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Math 222 Fall 2022, Lecture 26: Permutations

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

4. Permutations

We will now revisit permutations. We have already defined and counted them,
but there is a lot more to do. We will not go anywhere deep, but just intro-
duce some of the main players and solve some of the more fundamental count-
ing questions. Much more can be found in [Bona22], [Sagan01] and [Stanle11,
Chapter 1] (see also [21s, Chapter 5] for the treatment we are mostly following
here).

4.1. Basic definitions

4.1.1. Symmetric groups

Definition 4.1.1. Let X be a set.
(a) As we recall, a permutation of X means a bijection from X to X.
(b) If α and β are two permutations of X, then we will denote their com-

position α ◦ β by αβ.
(c) The set of all permutations of X is denoted by SX, and is called the

symmetric group of X.
(d) If α ∈ SX and k ∈ Z, then we define a permutation αk as follows:

If k ≥ 0, then we set αk := α ◦ α ◦ · · · ◦ α︸ ︷︷ ︸
k times

(this is just standard notation for

the k-th power of an arbitrary map from X to X). If k < 0, then we set
αk =

(
α−1)−k.

If you are familiar with abstract algebra, you will recognize that the symmetric
group SX is actually a group (with the composition operation (α, β) 7→ α ◦ β
playing the role of multiplication, and with the identity map idX being the
neutral element). This viewpoint is somewhat helpful, but not very deep; most
combinatorial properties of permutations do not stem from group theory.

Note that the composition of permutations is not commutative: If α and β are
two permutations in SX, then αβ usually differs from βα. (There is a pretty nice
formula for how often αβ happens to equal βα, though. See Theorem 4.3.11 in
Lecture 28 below.)

Our favorite symmetric groups will be the symmetric groups S[n] of the sets
[n] = {1, 2, . . . , n} for various integers n ∈ N. We will discuss them so often
that we introduce a shorthand for them:

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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Definition 4.1.2. Let n ∈ N. Then, the symmetric group S[n] (which is the set
of all permutations of [n]) is denoted by Sn.

As we saw in §1.7.2 (Lecture 12), if X is any n-element set, then the per-
mutations of X can be turned into the permutations of [n] by “relabelling”
the elements of X as 1, 2, . . . , n. Thus, if we understand the symmetric groups
Sn = S[n] for all n ∈ N, then we essentially understand the symmetric groups
SX for all finite sets X (at least if we restrict ourselves to properties that don’t
depend on the actual elements of X). This explains why the specific symmetric
groups Sn are so central to combinatorics.

4.1.2. Three notations for permutations

Definition 4.1.3. Let n ∈ N and σ ∈ Sn. We introduce three notations for σ:
(a) A two-line notation of σ means a 2 × n-table(

p1 p2 · · · pn
σ (p1) σ (p2) · · · σ (pn)

)
, where p1, p2, . . . , pn are the elements

of [n] in some order. (Usually, this order is 1, 2, . . . , n, but sometimes a
different order can make for a nicer table. Thus the indefinite article in “a
two-line notation”.)

(b) The one-line notation (short: OLN) of σ means the n-tuple
(σ (1) , σ (2) , . . . , σ (n)) ∈ [n]n.

It is common to omit the commas and the parentheses in the OLN. So, for
instance, instead of (3, 1, 4, 2), you write 3142. This works fine for n ≤ 10.

(c) The cycle digraph of σ is (informally) defined as a picture that is con-
structed as follows:

• For each i ∈ [n], draw a point (“node”) labelled i.

• For each i ∈ [n], draw an arrow (“arc”) from the node labelled i to the
node labelled σ (i).

The resulting picture is called the cycle digraph of σ. Formally speaking,
it is a digraph (= directed graph1) with vertices 1, 2, . . . , n and arcs i → σ (i)
for all i ∈ [n].

Example 4.1.4. Let σ be the permutation of [4] whose OLN is 2431. Thus,
σ (1) = 2 and σ (2) = 4 and σ (3) = 3 and σ (4) = 1. Here is one way to

1For the definition (and many properties) of directed graphs, see various textbooks on graph
theory, such as [ChLeZh16, Chapter 7], [Ruohon13, Chapter 3] and many others, or even my
own notes [22s, Lectures 9–12]. Note that different authors use slightly different definitions,
but all these definitions fit our purpose (as long as they allow loops).
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draw the cycle digraph of σ:

1 2 3 4

.

Another way to draw this digraph is

1

2

34

.

(When drawing cycle digraphs, one has full freedom in placing the nodes, as
long as they don’t overlap with the arcs. Most often, one places them in such
a way that the cycles are visibly separate.)

Example 4.1.5. Let σ be the permutation of [10] whose OLN is

5 4 3 2 6 (10) 1 9 8 7.

