Math 222 Fall 2022, Lecture 25: The twelvefold way

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

3. The twelvefold way

3.5. $L \rightarrow U$ placements (cont'd)

We continue the study of $L \rightarrow U$ placements. Last time (Proposition 3.5.1 in Lecture 24), we proved that

(# of injective $L \to U$ placements $A \to X$) = [$|A| \le |X|$]

(where, as we recall, *A* is the set of balls and *X* is the set of boxes).

To count arbitrary and surjective $L \rightarrow U$ placements, we need a definition that we already mentioned in Lecture 17 (Remark 2.4.14):

Definition 3.5.2. Let $n \in \mathbb{N}$ and $k \in \mathbb{N}$. Then, we define the **Stirling number** of the second kind $\begin{cases} n \\ k \end{cases}$ to be $\frac{\operatorname{sur}(n,k)}{k!}$.

Now we claim:

Proposition 3.5.3. We have

(# of surjective
$$L \to U$$
 placements $A \to X$)
= $\left\{ \begin{vmatrix} A \\ |X| \end{matrix} \right\} = \frac{\operatorname{sur}(|A|, |X|)}{|X|!}.$

Proof. First, we recall that $L \to U$ placements are $\stackrel{\text{box}}{\sim}$ -equivalence classes of maps from *A* to *X*. Each $\stackrel{\text{box}}{\sim}$ -equivalence class either consists entirely of surjections, or contains no surjection at all. (This is because two box-equivalent maps are either both surjective or both non-surjective.)

Every surjection¹ (and, more generally, every map from *A* to *X*) lies in exactly one $\stackrel{\text{box}}{\sim}$ -equivalence class (since $\stackrel{\text{box}}{\sim}$ is an equivalence relation).

Now, the crux of our proof will be the following claim:

Claim 1: Each $\stackrel{\text{box}}{\sim}$ -equivalence class of surjections (i.e., each surjective $L \rightarrow U$ placement) contains exactly |X|! many maps from A to X.

¹Throughout this proof, "surjection" means "surjection from A to X".

[*Proof of Claim 1:* Consider the $\stackrel{\text{box}}{\sim}$ -equivalence class of some surjection $g : A \to X$. The elements of this class are all the maps that are box-equivalent to g. In other words, the elements of this class are all the maps of the form $\xi \circ g$ with ξ being a permutation of X. There are |X|! many permutations ξ of X, and they all lead to **distinct** maps $\xi \circ g = {}^2$. Thus, there are exactly |X|! many distinct maps $\xi \circ g$ in the class of g. This proves Claim 1.]

Now, Proposition 2.4.9 in Lecture 16 yields

(# of surjections from A to X) = sur
$$(|A|, |X|)$$
.

Hence,

$$sur (|A|, |X|) = (\# \text{ of surjections from } A \text{ to } X)$$

$$= \sum_{\substack{C \text{ is a } box \\ class \text{ of surjections}}} \underbrace{(\# \text{ of surjections in } C)}_{(by \text{ Claim } 1)}$$

$$\begin{pmatrix} \text{ by the sum rule, since each surjection} \\ \text{ lies in exactly one } box \\ class \text{ of surjections} \\ \text{ lies in exactly one } box \\ class \text{ of surjections} \\ \text{ equivalence class of surjections} \\ = \left(\# \text{ of } box \\ class \text{ of surjections} \\ \text{ equivalence classes of surjections} \right) \cdot |X|!.$$

Dividing this by |X|!, we obtain

$$(\# \text{ of } \stackrel{\text{box}}{\sim} \text{-equivalence classes of surjections}) = \frac{\operatorname{sur}(|A|, |X|)}{|X|!} = \begin{cases} |A|\\|X| \end{cases}$$

(by the definition of $\begin{cases} |A| \\ |X| \end{cases}$). Since the $\stackrel{\text{box}}{\sim}$ -equivalence classes of surjections are precisely the surjective $L \to U$ placements, we thus have proved that

(# of surjective
$$L \to U$$
 placements) = $\begin{cases} |A| \\ |X| \end{cases}$.

This proves Proposition 3.5.3.

