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Math 222 Fall 2022, Lecture 25: The twelvefold
way

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

3. The twelvefold way

3.5. L → U placements (cont’d)

We continue the study of L → U placements. Last time (Proposition 3.5.1 in
Lecture 24), we proved that

(# of injective L → U placements A → X) = [|A| ≤ |X|]

(where, as we recall, A is the set of balls and X is the set of boxes).
To count arbitrary and surjective L → U placements, we need a definition

that we already mentioned in Lecture 17 (Remark 2.4.14):

Definition 3.5.2. Let n ∈ N and k ∈ N. Then, we define the Stirling number

of the second kind
{

n
k

}
to be

sur (n, k)
k!

.

Now we claim:

Proposition 3.5.3. We have

(# of surjective L → U placements A → X)

=

{
|A|
|X|

}
=

sur (|A| , |X|)
|X|! .

Proof. First, we recall that L → U placements are box∼ -equivalence classes of

maps from A to X. Each box∼ -equivalence class either consists entirely of surjec-
tions, or contains no surjection at all. (This is because two box-equivalent maps
are either both surjective or both non-surjective.)

Every surjection1 (and, more generally, every map from A to X) lies in exactly

one box∼ -equivalence class (since box∼ is an equivalence relation).
Now, the crux of our proof will be the following claim:

Claim 1: Each box∼ -equivalence class of surjections (i.e., each surjective
L → U placement) contains exactly |X|! many maps from A to X.

1Throughout this proof, “surjection” means “surjection from A to X”.

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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[Proof of Claim 1: Consider the box∼ -equivalence class of some surjection g :
A → X. The elements of this class are all the maps that are box-equivalent to
g. In other words, the elements of this class are all the maps of the form ξ ◦ g
with ξ being a permutation of X. There are |X|! many permutations ξ of X,
and they all lead to distinct maps ξ ◦ g 2. Thus, there are exactly |X|! many
distinct maps ξ ◦ g in the class of g. This proves Claim 1.]

Now, Proposition 2.4.9 in Lecture 16 yields

(# of surjections from A to X) = sur (|A| , |X|) .

Hence,

sur (|A| , |X|) = (# of surjections from A to X)

= ∑
C is a box∼ -equivalence

class of surjections

(# of surjections in C)︸ ︷︷ ︸
=|X|!

(by Claim 1)(
by the sum rule, since each surjection

lies in exactly one box∼ -equivalence class

)
= ∑

C is a box∼ -equivalence
class of surjections

|X|!

=
(

# of box∼ -equivalence classes of surjections
)
· |X|!.

Dividing this by |X|!, we obtain(
# of box∼ -equivalence classes of surjections

)
=

sur (|A| , |X|)
|X|! =

{
|A|
|X|

}
(by the definition of

{
|A|
|X|

}
). Since the box∼ -equivalence classes of surjections are

precisely the surjective L → U placements, we thus have proved that

(# of surjective L → U placements) =
{
|A|
|X|

}
.

This proves Proposition 3.5.3.
2Proof. Let ξ1 and ξ2 be two distinct permutations of X. We must show that the maps ξ1 ◦ g

and ξ2 ◦ g are distinct.
Indeed, there exists some box x ∈ X such that ξ1 (x) ̸= ξ2 (x) (since ξ1 and ξ2 are distinct).

Consider such an x. Since g is surjective, there exists a ball a ∈ A such that g (a) = x.
Consider such an a. Now,

(ξ1 ◦ g) (a) = ξ1

g (a)︸︷︷︸
=x

 = ξ1 (x) ̸= ξ2

 x︸︷︷︸
=g(a)

 = ξ2 (g (a)) = (ξ2 ◦ g) (a) .

This shows that ξ1 ◦ g and ξ2 ◦ g are distinct, qed.
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The above proof is an instance of what is often called the “shepherd’s princi-
ple”: To count the sheep in a flock, count the legs and divide by 4. (In our case,
the surjective L → U placements are the sheep; the actual surjections inside
them are their legs; and each sheep has |X|! many legs. This works well when
each sheep has the same # of legs.)

It remains to count all L → U placements (as opposed to just the injective or
surjective ones). This isn’t very hard any more:

Proposition 3.5.4. We have

(# of L → U placements from A to X)

=

{
|A|
0

}
+

{
|A|
1

}
+ · · ·+

{
|A|
|X|

}
=

|X|

∑
k=0

{
|A|
k

}
.

