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Math 222 Fall 2022, Lecture 22: Binomial
coefficients

website: https://www.cip.ifi.lmu.de/~grinberg/t/22fco

2. Binomial coefficients (cont’d)

2.9. Multisubsets (cont’d)

Recall the following definitions from Lecture 21:

• A multisubset of a set T is defined to be a map f : T → N such that only
finitely many t ∈ T satisfy f (t) ̸= 0. We regard such a multisubset f as a
“set with multiplicities”, which contains each t ∈ T a total of f (t) many
times.

• The size of this multisubset f is defined to be the sum ∑
t∈T

f (t). This size

is always an element of N.

• We introduced the notation {a1, a2, . . . , ak}multi, where a1, a2, . . . , ak are
some elements of a given set T. This notation stands for a certain multi-
subset of T having size k; namely, this multisubset is formally defined as
the function f : T → N, where f (t) is the # of times that t appears in the
tuple (a1, a2, . . . , ak).

2.9.2. Counting

For a given n-element set T and a given real k, we know (from Lecture 6,
Theorem 1.3.10) that

(# of subsets T having size k) =
(

n
k

)
.

A similar formula exists for counting multisubsets with size k:

Corollary 2.9.3. Let n ∈ N and k ∈ R. Let T be an n-element set. Then,

(# of multisubsets of T having size k) =
(

k + n − 1
k

)
.

Example 2.9.4. The multisubsets of [3] having size 2 are

{1, 1}multi , {1, 2}multi , {1, 3}multi , {2, 2}multi , {2, 3}multi , {3, 3}multi .

https://www.cip.ifi.lmu.de/~grinberg/t/22fco
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Thus, there are 6 of them. On the other hand,
(

2 + 3 − 1
2

)
= 6. Thus,

Corollary 2.9.3 holds for n = 3 and k = 2.

Proof of Corollary 2.9.3. We WLOG assume that k ∈ N (otherwise, we are prov-
ing 0 = 0).

Theorem 2.8.5 in Lecture 21 (applied to k and n instead of n and k) shows
that

(# of (x1, x2, . . . , xn) ∈ Nn satisfying x1 + x2 + · · ·+ xn = k)

=

(
k + n − 1

k

)
.

So it remains to prove that

(# of multisubsets of T having size k)
= (# of (x1, x2, . . . , xn) ∈ Nn satisfying x1 + x2 + · · ·+ xn = k) . (1)

We shall obtain this from the bijection principle.
Label the n elements of T as t1, t2, . . . , tn. Then, each multisubset of T is

a function f : T → N, and therefore is uniquely determined by its n values
f (t1) , f (t2) , . . . , f (tn). Moreover, the size of this multisubset f is ∑

t∈T
f (t) =

f (t1) + f (t2) + · · ·+ f (tn). Hence, the multisubset f has size k if and only if
f (t1) + f (t2) + · · ·+ f (tn) = k.

Therefore, the multisubsets of T having size k are the functions f : T → N

that satisfy f (t1) + f (t2) + · · ·+ f (tn) = k. We thus obtain a bijection

from {multisubsets of T having size k}
to {(x1, x2, . . . , xn) ∈ Nn | x1 + x2 + · · ·+ xn = k} ,

which sends each multisubset f to the n-tuple ( f (t1) , f (t2) , . . . , f (tn)). The bi-
jection principle therefore yields the equality (1), and this completes our proof.

(For more details, see the proof of Corollary 2.11.3 in the 2019 notes, but keep
in mind that the numbers n and k there are the k and n here.)

Note that the
(

k + n − 1
k

)
in Corollary 2.9.3 can also be rewritten as (−1)k

(
−n
k

)
(by the upper negation formula). This suggests (if one is sufficiently quick at
jumping to conclusions) that somehow, the passage from sets to multisets some-
how introduces minus signs into formulas. This is not as far-fetched as it might
seem; similar behavior has been observed in more complicated combinatorial
questions! Such results are commonly known as combinatorial reciprocities,
and I refer to [BecSan18] for a deeper study of many of them.
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2.9.3. An application to lacunar subsets

We shall now see an application of multisubsets to counting sets (not multi-
sets!).

First, we need a few features of multisubsets. We begin by recalling the
following basic property of sets:

Proposition 2.9.5. Let m ∈ N. Let S be a set of integers that has size m.
Then, there exists a unique m-tuple (s1, s2, . . . , sm) of integers satisfying

{s1, s2, . . . , sm} = S and s1 < s2 < · · · < sm.

This is just saying that the elements of a finite set of integers can always be
listed in (strictly) increasing order, and this can be done in exactly one way. A
rigorous proof of this can be found in various places (see, e.g., the 2019 notes
for a reference), but intuitively this fact is self-evident.

Proposition 2.9.6 has an analogue for multisets:1

Proposition 2.9.6. Let T be a set of integers. Let m ∈ N. Let S be a multisub-
set2 of T that has size m.

Then, there exists a unique m-tuple (s1, s2, . . . , sm) of integers in T satisfy-
ing

{s1, s2, . . . , sm}multi = S and s1 ≤ s2 ≤ · · · ≤ sm.

