n+1]
(−1)|I|

{
(k − |I|+ 1)n , if |I| ≤ k;
0, if |I| > k

(by (13))

=
n+1

∑
i=0

∑
I⊆[n+1];
|I|=i

(−1)|I|
{
(k − |I|+ 1)n , if |I| ≤ k;
0, if |I| > k︸ ︷︷ ︸

=(−1)i

(k − i + 1)n , if i ≤ k;
0, if i > k

(since |I|=i)(
here, we have split up the sum

according to the value of |I|

)
=

n+1

∑
i=0

∑
I⊆[n+1];
|I|=i

(−1)i

{
(k − i + 1)n , if i ≤ k;
0, if i > k︸ ︷︷ ︸

=

(
n + 1

i

)
(−1)i

(k − i + 1)n , if i ≤ k;
0, if i > k

(since the # of i-element subsets of [n+1] is

(
n + 1

i

)
)

=
n+1

∑
i=0

(
n + 1

i

)
(−1)i

{
(k − i + 1)n , if i ≤ k;
0, if i > k

0
= ∑

i∈N

(
n + 1

i

)
(−1)i

{
(k − i + 1)n , if i ≤ k;
0, if i > k

 since
(

n + 1
i

)
= 0

for all i > n + 1


=

k

∑
i=0

(
n + 1

i

)
(−1)i (k − i + 1)n + ∑

i>k

(
n + 1

i

)
(−1)i 0︸ ︷︷ ︸

=0 here, we have split up the sum into one part
containing all addends with i ≤ k, and another

part containing all addends with i > k


=

k

∑
i=0

(
n + 1

i

)
(−1)i (k − i + 1)n =

k

∑
i=0

(−1)i
(

n + 1
i

)
(k + 1 − i)n .

This proves Theorem 4.6.7.

A different proof of Theorem 4.6.7 (using generating functions) appears in [Peters15,
Corollary 1.3].

12I will be using the “ 0
=” symbol; its meaning has been explained in Remark 2.3.2 in Lecture

15.
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See [Stanle11, §1.4 and §1.5], [Bona22, §1.1] and [Rzadko08] for more on descents and
Eulerian numbers13. (In particular, [Stanle11, Proposition 1.4.1] generalizes Exercise 1.)
See also [BayDia92] for an application of descents to probability theory (specifically, to
the question of how a deck of cards looks like when it has been shuffled several times
via a riffle shuffle).

There is much more to say about permutations, which we don’t have time
for in this short course:

• the permutahedron (e.g., [21s, Remark 5.3.19], [Santmy07]);

• Lehmer codes ([21s, §5.3.2]) and an explicit way to write a permutation
σ ∈ Sn as a product of ℓ (σ) simple transpositions ([21s, Remark 5.3.23
and Proposition 5.3.24]);

• pattern avoidance ([Bona22, Chapter 4]);

• Coxeter groups and reflection groups as generalizations of symmetric
groups ([BjoBre05]);

• and much more...
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