Indeed, there exists some box $x \in X$ such that $\xi_1(x) \neq \xi_2(x)$ (since ξ_1 and ξ_2 are distinct). Consider such an x. Since g is surjective, there exists a ball $a \in A$ such that g(a) = x. Consider such an a. Now,

$$\left(\xi_{1}\circ g\right)\left(a\right)=\xi_{1}\left(\underbrace{g\left(a\right)}_{=x}\right)=\xi_{1}\left(x\right)\neq\xi_{2}\left(\underbrace{x}_{=g\left(a\right)}\right)=\xi_{2}\left(g\left(a\right)\right)=\left(\xi_{2}\circ g\right)\left(a\right).$$

This shows that $\xi_1 \circ g$ and $\xi_2 \circ g$ are distinct, qed.

²*Proof.* Let ξ_1 and ξ_2 be two distinct permutations of *X*. We must show that the maps $\xi_1 \circ g$ and $\xi_2 \circ g$ are distinct.

The above proof is an instance of what is often called the "shepherd's principle": To count the sheep in a flock, count the legs and divide by 4. (In our case, the surjective $L \rightarrow U$ placements are the sheep; the actual surjections inside them are their legs; and each sheep has |X|! many legs. This works well when each sheep has the same # of legs.)

It remains to count **all** $L \rightarrow U$ placements (as opposed to just the injective or surjective ones). This isn't very hard any more:

Proposition 3.5.4. We have

(# of $L \to U$ placements from A to X) = $\binom{|A|}{0} + \binom{|A|}{1} + \dots + \binom{|A|}{|X|} = \sum_{k=0}^{|X|} \binom{|A|}{k}.$

Proof. The main step is to prove the following:

Claim 1: Let $k \in \{0, 1, ..., |X|\}$. Then,

(# of $L \to U$ placements from A to X with exactly k nonempty boxes) = $\begin{cases} |A| \\ k \end{cases}$.

[*Proof of Claim 1:* The empty boxes in an $L \rightarrow U$ placement are indistinguishable (since the boxes are unlabelled) and can always be moved to the end of the placement. Hence, an $L \rightarrow U$ placement from A to X with exactly k nonempty boxes can be viewed as a surjective $L \rightarrow U$ placement from A to [k] (since we can simply remove the empty boxes and rename the k nonempty boxes as $1, 2, \ldots, k$). Therefore,

(# of $L \to U$ placements from A to X with exactly k nonempty boxes) = (# of surjective $L \to U$ placements from A to [k]) = $\begin{cases} |A| \\ k \end{cases}$ (by Proposition 3.5.3, applied to [k] instead of X).

This proves Claim 1.]

Now, note that any $L \to U$ placement from A to X has exactly k nonempty boxes for a unique $k \in \{0, 1, ..., |X|\}$ (indeed, it cannot have more than |X|

nonempty boxes, since we have only |X| boxes). Thus, by the sum rule, we find

$$(\# \text{ of } L \to U \text{ placements from } A \text{ to } X)$$

$$= \sum_{k=0}^{|X|} \underbrace{(\# \text{ of } L \to U \text{ placements from } A \text{ to } X \text{ with exactly } k \text{ nonempty boxes})}_{= \begin{cases} |A| \\ k \\ \text{(by Claim 1)} \end{cases}}$$

$$= \sum_{k=0}^{|X|} \begin{Bmatrix} |A| \\ k \end{Bmatrix} = \begin{Bmatrix} |A| \\ 0 \end{Bmatrix} + \begin{Bmatrix} |A| \\ 1 \end{Bmatrix} + \dots + \begin{Bmatrix} |A| \\ |X| \end{Bmatrix}.$$

This proves Proposition 3.5.4.

With the above three results proved, our twelvefold way table now looks as follows:

	arbitrary	injective	surjective
$L \rightarrow L$	$ X ^{ A }$	$ X ^{\underline{ A }}$	$\operatorname{sur}\left(\left X\right ,\left A\right \right)$
$U \rightarrow L$	$\binom{ A + X -1}{ A }$	$\binom{ X }{ A }$	$\binom{ A -1}{ A - X }$
$L \rightarrow U$	$\sum_{k=0}^{ X } \left\{ \begin{matrix} A \\ k \end{matrix} \right\}$	$[A \le X]$	$\binom{ A }{ X }$
$U \to U$			

3.6. Set partitions

Proposition 3.5.3 gave us an example of a combinatorial object (surjective $L \rightarrow U$ placements) that is counted by Stirling numbers of the second kind. Let us mention another such object: the **set partitions**. In truth, these set partitions are in an easy bijection with surjective $L \rightarrow U$ placements, so they won't be of much novelty to us, but they have a tendency to appear in various places in mathematics, so it is worth introducing them anyway.