If (s1, s2, . . . , sm) is this m-tuple, then we shall write S = {s1 ≤ s2 ≤ · · · ≤ sm}multi.
Again, we shall not give a rigorous proof of this proposition (for such a

proof, see the solution to Exercise 2.11.2 in the 2019 notes), as we believe it to
be intuitively obvious.

Next, we define the union of two disjoint multisets (more precisely, of two
multisubsets of two disjoint sets):

Definition 2.9.7. Let A and B be two disjoint sets.
Let X be a multisubset of A. Let Y be a multisubset of B.
Then, their union X ∪ Y is defined to be the multisubset of A ∪ B defined

as follows:

1The analogy is slightly broken by the fact that we have not defined multisets per-se, but
only defined multisubsets, so we now need to introduce a set T. But this difference is
insubstantial.

2Of course, “under the hood”, a multisubset of T is a function (from T to N), so it would
make more sense to use a lowercase letter such as f for it. But we regard multisubsets as
analogues of subsets, and so we find it more natural to denote them by uppercase letters
(such as S here).
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If X = {x1, x2, . . . , xk}multi and Y = {y1, y2, . . . , yℓ}multi, then

X ∪ Y := {x1, x2, . . . , xk, y1, y2, . . . , yℓ}multi .

In other words, X ∪ Y (regarded as a function from A ∪ B to N) is defined
by

(X ∪ Y) (u) =

{
X (u) , if u ∈ A;
Y (u) , if u ∈ B

for each u ∈ A ∪ B

(to make sense of this, recall that a multisubset is actually defined as a func-
tion to N, so it can applied to an element).

For instance, let us take the union of the multisubset {1, 1, 2}multi of {1, 2, 3}
with the multisubset {4, 5, 5}multi of {4, 5, 6, 7}:

{1, 1, 2}multi ∪ {4, 5, 5}multi = {1, 1, 2, 4, 5, 5}multi .

Note that in Definition 2.9.7, we always have |X ∪ Y| = |X|+ |Y| (where we
let |S| denote the size of a multisubset S). This is similar to the sum rule for
disjoint sets.

We also observe a simple property of unions:

Lemma 2.9.8. Let A and B be two disjoint sets. Let Z be a multisubset of
A ∪ B. Then, we can uniquely write Z as Z = X ∪ Y for some multisubset X
of A and some multisubset Y of B.

In other words, if A and B are two disjoint sets, then a multisubset of A ∪ B
can be uniquely decomposed into a union of a multisubset of A with a mul-
tisubset of B. This is intuitively clear and also easy to prove (exercise for the
reader).

Now, the promised application of multisets to sets:

Proposition 2.9.9 (Musiker and Propp 2007). Let m ∈ N and a, b ∈
{0, 1, . . . , m}. Then,

(# of lacunar subsets of [2m] with exactly a even and b odd elements)

=

(
m − a

b

)
·
(

m − b
a

)
.

Proof of Proposition 2.9.9. Let g := m − a − b + 1.
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The set [2g] is the union of its two disjoint g-element subsets3

E := {even elements of [2g]} = {2, 4, 6, . . . , 2g} and
O := {odd elements of [2g]} = {1, 3, 5, . . . , 2g − 1} .

Let S be a lacunar subset of [2m] with exactly a even and b odd elements.
Then, S can be written uniquely in the form S = {s1 < s2 < · · · < sa+b} (since
|S| = a + b). Since S is lacunar, any two consecutive elements si and si+1 of S
satisfy si ≤ si+1 − 2. Therefore,

s1 − 0 ≤ s2 − 2 ≤ s3 − 4 ≤ · · · ≤ sa+b − 2 (a + b − 1) .

Hence, we can define the multisubset

MS := {s1 − 0 ≤ s2 − 2 ≤ s3 − 4 ≤ · · · ≤ sa+b − 2 (a + b − 1)}multi

of [2g]. (Why is this a multisubset of [2g] ? Because its largest element is
sa+b︸︷︷︸
≤2m

−2 (a + b − 1) ≤ 2m − 2 (a + b − 1) = 2g.)

This multisubset MS is obtained from S by lowering the smallest element by
0, the second-smallest by 2, the third-smallest by 4, and so on; note that the
parities of all elements are clearly preserved under this operation. Hence, MS
has exactly a even and b odd elements (counted with multiplicities), since S has
exactly a even and b odd elements. In other words, MS has a elements from E
and b elements from O.

Now, the sets E and O are disjoint, and our MS is a multisubset of [2g] =
E ∪ O. Hence, by Lemma 2.9.8, we can uniquely write MS as MS = ES ∪ OS,
where ES is a multisubset of E and where OS is a multisubset of O. The result
of the previous paragraph shows that the multisubset ES has size a, and the
multisubset OS has size b.

Forget that we fixed S. Thus, for each lacunar subset S of [2m] with exactly a
even and b odd elements, we have constructed a size-a multisubset ES of E and
a size-b multisubset OS of O. Hence, we can define a map

from {lacunar subsets of [2m] with exactly a even elements and b odd elements}
to {size-a multisubsets of E} × {size-b multisubsets of O} ,

which sends each S to the corresponding pair (ES, OS).