(We have put the element 10 in parentheses to make its place clearer.) For
example, σ (5) = 6 and σ (6) = 10. The cycle digraph of σ is

10

6

5

1

7

9 8

2 4

3

.
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As you will have noticed from these examples, the cycle digraph of a permu-
tation σ looks like a bunch of disjoint cycles. This is indeed the case for any
permutation σ, and we will soon prove this.

The different notations for permutations have different advantages. The cycle
digraph of σ is useful for understanding the “intrinsic structure” of σ, and
particularly for computing powers σk of σ (because in order to compute σk (i)
for some element i ∈ [n], we just need to start at the node labelled i, and follow
the arcs for k steps). Other combinatorial properties are easier to see on the
OLN.

We note that the two-line notation and the cycle digraph can be defined for
any permutation σ of any finite set X (not just for σ ∈ Sn). The definitions are
the same that we gave in Definition 4.1.3, just replacing [n] by X. However, the
one-line notation cannot be generalized to arbitrary finite sets X.

4.2. Transpositions and cycles

Next, we will define some important families of permutations.

4.2.1. Transpositions

One of the simplest kinds of permutations (beyond the identity maps) are the
transpositions:

Definition 4.2.1. Let X be a set. Let i and j be two distinct elements of X.
Then, the transposition ti,j is the permutation of X that sends i to j, sends

j to i, and leaves all other elements of X unchanged. (We should denote this
permutation by ti,j,X, since it depends on X; but we will just call it ti,j because
X will be clear from the context.)

Example 4.2.2. The permutation t2,4 of the set [7] has OLN 1432567. Here is
its cycle digraph:

1

3

5 6

7 2

4 .

More generally, any transposition ti,j has a cycle digraph that consists of a
2-arc cycle (containing the nodes labelled i and j) and a bunch of 1-arc cycles
(each containing a single node).
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Note that ti,j = tj,i for any i ̸= j. Thus, for an n-element set X, there are ex-

actly
(

n
2

)
many transpositions in the symmetric group SX (namely, one trans-

position ti,j for every 2-element subset {i, j} of X).

The simplest type of transpositions are the so-called simple transpositions:

Definition 4.2.3. Let n ∈ N and i ∈ [n − 1]. Then, the simple transposition
si is defined by

si := ti,i+1 ∈ Sn.

Thus, a simple transposition is a transposition that swaps two consecutive in-
tegers. The following proposition gives some basic properties of simple trans-
positions:2

Proposition 4.2.4. Let n ∈ N.
(a) We have s2

i = id for each i ∈ [n − 1]. More generally, t2
i,j = id for any

i ̸= j in [n].
(b) We have sisj = sjsi for any i, j ∈ [n − 1] satisfying |i − j| > 1. (This is

called transposition locality.)
(c) We have sisi+1si = si+1sisi+1 = ti,i+2 for any i ∈ [n − 2]. (This is called

the braid rule.)

Proof. Just verify that the relevant permutations send every possible input to
the same output. This verification is rather straightforward. For example, in
part (c), we need to show that for any i ∈ [n − 2] and any k ∈ [n], we have

(sisi+1si) (k) = (si+1sisi+1) (k) = ti,i+2 (k) . (1)

This is best done by separately analyzing the four cases k = i, k = i+ 1, k = i+ 2
and k /∈ {i, i + 1, i + 2}. For example, if k = i, then all three sides of the equality
(1) equal i + 2, whereas for k /∈ {i, i + 1, i + 2}, they all equal k.

4.2.2. Cycles

A more general class of permutations are the cycles, defined as follows:

Definition 4.2.5. Let X be a set. Let i1, i2, . . . , ik be k distinct elements of X.
Then,

cyci1,i2,...,ik

2Recall that we are using the shorthand αβ for the composition α ◦ β of two permutations α
and β.
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means the permutation of X that sends

i1 to i2,
i2 to i3,
i3 to i4,
. . . ,
ik−1 to ik,
ik to i1

and leaves all other elements of X unchanged. In other words, cyci1,i2,...,ik
means the permutation of X that satisfies

cyci1,i2,...,ik
(p) =

{
ij+1, if p = ij for some j ∈ [k] ;

p, otherwise
for every p ∈ X,

where ik+1 means i1.
This permutation is called a k-cycle.

The only 1-cycle in SX is the identity map idX (since cyci = idX for each
i ∈ X). The 2-cycles are precisely the transpositions (since cyci,j = ti,j for any
i ̸= j in X).

The k-cycles have gotten their name because their cycle digraphs look as
follows: one cycle of length k (containing k nodes), and all other nodes just
form cycles of length 1 each. For example, the permutation σ in Example 4.1.4
is the 3-cycle cyc1,2,4.