Definition 3.6.1. Let *S* be a set.

(a) A set partition of *S* is a set \mathcal{F} of disjoint nonempty subsets of *S* such that the union of these subsets is *S*.

In other words, a set partition of *S* is a set $\{S_1, S_2, ..., S_k\}$ of nonempty subsets of *S* such that each element of *S* lies in exactly one of $S_1, S_2, ..., S_k$. (Here, we are assuming that *S* is finite; otherwise, we would have to allow "infinite" values of *k*.)

(b) If \mathcal{F} is a set partition of *S*, then the elements of \mathcal{F} are called the **parts** (or the **blocks**) of \mathcal{F} . Keep in mind that they are subsets of *S*.

(c) If a set partition \mathcal{F} of *S* has *k* blocks, then we say that \mathcal{F} is a **set partition** of *S* into *k* parts.

Example 3.6.2. Here are all set partitions of the set $[3] = \{1, 2, 3\}$:

 $\{\{1,2,3\}\}, \quad \{\{1,2\},\{3\}\}, \quad \{\{1,3\},\{2\}\}, \quad \{\{2,3\},\{1\}\}, \\ \{\{1\},\{2\},\{3\}\}.$

And here are the same set partitions, drawn as pictures (each part of the set partition corresponds to a blob):

The first of these five set partitions has 1 part; the second, third and fourth have 2 parts each; the last has 3 parts.

Proposition 3.6.3. Let $n \in \mathbb{N}$ and $k \in \mathbb{N}$. Let *A* be an *n*-element set. Then,

(# of set partitions of *A* into *k* parts) = $\begin{cases} n \\ k \end{cases}$.

Proof. Let X = [k]. Let us regard the *n* elements of *A* as balls, and the *k* elements of *X* as boxes. Thus, any surjective $L \rightarrow U$ placement from *A* to *X* can be viewed as a set partition of *A* (namely, each box is a part of the set partition, or, more precisely, the balls in this box form a part). To make this rigorous: If *p* is a surjective map from *A* to *X*, then we can construct a set partition $\mathfrak{s}(p)$ of *A* by setting $\mathfrak{s}(p) = \{A_1, A_2, \ldots, A_k\}$, where we set

$$A_i = \{ \text{all balls in box } i \text{ of } p \} = \{ a \in A \mid p(a) = i \}$$
 for each $i \in [k]$.

Box-equivalent surjections $p : A \to X$ lead to the **same** set partition $\mathfrak{s}(p)$, and therefore $\mathfrak{s}(p)$ depends not on the surjection $p : A \to X$ but only on its $\overset{\text{box}}{\sim}$ -equivalence class. Therefore, we can define $\mathfrak{s}(p)$ not just for a surjection $p : A \to X$ but also for a surjective $L \to U$ placement p (simply by picking an arbitrary surjection p' in p and setting $\mathfrak{s}(p) := \mathfrak{s}(p')$). This gives us a map

$$\mathfrak{s}: \{ \text{surjective } L \to U \text{ placements} \} \to \{ \text{set partitions of } A \text{ into } k \text{ parts} \},\ p \mapsto \mathfrak{s}(p) \,.$$

It is easy to see that this map \mathfrak{s} is bijective (indeed, the inverse map sends each set partition $\{A_1, A_2, \ldots, A_k\}$ to the surjective $L \to U$ placement that puts all elements of A_1 into box 1, all elements of A_2 into box 2, and so on).³

Hence, the bijection principle yields

(# of set partitions of *A* into *k* parts)
= (# of surjective
$$L \rightarrow U$$
 placements)
= $\begin{cases} |A| \\ |X| \end{cases}$ (by Proposition 3.5.3)
= $\begin{cases} n \\ k \end{cases}$ (since $|A| = n$ and $|X| = k$).