Proof. The main step is to prove the following:

Claim 1: Let k ∈ {0, 1, . . . , |X|}. Then,

(# of L → U placements from A to X with exactly k nonempty boxes)

=

{
|A|
k

}
.

[Proof of Claim 1: The empty boxes in an L → U placement are indistinguish-
able (since the boxes are unlabelled) and can always be moved to the end of the
placement. Hence, an L → U placement from A to X with exactly k nonempty
boxes can be viewed as a surjective L → U placement from A to [k] (since
we can simply remove the empty boxes and rename the k nonempty boxes as
1, 2, . . . , k). Therefore,

(# of L → U placements from A to X with exactly k nonempty boxes)
= (# of surjective L → U placements from A to [k])

=

{
|A|
k

}
(by Proposition 3.5.3, applied to [k] instead of X) .

This proves Claim 1.]

Now, note that any L → U placement from A to X has exactly k nonempty
boxes for a unique k ∈ {0, 1, . . . , |X|} (indeed, it cannot have more than |X|
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nonempty boxes, since we have only |X| boxes). Thus, by the sum rule, we find

(# of L → U placements from A to X)

=
|X|

∑
k=0

(# of L → U placements from A to X with exactly k nonempty boxes)︸ ︷︷ ︸
=

{
|A|
k

}
(by Claim 1)

=
|X|

∑
k=0

{
|A|
k

}
=

{
|A|
0

}
+

{
|A|
1

}
+ · · ·+

{
|A|
|X|

}
.

This proves Proposition 3.5.4.

With the above three results proved, our twelvefold way table now looks as
follows:

arbitrary injective surjective

L → L |X||A| |X||A| sur (|X| , |A|)

U → L
(
|A|+ |X| − 1

|A|

) (
|X|
|A|

) (
|A| − 1
|A| − |X|

)

L → U
|X|
∑

k=0

{
|A|
k

}
[|A| ≤ |X|]

{
|A|
|X|

}
U → U

.

3.6. Set partitions

Proposition 3.5.3 gave us an example of a combinatorial object (surjective L →
U placements) that is counted by Stirling numbers of the second kind. Let us
mention another such object: the set partitions. In truth, these set partitions
are in an easy bijection with surjective L → U placements, so they won’t be of
much novelty to us, but they have a tendency to appear in various places in
mathematics, so it is worth introducing them anyway.

Definition 3.6.1. Let S be a set.
(a) A set partition of S is a set F of disjoint nonempty subsets of S such

that the union of these subsets is S.
In other words, a set partition of S is a set {S1, S2, . . . , Sk} of nonempty

subsets of S such that each element of S lies in exactly one of S1, S2, . . . , Sk.
(Here, we are assuming that S is finite; otherwise, we would have to allow
“infinite” values of k.)
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(b) If F is a set partition of S, then the elements of F are called the parts
(or the blocks) of F . Keep in mind that they are subsets of S.

(c) If a set partition F of S has k blocks, then we say that F is a set partition
of S into k parts.

Example 3.6.2. Here are all set partitions of the set [3] = {1, 2, 3}:

{{1, 2, 3}} , {{1, 2} , {3}} , {{1, 3} , {2}} , {{2, 3} , {1}} ,
{{1} , {2} , {3}} .

And here are the same set partitions, drawn as pictures (each part of the set
partition corresponds to a blob):

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

The first of these five set partitions has 1 part; the second, third and fourth
have 2 parts each; the last has 3 parts.

Proposition 3.6.3. Let n ∈ N and k ∈ N. Let A be an n-element set. Then,

(# of set partitions of A into k parts) =
{

n
k

}
.

Proof. Let X = [k]. Let us regard the n elements of A as balls, and the k
elements of X as boxes. Thus, any surjective L → U placement from A to X can
be viewed as a set partition of A (namely, each box is a part of the set partition,
or, more precisely, the balls in this box form a part). To make this rigorous: If
p is a surjective map from A to X, then we can construct a set partition s (p) of
A by setting s (p) = {A1, A2, . . . , Ak}, where we set

Ai = {all balls in box i of p} = {a ∈ A | p (a) = i} for each i ∈ [k] .

