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Math 222 Fall 2022, Lecture 23: Binomial
coefficients

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

2. Binomial coefficients (cont’d)

2.10. Multinomial coefficients (cont’d)

2.10.1. Definition and formulas (cont’d)

What gave multinomial coefficients their name is the following theorem (which
generalizes the binomial formula):

Theorem 2.10.5 (multinomial formula). Let x1, x2, . . . , xk be any numbers. Let
n ∈ N. Then,

(x1 + x2 + · · ·+ xk)
n = ∑

(a1,a2,...,ak)∈Nk;
a1+a2+···+ak=n

(
n

a1, a2, . . . , ak

)
xa1

1 xa2
2 · · · xak

k .

Proof. Either a straightforward induction on n, or a straightforward induction
on k, or expand and use the combinatorial interpretation of multinomial coef-
ficients (Proposition 2.10.8 below). References can be found in the 2019 notes
(proof of Theorem 2.12.16).

2.10.2. Counting maps that take each value a given number of times

Here is a combinatorial interpretation of multinomial coefficients:

Proposition 2.10.6. Let n ∈ N and n1, n2, . . . , nk ∈ N be such that n1 + n2 +
· · ·+ nk = n. Then, the # of maps f : [n] → [k] that satisfy

(# of a ∈ [n] such that f (a) = i) = ni for each i ∈ [k]

is
(

n
n1, n2, . . . , nk

)
.

Example 2.10.7. Applying this proposition to n = 7 and k = 3 and
(n1, n2, n3) = (2, 3, 2) yields that the # of maps f : [7] → [3] that take the
value 1 two times, the value 2 three times, and the value 3 two times is(

7
2, 3, 2

)
=

7!
2! · 3! · 2!

= 210.

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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An example of such a map is (written in two-line notation)(
1 2 3 4 5 6 7
1 1 2 2 2 3 3

)
.

Another is (
1 2 3 4 5 6 7
2 3 1 3 1 2 2

)
.

We are not going to list the remaining 208 such maps.

Proof of Proposition 2.10.6. We need to count the maps f : [n] → [k] that satisfy

(# of a ∈ [n] such that f (a) = i) = ni for each i ∈ [k] .

We can construct such a map in the following way:

1. We choose the set {a ∈ [n] | f (a) = 1}. This must be an n1-element sub-

set of [n], so we have
(

n
n1

)
many options for it.

2. We choose the set {a ∈ [n] | f (a) = 2}. This must be an n2-element sub-
set of

[n] \ {a ∈ [n] | f (a) = 1} ,

so we have
(

n − n1

n2

)
many options for it1.

3. We choose the set {a ∈ [n] | f (a) = 3}. This must be an n3-element sub-
set of

[n] \ ({a ∈ [n] | f (a) = 1} ∪ {a ∈ [n] | f (a) = 2}) ,

so we have
(

n − n1 − n2

n3

)
many options for it2.

4. And so on.

By the dependent product rule, we thus see that the total # of such maps is(
n
n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)
· · ·

(
n − n1 − n2 − · · · − nk−1

nk

)
=

(
n

n1, n2, . . . , nk

) (
by Proposition 2.10.4 (a)

from Lecture 22

)
.

So we are done.
(See Proposition 2.12.5 in the 2019 notes for more details.)

Let me restate Proposition 2.10.6 using tuples instead of maps:

1since [n] \ {a ∈ [n] | f (a) = 1} is an (n − n1)-element set
2since [n] \ ({a ∈ [n] | f (a) = 1} ∪ {a ∈ [n] | f (a) = 2}) is an (n − n1 − n2)-element set
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Proposition 2.10.8. Let n ∈ N and n1, n2, . . . , nk ∈ N be such that n1 + n2 +
· · ·+ nk = n. Then, the # of n-tuples (u1, u2, . . . , un) ∈ [k]n that satisfy

(# of a ∈ [n] such that ua = i) = ni for each i ∈ [k]

is
(

n
n1, n2, . . . , nk

)
.

Proof. This follows from Proposition 2.10.6, using the standard “encode maps
as tuples” bijection. (Again, details can be found in the 2019 notes – Proposition
2.12.7 to be specific.)

2.10.3. Counting anagrams

An equivalent version of Proposition 2.10.6 can be formulated using the notion
of an “anagram”. Let us define this first:

Definition 2.10.9. Let n ∈ N. Let α be an n-tuple (of any objects).
An anagram of α shall mean an n-tuple that can be obtained from α by

permuting the entries.
In other words, if α = (α1, α2, . . . , αn), then an anagram of α means an

n-tuple of the form(
ασ(1), ασ(2), . . . , ασ(n)

)
, where σ is a permutation of [n] .