This proves Proposition 3.6.3. (See [18s-hw3s, Proposition 0.12] for a somewhat different proof.) $\hfill \Box$

Remark 3.6.4. Let $n \in \mathbb{N}$. Let *A* be an *n*-element set. Then, a set partition of *A* cannot have more than *n* parts (why?). Hence, by the sum rule,

(# of set partitions of *A*)

$$= \sum_{k=0}^{n} (\text{# of set partitions of } A \text{ into } k \text{ parts})$$

$$= \sum_{k=0}^{n} {n \\ k} \text{ (by Proposition 3.6.3)}$$

$$= {n \\ 0} + {n \\ 1} + \dots + {n \\ n}.$$

This number is called the *n*-th Bell number B(n). For example, B(3) = 5, as we see from Example 3.6.2.

There is no explicit formula for B(n), but there is a recursive one:

$$B(n+1) = \sum_{i=0}^{n} \binom{n}{i} B(i).$$

This is not hard to prove (nice exercise!). (For a proof, see [Guicha20, Theorem 1.4.3].)

³For the sake of illustration, here is a table of values of \mathfrak{s} for A = [3] and k = 2:

р	[12] [3]	[13] [2]	[23] [1]			
$\mathfrak{s}(p)$		3				

Remark 3.6.5. Using set partitions, one can generalize the chain rule from analysis to the *n*-th derivative. To wit, let *f* and *g* be two functions from \mathbb{R} to \mathbb{R} that have sufficiently many derivatives. Let $n \in \mathbb{N}$. Then, the *n*-th derivative $(f \circ g)^{(n)}$ of the composite function $f \circ g$ is given by

$$\left(f \circ g\right)^{(n)}(x) = \sum_{\mathcal{F} \text{ is a set partition of } [n]} f^{(|\mathcal{F}|)}\left(g\left(x\right)\right) \cdot \prod_{B \text{ is a part of } \mathcal{F}} g^{(|B|)}\left(x\right).$$

Here, $|\mathcal{F}|$ and |B| are sizes of sets, understood in the usual way (so $|\mathcal{F}|$ is the # of parts of \mathcal{F} , and |B| is the # of elements in *B*). For example, for n = 3, this is saying that

$$(f \circ g)^{(3)}(x) = f'(g(x)) \cdot g'''(x) + 3f''(g(x)) \cdot g''(x) \cdot g'(x) + f'''(g(x)) \cdot (g'(x))^3$$

Here, the $f'(g(x)) \cdot g'''(x)$ addend comes from the set partition $\mathcal{F} = \{\{1,2,3\}\}$; the $3f''(g(x)) \cdot g''(x) \cdot g'(x)$ addend comes from the three set partitions into 2 parts (they all contribute equal terms, thus the factor of 3); and the $f'''(g(x)) \cdot (g'(x))^3$ addend comes from the set partition $\mathcal{F} = \{\{1\}, \{2\}, \{3\}\}.$

The above formula for $(f \circ g)^{(n)}$ is known as the **Faa di Bruno formula**. Various proofs can be found in the literature (as can applications, generalizations and equivalent versions). See [Johnso02, §2] for the simplest proof.

3.7. $U \rightarrow U$ and integer partitions

3.7.1. Introduction

To complete the twelvefold way, it remains to count $U \rightarrow U$ placements.

A $U \rightarrow U$ placement can look, for example, as follows:

$$[\bullet \bullet \bullet] [] [\bullet] [\bullet \bullet] [] [] [\bullet],$$

with the understanding that the boxes are interchangeable. Thus, we can order the boxes by decreasing number of balls:

You can encode this $U \rightarrow U$ placement by a sequence of numbers, which say how many balls lie in each box:

$$(3, 2, 1, 1, 0, 0, 0)$$
.

If the # of boxes is known, we can omit the 0's and just write this as (3, 2, 1, 1). The decreasing order of its entries makes this sequence unique.

3.7.2. Partitions

Let us introduce a name for such sequences:

Definition 3.7.1. A **partition** (or, to be very precise, an **integer partition**) of an integer *n* is a weakly decreasing list $(a_1, a_2, ..., a_k)$ of positive integers whose sum is *n* (that is, $a_1 \ge a_2 \ge \cdots \ge a_k > 0$ and $a_1 + a_2 + \cdots + a_k = n$).