Box-equivalent surjections p : A → X lead to the same set partition s (p),
and therefore s (p) depends not on the surjection p : A → X but only on its
box∼ -equivalence class. Therefore, we can define s (p) not just for a surjection
p : A → X but also for a surjective L → U placement p (simply by picking an
arbitrary surjection p′ in p and setting s (p) := s (p′)). This gives us a map

s : {surjective L → U placements} → {set partitions of A into k parts} ,
p 7→ s (p) .
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It is easy to see that this map s is bijective (indeed, the inverse map sends each
set partition {A1, A2, . . . , Ak} to the surjective L → U placement that puts all
elements of A1 into box 1, all elements of A2 into box 2, and so on).3

Hence, the bijection principle yields

(# of set partitions of A into k parts)
= (# of surjective L → U placements)

=

{
|A|
|X|

}
(by Proposition 3.5.3)

=

{
n
k

}
(since |A| = n and |X| = k) .

This proves Proposition 3.6.3. (See [18s-hw3s, Proposition 0.12] for a somewhat
different proof.)

Remark 3.6.4. Let n ∈ N. Let A be an n-element set. Then, a set partition of
A cannot have more than n parts (why?). Hence, by the sum rule,

(# of set partitions of A)

=
n

∑
k=0

(# of set partitions of A into k parts)

=
n

∑
k=0

{
n
k

}
(by Proposition 3.6.3)

=

{
n
0

}
+

{
n
1

}
+ · · ·+

{
n
n

}
.

This number is called the n-th Bell number B (n). For example, B (3) = 5, as
we see from Example 3.6.2.

There is no explicit formula for B (n), but there is a recursive one:

B (n + 1) =
n

∑
i=0

(
n
i

)
B (i) .

This is not hard to prove (nice exercise!). (For a proof, see [Guicha20, Theo-
rem 1.4.3].)

3For the sake of illustration, here is a table of values of s for A = [3] and k = 2:

p [12] [3] [13] [2] [23] [1]

s (p)
1 2

3

1 2

3

1 2

3
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Remark 3.6.5. Using set partitions, one can generalize the chain rule from
analysis to the n-th derivative. To wit, let f and g be two functions from
R to R that have sufficiently many derivatives. Let n ∈ N. Then, the n-th
derivative ( f ◦ g)(n) of the composite function f ◦ g is given by

( f ◦ g)(n) (x) = ∑
F is a set partition of [n]

f (|F |) (g (x)) · ∏
B is a part of F

g(|B|) (x) .

Here, |F | and |B| are sizes of sets, understood in the usual way (so |F | is the
# of parts of F , and |B| is the # of elements in B). For example, for n = 3,
this is saying that

( f ◦ g)(3) (x) = f ′ (g (x)) · g′′′ (x)+ 3 f ′′ (g (x)) · g′′ (x) · g′ (x)+ f ′′′ (g (x)) ·
(

g′ (x)
)3 .

Here, the f ′ (g (x)) · g′′′ (x) addend comes from the set partition F =
{{1, 2, 3}}; the 3 f ′′ (g (x)) · g′′ (x) · g′ (x) addend comes from the three set
partitions into 2 parts (they all contribute equal terms, thus the factor
of 3); and the f ′′′ (g (x)) · (g′ (x))3 addend comes from the set partition
F = {{1} , {2} , {3}}.

The above formula for ( f ◦ g)(n) is known as the Faa di Bruno formula.
Various proofs can be found in the literature (as can applications, generaliza-
tions and equivalent versions). See [Johnso02, §2] for the simplest proof.

3.7. U → U and integer partitions

3.7.1. Introduction

To complete the twelvefold way, it remains to count U → U placements.
A U → U placement can look, for example, as follows:

[• • •] [ ] [•] [• •] [ ] [ ] [•],

with the understanding that the boxes are interchangeable. Thus, we can order
the boxes by decreasing number of balls:

[• • •] [• •] [•] [•] [ ] [ ] [ ].

You can encode this U → U placement by a sequence of numbers, which say
how many balls lie in each box:

(3, 2, 1, 1, 0, 0, 0) .

If the # of boxes is known, we can omit the 0’s and just write this as (3, 2, 1, 1).
The decreasing order of its entries makes this sequence unique.
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3.7.2. Partitions

Let us introduce a name for such sequences:

Definition 3.7.1. A partition (or, to be very precise, an integer partition) of
an integer n is a weakly decreasing list (a1, a2, . . . , ak) of positive integers
whose sum is n (that is, a1 ≥ a2 ≥ · · · ≥ ak > 0 and a1 + a2 + · · ·+ ak = n).

The entries a1, a2, . . . , ak of this list are called the parts of the partition
(a1, a2, . . . , ak).