For example, the 6-tuple (1, 3, 2, 4, 4, 2) is an anagram of (2, 2, 1, 4, 3, 4), be-
cause the former tuple can be obtained from the latter by permuting the entries
(namely, permuting them in such a way that the entry 1 moves to the front, the
two entries 2 move to the third and sixth positions, the entry 3 moves to the
second position, and the two entries 4 move to the fourth and fifth positions).

Anagrams are often called “permutations” in mathematics. I prefer calling
them “anagrams” in order to reserve the word “permutation” for a bijective
map from a set to itself. So a permutation for me means (roughly speaking) a
way to permute elements, not a result of permuting elements. Distinct permu-
tations of [n] may lead to the same anagram of α (if α has equal entries), so it is
important to keep the two apart, and I do this by giving them different names.

Example 2.10.10. How many anagrams does the word “anagram” have?
We treat a word as a tuple of letters, so the word “anagram” is the 7-tuple

(a, n, a, g, r, a, m).
We note that an anagram of this 7-tuple is just a 7-tuple that contains the

letter a three times, the letter n once, the letter g once, the letter r once, and
the letter m once. The # of such tuples can be obtained from Proposition
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2.10.6 (after renaming the letters a, n, g, r, m as 1, 2, 3, 4, 5, respectively). We

conclude that the # of such tuples is
(

7
3, 1, 1, 1, 1

)
=

7!
3! · 1! · 1! · 1! · 1!

= 840.

By the same logic, we obtain the following general theorem:

Theorem 2.10.11. Let n ∈ N and n1, n2, . . . , nk ∈ N be such that n1 + n2 +
· · ·+ nk = n.

Let α be an n-tuple that contains n1 many 1’s, n2 many 2’s, . . ., nk many
k’s.

Then, the # of distinct anagrams of α is
(

n
n1, n2, . . . , nk

)
.

Proof. See Proposition 2.12.13 in the 2019 notes (but this is just the argument
from Example 2.10.10, generalized and formalized).

2.11. Odds and ends

Here is a curious counting puzzle that can be solved with what we have seen
so far, and is actually pretty simple when viewed from the right viewpoint:

Exercise 1. Given n persons (n > 0) and k tasks (k > 0).
(a) What is the # of ways to assign a task to each person such that each

task has at least 1 person working on it?
(b) What if we additionally want to choose a leader for each task? (The

leader should be chosen from the people working on that task.)
(c) What if, instead of choosing leaders, we want to choose a vertical hi-

erarchy for each task? (A vertical hierarchy means a ranking of all people
working on this task, from highest to lowest; ties are not allowed.)

Example: Assume that n = 8 and k = 3. Let our 8 people be
1, 2, 3, 4, 5, 6, 7, 8, and our 3 tasks be A, B, C.

(a) One option is

task people working on it

A 1, 2, 5

B 3

C 4, 6, 7, 8

.

(b) One option is

task people working on it

A 1, 2, 5 with leader 2

B 3 with leader 3

C 4, 6, 7, 8 with leader 7

.
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(c) One option is

task people working on it

A 1 > 5 > 2

B 3

C 7 > 8 > 4 > 6

(where the “>” sign means “is ranked above”).

For n = 3 and k = 2, the answers to (a), (b) and (c) are 6, 12 and 12, respec-
tively.

We will answer this question in Lecture 24.

3. The twelvefold way

So far, we have been answering counting questions one by one, guided mostly
by the kinds of numbers that appear in their answers. Let us now try to system-
atically address a wide class of counting problems. Specifically, we try to solve
all reasonable counting problems of the form “how many ways are there to put
n balls into k boxes”. There are many ways to make this question precise, and
most of them lead to interesting problems. The 12 most basic interpretations
are usually classified in a table, called the twelvefold way.

3.1. What is the twelvefold way?

Convention 3.1.1. For the rest of this chapter, we fix two finite sets A and
X. We shall refer to the elements of A as balls and to the elements of X as
boxes.

A placement means a way to distribute all balls in A into boxes in X. In
other words, it is just a map from A to X. More precisely, this is what we
will call an L → L placement, or a placement of labelled balls into labelled
boxes.