The entries a_1, a_2, \ldots, a_k of this list are called the **parts** of the partition (a_1, a_2, \ldots, a_k) .

If a partition of *n* has *k* parts, then we say that it is a **partition of** *n* **into** *k* **parts**.

Example 3.7.2. The partitions of 5 are

 $\begin{array}{c} (5), \\ (2,1,1,1), \\ \end{array} , \begin{array}{c} (4,1), \\ (1,1,1,1,1) \end{array} , \begin{array}{c} (3,2), \\ (1,1,1,1,1) \end{array} , \begin{array}{c} (3,1,1), \\ (2,2,1), \\ \end{array} , \begin{array}{c} (2,2,1), \\ (2,2,1), \\ \end{array} , \end{array}$

For instance, (2, 1, 1, 1) is a partition of 5 into 4 parts.

Remark 3.7.3. A partition of *n* is the same as a weakly decreasing composition of *n*.

Definition 3.7.4. Let $n \in \mathbb{Z}$ and $k \in \mathbb{Z}$. Then, we set

 $p_k(n) := (\# \text{ of partitions of } n \text{ into } k \text{ parts}).$

Example 3.7.5. We have

 $p_0(5) = 0, \qquad p_1(5) = 1, \qquad p_2(5) = 2, \qquad p_3(5) = 2, \\ p_4(5) = 1, \qquad p_5(5) = 1, \qquad p_k(5) = 0 \text{ for all } k > 5.$

There is no explicit formula for $p_k(n)$, but the computation of $p_k(n)$ can still be made fairly painless using the following recursive formula (and base cases):

Proposition 3.7.6. Let *n* ∈ Z and *k* ∈ N. (a) We have $p_k(n) = 0$ when k < 0 or n < 0. (b) We have $p_k(n) = 0$ when k > n. (c) We have $p_0(n) = [n = 0]$. (d) We have $p_1(n) = [n > 0]$. (e) We have $p_2(n) = \lfloor n/2 \rfloor$ if $n \in \mathbb{N}$. (f) We have $p_k(n) = p_k(n - k) + p_{k-1}(n - 1)$.

Proof. (a) A partition has positive entries, so the sum of its entries cannot be negative. Thus, $p_k(n) = 0$ when n < 0.

Also, the number of its entries cannot be negative. Thus, $p_k(n) = 0$ when k < 0. Proposition 3.7.6 (a) is thus proved.

(b) Let $(a_1, a_2, ..., a_k)$ be a partition of n into k parts. Then, $a_1, a_2, ..., a_k$ are positive integers (by the definition of a partition), and thus are ≥ 1 each. Hence, $a_1 + a_2 + \cdots + a_k \geq 1 + 1 + \cdots + 1 = k$. However, $a_1 + a_2 + \cdots + a_k = n$

(since $(a_1, a_2, ..., a_k)$ is a partition of *n*). Thus, $n = a_1 + a_2 + \cdots + a_k \ge k$.

Forget that we fixed $(a_1, a_2, ..., a_k)$. We thus have shown that if $(a_1, a_2, ..., a_k)$ is a partition of n into k parts, then $n \ge k$. Hence, there exists no partition of n into k parts if n < k. In other words, $p_k(n) = 0$ when n < k. This proves Proposition 3.7.6 (b).

(c) A partition of *n* into 0 parts must necessarily be the 0-tuple (). But the sum of all entries of this 0-tuple is 0 (since an empty sum is 0). Hence, a partition of *n* into 0 parts exists only if n = 0, and in this case it is unique. In other words, the # of partitions of *n* into 0 parts is [n = 0]. In other words, $p_0(n) = [n = 0]$. This proves Proposition 3.7.6 (c).

(d) A partition of *n* into 1 part must necessarily be the 1-tuple (n) (since the sum of its parts has to be *n*). But this 1-tuple (n) is a partition only when n > 0 (since the entries of a partition have to be positive integers). Thus, a partition of *n* into 1 part exists only when n > 0, and in this case it is unique. In other words, the # of partitions of *n* into 1 part is [n > 0]. In other words, $p_1(n) = [n > 0]$. This proves Proposition 3.7.6 (d).