If a partition of n has k parts, then we say that it is a partition of n into k
parts.

Example 3.7.2. The partitions of 5 are

(5) , (4, 1) , (3, 2) , (3, 1, 1) , (2, 2, 1) ,
(2, 1, 1, 1) , (1, 1, 1, 1, 1)

For instance, (2, 1, 1, 1) is a partition of 5 into 4 parts.

Remark 3.7.3. A partition of n is the same as a weakly decreasing composi-
tion of n.

Definition 3.7.4. Let n ∈ Z and k ∈ Z. Then, we set

pk (n) := (# of partitions of n into k parts) .

Example 3.7.5. We have

p0 (5) = 0, p1 (5) = 1, p2 (5) = 2, p3 (5) = 2,
p4 (5) = 1, p5 (5) = 1, pk (5) = 0 for all k > 5.

There is no explicit formula for pk (n), but the computation of pk (n) can still
be made fairly painless using the following recursive formula (and base cases):

Proposition 3.7.6. Let n ∈ Z and k ∈ N.
(a) We have pk (n) = 0 when k < 0 or n < 0.
(b) We have pk (n) = 0 when k > n.
(c) We have p0 (n) = [n = 0].
(d) We have p1 (n) = [n > 0].
(e) We have p2 (n) = ⌊n/2⌋ if n ∈ N.
(f) We have pk (n) = pk (n − k) + pk−1 (n − 1).

Proof. (a) A partition has positive entries, so the sum of its entries cannot be
negative. Thus, pk (n) = 0 when n < 0.
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Also, the number of its entries cannot be negative. Thus, pk (n) = 0 when
k < 0. Proposition 3.7.6 (a) is thus proved.

(b) Let (a1, a2, . . . , ak) be a partition of n into k parts. Then, a1, a2, . . . , ak are
positive integers (by the definition of a partition), and thus are ≥ 1 each. Hence,

a1︸︷︷︸
≥1

+ a2︸︷︷︸
≥1

+ · · ·+ ak︸︷︷︸
≥1

≥ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k times

= k. However, a1 + a2 + · · ·+ ak = n

(since (a1, a2, . . . , ak) is a partition of n). Thus, n = a1 + a2 + · · ·+ ak ≥ k.
Forget that we fixed (a1, a2, . . . , ak). We thus have shown that if (a1, a2, . . . , ak)

is a partition of n into k parts, then n ≥ k. Hence, there exists no partition of
n into k parts if n < k. In other words, pk (n) = 0 when n < k. This proves
Proposition 3.7.6 (b).

(c) A partition of n into 0 parts must necessarily be the 0-tuple (). But the sum
of all entries of this 0-tuple is 0 (since an empty sum is 0). Hence, a partition of
n into 0 parts exists only if n = 0, and in this case it is unique. In other words,
the # of partitions of n into 0 parts is [n = 0]. In other words, p0 (n) = [n = 0].
This proves Proposition 3.7.6 (c).

(d) A partition of n into 1 part must necessarily be the 1-tuple (n) (since the
sum of its parts has to be n). But this 1-tuple (n) is a partition only when
n > 0 (since the entries of a partition have to be positive integers). Thus, a
partition of n into 1 part exists only when n > 0, and in this case it is unique.
In other words, the # of partitions of n into 1 part is [n > 0]. In other words,
p1 (n) = [n > 0]. This proves Proposition 3.7.6 (d).

(e) Assume that n ∈ N. Then, any partition of n into 2 parts must have the
form (k, n − k) for some positive integer k (since the sum of its parts must be
n). However, (k, n − k) is not a partition unless k ≥ n − k (because a partition
has to be weakly decreasing), i.e., unless k ≥ n/2. Thus, the partitions of n into
2 parts are

(n − 1, 1) , (n − 2, 2) , (n − 3, 3) , . . . , (⌈n/2⌉ , n − ⌈n/2⌉) .

There are clearly n − ⌈n/2⌉ = ⌊n/2⌋ of these partitions. This proves Proposi-
tion 3.7.6 (e).

(f) Let us call a partition

• red if 1 is a part of it;

• green if 1 is not a part of it.