A fairly common notation for the k-cycle cyci1,i2,...,ik
is (i1, i2, . . . , ik). Many

textbooks use this notation, but it requires some care, as it conflicts with the
notation for the k-tuple (i1, i2, . . . , ik). Thus, I use cyci1,i2,...,ik

instead.
The k-cycle cyci1,i2,...,ik

does not change if we permute the k subscripts i1, i2, . . . , ik
cyclically:

Proposition 4.2.6. Let X be a set. For any k distinct elements i1, i2, . . . , ik of
X, we have

cyci1,i2,...,ik
= cyci2,i3,...,ik,i1

= cyci3,i4,...,ik,i1,i2 = · · · = cycik,i1,i2,...,ik−1
.

Proof. Obvious.

Previously, we have counted the transpositions in SX; let us now generalize
this to counting k-cycles:
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Exercise 1. Let n ∈ N and k ∈ [n]. Let X be an n-element set. How many
k-cycles are there in SX ?

Solution. The case k = 1 is easy: There is exactly one 1-cycle in SX (for n > 0),
since a 1-cycle is just the identity map. This should be viewed as a degenerate
case; thus, we WLOG assume that k > 1 from now on.

Recall the notation nk for the number n (n − 1) (n − 2) · · · (n − k + 1) (this is
called a falling factorial and has been introduced in Definition 2.4.2 in Lecture
7). Note that

nk = n (n − 1) (n − 2) · · · (n − k + 1) = k! ·
(

n
k

)
(2)

(since
(

n
k

)
is defined as

n (n − 1) (n − 2) · · · (n − k + 1)
k!

).

A k-cycle cyci1,i2,...,ik
is defined for every k-tuple (i1, i2, . . . , ik) of k distinct

elements of X. The # of such k-tuples is easily seen to be nk. Indeed, we
can construct such a k-tuple by first choosing its first entry i1 (there are |X| = n
many options for this), then choosing its second entry i2 (there are n− 1 options
for this, since we need i2 to be distinct from i1), then choosing its third entry i3
(there are n − 2 options for this, since we need i3 to be distinct from both i1 and
i2, and since i1 and i2 are distinct), and so on. The total # of possibilities is thus
n (n − 1) (n − 2) · · · (n − k + 1) = nk.

Unfortunately, the nk distinct k-tuples (i1, i2, . . . , ik) do not produce nk distinct
k-cycles cyci1,i2,...,ik

. Indeed, Proposition 4.2.6 shows that any k-cycle cyci1,i2,...,ik
can also be rewritten in the k − 1 other forms

cyci2,i3,...,ik,i1
, cyci3,i4,...,ik,i1,i2 , . . . , cycik,i1,i2,...,ik−1

,

so that it is produced by k different k-tuples.
The good news is that this “ambiguity” is the worst that can happen. More

precisely: A k-cycle cyci1,i2,...,ik
always uniquely determines the elements i1, i2, . . . , ik

up to cyclic rotation. Indeed, if σ = cyci1,i2,...,ik
is a k-cycle, then the elements

i1, i2, . . . , ik are precisely the elements of X that are not fixed by σ (it is here
that we use our assumption k > 1), and furthermore, if we know which of
these elements is i1, then we can reconstruct the remaining elements i2, i3, . . . , ik
recursively by

i2 = σ (i1) , i3 = σ (i2) , i4 = σ (i3) , . . . , ik = σ (ik−1)

(that is, i2, i3, . . . , ik are obtained by iteratively applying σ to i1). Therefore, if
σ ∈ SX is a k-cycle, then there are precisely k different k-tuples (i1, i2, . . . , ik)
that satisfy σ = cyci1,i2,...,ik

(coming from the k options for choosing i1 among
the elements of X not fixed by σ).
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In other words, for any k-cycle σ, we have(
# of k-tuples (i1, i2, . . . , ik) of distinct elements of X such that σ = cyci1,i2,...,ik

)
= k. (3)

Now, the sum rule yields

(# of k-tuples (i1, i2, . . . , ik) of distinct elements of X)

= ∑
σ∈SX is
a k-cycle

(
# of k-tuples (i1, i2, . . . , ik) of distinct elements of X such that σ = cyci1,i2,...,ik

)
︸ ︷︷ ︸

=k
(by (3))

= ∑
σ∈SX is
a k-cycle

k = (# of k-cycles in SX) · k.

Solving this for (# of k-cycles in SX), we obtain3

(# of k-cycles in SX)

=
1
k
· (# of k-tuples (i1, i2, . . . , ik) of distinct elements of X)︸ ︷︷ ︸

=nk

(as we have seen above)

=
1
k
· nk︸︷︷︸
=k!·

(
n
k

)
(by (2))

=
1
k
· k!︸ ︷︷ ︸

=(k−1)!

·
(

n
k

)
= (k − 1)! ·

(
n
k

)
.

Thus, the general answer to Exercise 1 is
1, if k = 1;

(k − 1)! ·
(

n
k

)
, if k > 1.
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