(e) Assume that $n \in \mathbb{N}$. Then, any partition of n into 2 parts must have the form (k, n-k) for some positive integer k (since the sum of its parts must be n). However, (k, n-k) is not a partition unless $k \ge n-k$ (because a partition has to be weakly decreasing), i.e., unless $k \ge n/2$. Thus, the partitions of n into 2 parts are

$$(n-1, 1),$$
 $(n-2, 2),$ $(n-3, 3),$..., $(\lceil n/2 \rceil, n-\lceil n/2 \rceil).$

There are clearly $n - \lceil n/2 \rceil = \lfloor n/2 \rfloor$ of these partitions. This proves Proposition 3.7.6 (e).

(f) Let us call a partition

- red if 1 is a part of it;
- green if 1 is not a part of it.

Recall that a partition must be weakly decreasing (by definition). Thus, the last part of a partition must be its smallest part. Consequently, if 1 is a part of a partition, then the last part of this partition must be 1 (although, of course, some other parts may also be 1). In other words, if a partition is red, then its last part must be 1. Thus, any red partition of n into k parts must necessarily have

the form $(a_1, a_2, ..., a_{k-1}, 1)$. Removing the last entry from such a red partition yields the (k - 1)-tuple $(a_1, a_2, ..., a_{k-1})$, which is a partition of n - 1 into k - 1 parts.

Thus, we obtain a map

{red partitions of *n* into *k* parts}
$$\rightarrow$$
 {partitions of *n* - 1 into *k* - 1 parts},
 $(a_1, a_2, \dots, a_{k-1}, 1) \mapsto (a_1, a_2, \dots, a_{k-1}).$

Conversely, we have a map

{partitions of
$$n - 1$$
 into $k - 1$ parts} \rightarrow {red partitions of n into k parts},
 $(a_1, a_2, \dots, a_{k-1}) \mapsto (a_1, a_2, \dots, a_{k-1}, 1)$.

These two maps are mutually inverse and thus are bijections. Hence, the bijection principle yields

(# of red partitions of *n* into *k* parts)
= (# of partitions of
$$n - 1$$
 into $k - 1$ parts)
= $p_{k-1}(n-1)$ (by definition of $p_{k-1}(n-1)$).

On the other hand, if a partition $(a_1, a_2, ..., a_k)$ of n is green, then all its parts $a_1, a_2, ..., a_k$ are distinct from 1 and therefore larger than 1 (since they are positive integers). Subtracting 1 from each part thus leaves us again with a partition, although this new partition $(a_1 - 1, a_2 - 1, ..., a_k - 1)$ will be a partition of n - k (since $(a_1 - 1) + (a_2 - 1) + \cdots + (a_k - 1) = (a_1 + a_2 + \cdots + a_k) - k =$

n - k). Hence, we obtain a map

{green partitions of *n* into *k* parts}
$$\rightarrow$$
 {partitions of *n* - *k* into *k* parts},
 $(a_1, a_2, \dots, a_k) \mapsto (a_1 - 1, a_2 - 1, \dots, a_k - 1).$

Conversely, we have a map

{partitions of
$$n - k$$
 into k parts} \rightarrow {green partitions of n into k parts},
 $(a_1, a_2, \dots, a_k) \mapsto (a_1 + 1, a_2 + 1, \dots, a_k + 1)$

(this is well-defined, because $a_1 + 1$, $a_2 + 1$, ..., $a_k + 1$ will always be distinct from 1 because $a_1, a_2, ..., a_k$ are positive). These two maps are mutually inverse and thus are bijections. Hence, the bijection principle yields

(# of green partitions of *n* into *k* parts)
= (# of partitions of
$$n - k$$
 into *k* parts)
= $p_k (n - k)$ (by definition of $p_k (n - k)$).

Finally, every partition is either red or green (but not both). Hence, by the sum rule,

(# of partitions of *n* into *k* parts)

 $= \underbrace{(\# \text{ of red partitions of } n \text{ into } k \text{ parts})}_{=p_{k-1}(n-1)} + \underbrace{(\# \text{ of green partitions of } n \text{ into } k \text{ parts})}_{=p_k(n-k)}$ $= p_{k-1}(n-1) + p_k(n-k).$

Since the left hand side of this equality is $p_k(n)$, we thus have proved Proposition 3.7.6 (f).