Recall that a partition must be weakly decreasing (by definition). Thus, the
last part of a partition must be its smallest part. Consequently, if 1 is a part of
a partition, then the last part of this partition must be 1 (although, of course,
some other parts may also be 1). In other words, if a partition is red, then its last
part must be 1. Thus, any red partition of n into k parts must necessarily have
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the form (a1, a2, . . . , ak−1, 1). Removing the last entry from such a red partition
yields the (k − 1)-tuple (a1, a2, . . . , ak−1), which is a partition of n − 1 into k − 1
parts.

Thus, we obtain a map

{red partitions of n into k parts} → {partitions of n − 1 into k − 1 parts} ,
(a1, a2, . . . , ak−1, 1) 7→ (a1, a2, . . . , ak−1) .

Conversely, we have a map

{partitions of n − 1 into k − 1 parts} → {red partitions of n into k parts} ,
(a1, a2, . . . , ak−1) 7→ (a1, a2, . . . , ak−1, 1) .

These two maps are mutually inverse and thus are bijections. Hence, the bijec-
tion principle yields

(# of red partitions of n into k parts)
= (# of partitions of n − 1 into k − 1 parts)
= pk−1 (n − 1) (by definition of pk−1 (n − 1)) .

On the other hand, if a partition (a1, a2, . . . , ak) of n is green, then all its parts
a1, a2, . . . , ak are distinct from 1 and therefore larger than 1 (since they are pos-
itive integers). Subtracting 1 from each part thus leaves us again with a parti-
tion, although this new partition (a1 − 1, a2 − 1, . . . , ak − 1) will be a partition
of n − k (since (a1 − 1) + (a2 − 1) + · · ·+ (ak − 1) = (a1 + a2 + · · ·+ ak)︸ ︷︷ ︸

=n

−k =

n − k). Hence, we obtain a map

{green partitions of n into k parts} → {partitions of n − k into k parts} ,
(a1, a2, . . . , ak) 7→ (a1 − 1, a2 − 1, . . . , ak − 1) .

Conversely, we have a map

{partitions of n − k into k parts} → {green partitions of n into k parts} ,
(a1, a2, . . . , ak) 7→ (a1 + 1, a2 + 1, . . . , ak + 1)

(this is well-defined, because a1 + 1, a2 + 1, . . . , ak + 1 will always be distinct
from 1 because a1, a2, . . . , ak are positive). These two maps are mutually inverse
and thus are bijections. Hence, the bijection principle yields

(# of green partitions of n into k parts)
= (# of partitions of n − k into k parts)
= pk (n − k) (by definition of pk (n − k)) .
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Finally, every partition is either red or green (but not both). Hence, by the
sum rule,

(# of partitions of n into k parts)
= (# of red partitions of n into k parts)︸ ︷︷ ︸

=pk−1(n−1)

+ (# of green partitions of n into k parts)︸ ︷︷ ︸
=pk(n−k)

= pk−1 (n − 1) + pk (n − k) .

Since the left hand side of this equality is pk (n), we thus have proved Proposi-
tion 3.7.6 (f).

Here is a table of the numbers pk (n) for small values of k and n:

pk (n) n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

k = 0 1 0 0 0 0 0 0 0 0 0

k = 1 0 1 1 1 1 1 1 1 1 1

k = 2 0 0 1 1 2 2 3 3 4 4

k = 3 0 0 0 1 1 2 3 4 5 7

k = 4 0 0 0 0 1 1 2 3 5 6

k = 5 0 0 0 0 0 1 1 2 3 5

k = 6 0 0 0 0 0 0 1 1 2 3

k = 7 0 0 0 0 0 0 0 1 1 2

k = 8 0 0 0 0 0 0 0 0 1 1

k = 9 0 0 0 0 0 0 0 0 0 1

You may spot a few more properties of pk (n) in this table, such as the fol-
lowing:

Exercise 1. Show that pn−1 (n) = 1 for each n ≥ 2.

Exercise 2. More generally, show that pn−k (n) = pk (2k) for each k ∈ N and
each n ≥ 2k.

Exercise 3 ((harder)). Let n ∈ N. Show that p3 (n) = round
n2

12
, where

round x denotes the closest integer to x.

See Sequence A008284 in the OEIS for more about the numbers pk (n).

https://oeis.org/A008284
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3.7.3. Counting U → U placements

Now, back to the boxes and the balls. We can at last count U → U placements:

Proposition 3.7.7. We have

(# of surjective U → U placements A → X) = p|X| (|A|) .

Proof. In a surjective U → U placement, any given box has a positive # of balls.
However, the boxes are unlabelled, so we don’t know which box is the 1-st box,
which is the 2-nd, and so on. However, we can order the boxes by decreasing #
of balls, and then there is a well-defined “1-st box”, a well-defined “2-nd box”,
etc..