We see immediately that the # of L → L placements is |X||A|.
For example, the eight L → L placements of 3 balls 1, 2, 3 into two boxes 1, 2
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are

[123] [ ],
[12] [3],
[13] [2],
[23] [1],
[1] [23],
[2] [13],
[3] [12],
[ ] [123].

Here, we are using a semi-visual notation, in which each box is shown as a
pair of square brackets, and the numbers between the brackets are the balls
placed in this box. The boxes are listed in the obvious order (i.e., the first pair
of brackets is box 1, the next is box 2, and so on). Thus, for example, the
L → L placement in which ball 2 lies in box 1 while balls 1 and 3 lie in box
2 is denoted by [2] [13]. (In the 2019 notes, I have used the much more ornate

notation (2)︸ ︷︷ ︸
box 1

(1)(3)︸ ︷︷ ︸
box 2

for the same placement; but there is little

gained from this flourish. The only problem with the square-brackets notation
is that a box [2] could be confused with the set [2] = {1, 2}; but this confusion
is unlikely when there is more than one box.)

Note that the order in which balls are written inside a box doesn’t matter; for
example, [23] means the same as [32].

Counting L → L placements is rather boring. But we can vary the problem:

• What if we require our placements (i.e., maps f : A → X) to be injective
(i.e., each box contains at most 1 ball) or surjective (i.e., each box contains
at least 1 ball)?

• What if the balls are unlabelled (i.e., indistinguishable)?

In the above example (A = {1, 2, 3} and X = {1, 2}), this means that the
three placements

[12] [3],
[13] [2],
[23] [1]

no longer count as distinct; instead, they all look the same (namely, they
look like “two balls in box 1, and one ball in box 2”). Correspondingly,
we now denote them by

[• •] [•].
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• What if the boxes are unlabelled (i.e., indistinguishable)? This means that
the two placements

[12] [3],
[3] [12]

no longer count as distinct (since they are the same up to the order of the
boxes). I will denote this by underlining the two boxes – i.e., I will write
[12] [3] for both of these placements.

These variants can be combined (e.g., we can assume both balls and boxes to
be unlabelled, and we can require the placements to be injective). Thus, we get
a total of 3 · 2 · 2 = 12 different counting problems.3

Let us give them names:

• An L → L placement is a placement of labelled balls into labelled boxes.

• An U → L placement is a placement of unlabelled balls into labelled
boxes.

• An L → U placement is a placement of labelled balls into unlabelled
boxes.

• An U → U placement is a placement of unlabelled balls into unlabelled
boxes.

Next time (in Lecture 24), we will define formally what “unlabelled” means,
but for now let us give an example:

Example 3.1.2. Let X = [2] and A = [3]. Then, let us count how many
placements of each kind we have:

arbitrary injective surjective

L → L 8 0 6

U → L 4 0 2

L → U 4 0 3

U → U 2 0 1

In fact:

3Yes, we just counted counting problems.
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• The U → L placements are

[• • •] [ ],
[• •] [•],
[•] [• •],
[ ] [• • •].

The second and the third of these are surjective, whereas the first and
the fourth are not. None of these placements is injective.

• The L → U placements are

[123] [ ],

[12] [3],

[13] [2],

[23] [1].

The second, third and fourth of these are surjective, whereas the first is
not. None of these placements is injective.

• The U → U placements are

[• • •] [ ],
[• •] [•].

The second of these is surjective, whereas the first is not. None of these
placements is injective.

Not all of the 12 questions in the above table have closed-form answers (for
general A and X). However, all of them have at least good recursive answers,
and on our quest to find them, we will encounter some nice combinatorial
structures.

3.2. L → L

We begin with the first row of the twelvefold way: counting L → L placements.
We repeat their definition:

Definition 3.2.1. An L → L placement from A to X means a map from A to
X. The value of this map at some a ∈ A is called the box in which the ball a
is placed.

Now, the following three propositions follow immediately from results that
we have proved back in §2.4:
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Proposition 3.2.2. We have

(# of L → L placements A → X)

= (# of maps A → X) = |X||A| .

Proposition 3.2.3. We have

(# of injective L → L placements A → X)

= (# of injective maps A → X)

= |X||A| = |X| · (|X| − 1) · (|X| − 2) · · · · · (|X| − |A|+ 1) .

Proposition 3.2.4. We have

(# of surjective L → L placements A → X)

= (# of surjective maps A → X) = sur (|A| , |X|) .

Now, to continue with the other three rows of the table, we need to first
define formally what “unlabelled” things are.
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