$p_k(n)$	n = 0	n = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	n = 5	<i>n</i> = 6	<i>n</i> = 7	n = 8	<i>n</i> = 9
k = 0	1	0	0	0	0	0	0	0	0	0
k = 1	0	1	1	1	1	1	1	1	1	1
<i>k</i> = 2	0	0	1	1	2	2	3	3	4	4
<i>k</i> = 3	0	0	0	1	1	2	3	4	5	7
k = 4	0	0	0	0	1	1	2	3	5	6
k = 5	0	0	0	0	0	1	1	2	3	5
<i>k</i> = 6	0	0	0	0	0	0	1	1	2	3
<i>k</i> = 7	0	0	0	0	0	0	0	1	1	2
k = 8	0	0	0	0	0	0	0	0	1	1
<i>k</i> = 9	0	0	0	0	0	0	0	0	0	1

Here is a table of the numbers $p_k(n)$ for small values of *k* and *n*:

You may spot a few more properties of $p_k(n)$ in this table, such as the following:

Exercise 1. Show that $p_{n-1}(n) = 1$ for each $n \ge 2$.

Exercise 2. More generally, show that $p_{n-k}(n) = p_k(2k)$ for each $k \in \mathbb{N}$ and each $n \ge 2k$.

Exercise 3 ((harder)). Let $n \in \mathbb{N}$. Show that $p_3(n) = \operatorname{round} \frac{n^2}{12}$, where round *x* denotes the closest integer to *x*.

See Sequence A008284 in the OEIS for more about the numbers $p_k(n)$.

3.7.3. Counting $U \rightarrow U$ placements

Now, back to the boxes and the balls. We can at last count $U \rightarrow U$ placements:

Proposition 3.7.7. We have

(# of surjective $U \to U$ placements $A \to X$) = $p_{|X|}(|A|)$.

Proof. In a surjective $U \rightarrow U$ placement, any given box has a positive # of balls. However, the boxes are unlabelled, so we don't know which box is the 1-st box, which is the 2-nd, and so on. However, we can order the boxes by decreasing # of balls, and then there is a well-defined "1-st box", a well-defined "2-nd box", etc..

Thus, we can encode a surjective $U \to U$ placement $A \to X$ by the |X|-tuple $(a_1, a_2, \dots, a_{|X|})$, where

 $a_i = (\# \text{ of balls in the } i\text{-th box})$

(where the boxes are ordered by decreasing # of balls). This |X|-tuple $(a_1, a_2, ..., a_{|X|})$ is weakly decreasing (because of how we ordered the boxes), and its entries are positive integers (since our placement is surjective), and the sum of its entries is |A| (since we have a total of |A| many balls). Thus, this |X|-tuple is a partition of |A| into |X| parts.

This allows us to define a map

{surjective $U \to U$ placements $A \to X$ } \to {partitions of |A| into |X| parts},

which sends a placement to the |X|-tuple $(a_1, a_2, ..., a_{|X|})$ we just defined. It is easy to see that this map is bijective. Thus, by the bijection principle,

(# of surjective $U \to U$ placements $A \to X$) = (# of partitions of |A| into |X| parts) = $p_{|X|}(|A|)$.

Proposition 3.7.8. We have

(# of injective $U \to U$ placements $A \to X$) = $[|A| \le |X|]$.

Proof. Easy exercise.

Proposition 3.7.9. We have

(# of
$$U \to U$$
 placements $A \to X$)
= $p_0(|A|) + p_1(|A|) + \dots + p_{|X|}(|A|)$
= $\sum_{k=0}^{|X|} p_k(|A|)$.

Proof sketch. As in the proof of Proposition 3.5.4, we break the sum up according to the # of nonempty boxes. (Details left to the reader.)