Thus, we can encode a surjective U → U placement A → X by the |X|-tuple(
a1, a2, . . . , a|X|

)
, where

ai = (# of balls in the i-th box)

(where the boxes are ordered by decreasing # of balls). This |X|-tuple
(

a1, a2, . . . , a|X|

)
is weakly decreasing (because of how we ordered the boxes), and its entries are
positive integers (since our placement is surjective), and the sum of its entries is
|A| (since we have a total of |A| many balls). Thus, this |X|-tuple is a partition
of |A| into |X| parts.

This allows us to define a map

{surjective U → U placements A → X} → {partitions of |A| into |X| parts} ,

which sends a placement to the |X|-tuple
(

a1, a2, . . . , a|X|

)
we just defined. It is

easy to see that this map is bijective. Thus, by the bijection principle,

(# of surjective U → U placements A → X)

= (# of partitions of |A| into |X| parts) = p|X| (|A|) .

Proposition 3.7.8. We have

(# of injective U → U placements A → X) = [|A| ≤ |X|] .

Proof. Easy exercise.
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Proposition 3.7.9. We have

(# of U → U placements A → X)

= p0 (|A|) + p1 (|A|) + · · ·+ p|X| (|A|)

=
|X|

∑
k=0

pk (|A|) .

Proof sketch. As in the proof of Proposition 3.5.4, we break the sum up according
to the # of nonempty boxes. (Details left to the reader.)

Exercise 4. Prove that the # in Proposition 3.7.9 is also equal to
p|X| (|X|+ |A|).

We can now fill in the twelvefold way table completely:

arbitrary injective surjective

L → L |X||A| |X||A| sur (|X| , |A|)

U → L
(
|A|+ |X| − 1

|A|

) (
|X|
|A|

) (
|A| − 1
|A| − |X|

)

L → U
|X|
∑

k=0

{
|A|
k

}
[|A| ≤ |X|]

{
|A|
|X|

}

U → U
|X|
∑

k=0
pk (|A|) [|A| ≤ |X|] p|X| (|A|)

.

3.7.4. More about partition numbers

The numbers pk (n) have many interesting properties. Yet more mysterious are
the numbers

p (n) := (# of all partitions of n) =
n

∑
k=0

pk (n) .

These numbers p (n) are called the partition numbers; here is a little table of
some of them:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

p (n) 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135
.

One of their most famous properties is the following recursion formula found
by Euler:
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Theorem 3.7.10 (Euler’s recursion for the partition numbers). For each n > 0,
we have

p (n) = ∑
k∈Z;
k ̸=0

(−1)k−1 p (n − wk) . (1)

Here, the numbers wk are the so-called pentagonal numbers, defined by

wk :=
(3k − 1) k

2
for each k ∈ Z.

Here is a little table of the smallest few of them:

k −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

wk 77 57 40 26 15 7 2 0 1 5 12 22 35 51 70
.

Note that they decrease for k ≤ 0 and increase for k ≥ 0. For each given
n, only finitely many addends on the right hand side of (1) are nonzero
(because if |k| is sufficiently large, we have wk > n and thus p (n − wk) =
p (something negative) = 0), and therefore the infinite sum in (1) is well-
defined. “Explicitly”, (1) takes the form

p (n) = p (n − 1) + p (n − 2)− p (n − 5)− p (n − 7) + p (n − 12) + p (n − 15)
− p (n − 22)− p (n − 26)± · · · .

For a proof of Theorem 3.7.10, see a graduate course on combinatorics (e.g.,
[21s, Corollary 4.2.3]). Readers familiar with power series should take a look
at the Wikipedia page for Euler’s Pentagonal Number Theorem, of which The-
orem 3.7.10 is an easy corollary. (Self-contained proofs of Euler’s Pentagonal
Number Theorem can also be found in [Bell06, §3], [Koch16, §10], [Zabroc03]
or [Sills12, §2.6–§2.7].)

Interested in more? A book-length introduction to the vast and deep theory
of partitions is [AndEri04] (although it is not always fully rigorous, but it gives
a good idea of how results in this subject look like). My notes [21s, Chapter
4] give an introduction as well (more detailed but also much more modest in
coverage). Most advanced courses in enumerative (or algebraic) combinatorics
contain at least some material on partitions.
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