Exercise 4. Prove that the # in Proposition 3.7.9 is also equal to $p_{|X|}(|X| + |A|)$.

	arbitrary	injective	surjective
$L \rightarrow L$	$ X ^{ A }$	$ X ^{\underline{ A }}$	$\operatorname{sur}\left(\left X\right ,\left A\right \right)$
$U \rightarrow L$	$\binom{ A + X -1}{ A }$	$\binom{ X }{ A }$	$\binom{ A -1}{ A - X }$
$L \rightarrow U$	$\sum_{k=0}^{ X } \left\{ egin{smallmatrix} A \\ k \end{bmatrix} ight\}$	$[A \le X]$	$\binom{ A }{ X }$
$U \rightarrow U$	$\sum_{k=0}^{ X } p_k\left(A ight)$	$[A \le X]$	$p_{ X }\left(A ight)$

We can now fill in the twelvefold way table completely:

3.7.4. More about partition numbers

The numbers $p_k(n)$ have many interesting properties. Yet more mysterious are the numbers

$$p(n) := (\# \text{ of all partitions of } n) = \sum_{k=0}^{n} p_k(n).$$

These numbers p(n) are called the **partition numbers**; here is a little table of some of them:

п	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
<i>p</i> (<i>n</i>)	1	1	2	3	5	7	11	15	22	30	42	56	77	101	135

One of their most famous properties is the following recursion formula found by Euler:

Theorem 3.7.10 (Euler's recursion for the partition numbers). For each n > 0, we have

$$p(n) = \sum_{\substack{k \in \mathbb{Z}; \\ k \neq 0}} (-1)^{k-1} p(n - w_k).$$
(1)

Here, the numbers w_k are the so-called **pentagonal numbers**, defined by

$$w_k := \frac{(3k-1)k}{2}$$
 for each $k \in \mathbb{Z}$.

Here is a little table of the smallest few of them:

k	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
w_k	77	57	40	26	15	7	2	0	1	5	12	22	35	51	70

Note that they decrease for $k \leq 0$ and increase for $k \geq 0$. For each given n, only finitely many addends on the right hand side of (1) are nonzero (because if |k| is sufficiently large, we have $w_k > n$ and thus $p(n - w_k) = p$ (something negative) = 0), and therefore the infinite sum in (1) is well-defined. "Explicitly", (1) takes the form

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) - p(n-22) - p(n-26) \pm \cdots$$

For a proof of Theorem 3.7.10, see a graduate course on combinatorics (e.g., [21s, Corollary 4.2.3]). Readers familiar with power series should take a look at the Wikipedia page for Euler's Pentagonal Number Theorem, of which Theorem 3.7.10 is an easy corollary. (Self-contained proofs of Euler's Pentagonal Number Theorem can also be found in [Bell06, §3], [Koch16, §10], [Zabroc03] or [Sills12, §2.6–§2.7].)

Interested in more? A book-length introduction to the vast and deep theory of partitions is [AndEri04] (although it is not always fully rigorous, but it gives a good idea of how results in this subject look like). My notes [21s, Chapter 4] give an introduction as well (more detailed but also much more modest in coverage). Most advanced courses in enumerative (or algebraic) combinatorics contain at least some material on partitions.

References

[18s-hw3s] Darij Grinberg, UMN Spring 2018 Math 4707 homework set #3 with solutions, http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw3s.pdf

[21s] Darij Grinberg, Algebraic Combinatorics (Drexel Spring 2021 Math 701

lecture notes), 4 May 2021. https://www.cip.ifi.lmu.de/~grinberg/t/21s/lecs.pdf

- [AndEri04] George E. Andrews, Kimmo Eriksson, *Integer Partitions*, Cambridge University Press 2004.
- [Bell06] Jordan Bell, *Euler and the pentagonal number theorem*, arXiv:math/0510054v2.
- [Guicha20] David Guichard, An Introduction to Combinatorics and Graph Theory, 11 August 2022. https://www.whitman.edu/mathematics/cgt_online/book/
- [Johnso02] Warren P. Johnson, *The Curious History of Faà di Bruno's Formula*, American Mathematical Monthly **109** (2002), March, pp. 217–234.
- [Koch16] Dick Koch, The Pentagonal Number Theorem and All That, 26 August 2016. https://darkwing.uoregon.edu/~koch/PentagonalNumbers.pdf
- [Sills12] Andrew V. Sills, Supplemental Notes for Number Theory, 29 January 2012. http://home.dimacs.rutgers.edu/~asills/teach/spr12/ NumberTheoryCopy.pdf
- [Zabroc03] Mike Zabrocki, F. Franklin's proof of Euler's pentagonal number theorem, 28 February 2003. https://garsia.math.yorku.ca/~zabrocki/math4160w03/ eulerpnt.pdf