3There is a little gap here: The subsets E and O are not g-element sets if g < 0, because they
are 0-element sets in this case!

Fortunately, this is no big hindrance. Proposition 2.9.9 is easy to prove in the case when
g < 0 (just argue that both sides are 0). Thus, we can WLOG assume that g ≥ 0, and then
the argument works fine.
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A moment of thought reveals that this map has an inverse4, and thus is a
bijection. Hence, the bijection principle shows that

|{lacunar subsets of [2m] with exactly a even elements and b odd elements}|
= |{size-a multisubsets of E} × {size-b multisubsets of O}|
= |{size-a multisubsets of E}|︸ ︷︷ ︸

=

(
a + g − 1

a

)
(by Corollary 2.9.3,

since E is a g-element set)

· |{size-b multisubsets of O}|︸ ︷︷ ︸
=

(
b + g − 1

b

)
(by Corollary 2.9.3,

since O is a g-element set)

=

(
a + g − 1

a

)
·
(

b + g − 1
b

)

=

(
m − b

a

)
·
(

m − a
b

)  since g = m − a − b + 1
and therefore a + g − 1 = m − b

and b + g − 1 = m − a


=

(
m − a

b

)
·
(

m − b
a

)
.

Proposition 2.9.9 thus follows.

Corollary 2.9.10. For any m ∈ N, the Fibonacci number f2m+2 satisfies

f2m+2 =
m

∑
a=0

m

∑
b=0

(
m − a

b

)
·
(

m − b
a

)
.

Proof. Let m ∈ N. Then, Proposition 1.4.7 from Lecture 9 (applied to n = 2m)

4Proof. Let us review what this map does to a given lacunar subset S:

• First, each element of S is lowered by an appropriate even number (the smallest
element by 0, the second-smallest by 2, the third-smallest by 4, and so on).

• Then, the resulting a + b numbers are collected in a multisubset of [2g].

• Finally, this multisubset [2g] is decomposed into a multisubset ES of E and a multi-
subset OS of O.

The inverse of this map just undoes these three steps:

• First, we combine our multisubsets ES and OS of E and O to form the union ES ∪OS.

• Then, we list the a + b elements of this union in weakly increasing order (making
sure to account for their multiplicities).

• Finally, we increase each of these a + b elements by an appropriate even number (the
smallest element by 0, the second-smallest by 2, the third-smallest by 4, and so on).
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yields

f2m+2

= (# of lacunar subsets of [2m])

=
m

∑
a=0

m

∑
b=0

(# of lacunar subsets of [2m] with exactly a even and b odd elements)︸ ︷︷ ︸
=

(
m − a

b

)
·

(
m − b

a

)
(by Proposition 2.9.9) by the sum rule, since the # of even elements of a

subset of [2m] is always an integer between 0 and m,
and so is its # of odd elements


=

m

∑
a=0

m

∑
b=0

(
m − a

b

)
·
(

m − b
a

)
.

2.10. Multinomial coefficients

Now, we shall define the multinomial coefficients: a generalization of the bino-

mial coefficients, or at least of those binomial coefficients
(

n
k

)
that have n ∈ N

and k ∈ {0, 1, . . . , n}.

2.10.1. Definition and formulas

Definition 2.10.1. Let n ∈ N and n1, n2, . . . , nk ∈ N be such that n1 + n2 +
· · ·+ nk = n. Then, we define(

n
n1, n2, . . . , nk

)
:=

n!
n1!n2! · · · nk!

.

This number is called a multinomial coefficient. It is a rational number, but
we will soon see that it is an integer.

Example 2.10.2. We have 2 + 3 + 2 = 7 and thus(
7

2, 3, 2

)
=

7!
2! · 3! · 2!

= 210.
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Note that we are defining the multinomial coefficient
(

n
n1, n2, . . . , nk

)
only un-

der the conditions stated in Definition 2.10.1. In particular, we are not defining
it for negative or non-integer n; nor are we defining it when n1 + n2 + · · ·+ nk ̸=

n. As a consequence, the notation
(

n
n1, n2, . . . , nk

)
for multinomial coefficients

does not clash with the notation
(

n
j

)
for binomial coefficients. (More precisely,

the two notations do clash when k = 1, leaving the expression
(

n
n

)
ambiguous;

but it is easy to see that both possible meanings of
(

n
n

)
equal 1, and thus the

clash is harmless.)
Before we prove anything interesting about multinomial coefficients, we ob-

serve that they generalize the entries of Pascal’s triangle:

Proposition 2.10.3. Let n ∈ N and k ∈ {0, 1, . . . , n}. Then, the binomial

coefficient
(

n
k

)
equals the multinomial coefficient

(
n

k, n − k

)
.

Proof. The factorial formula for BCs yields
(

n
k

)
=

n!
k! (n − k)!

, but the multino-

mial coefficient
(

n
k, n − k

)
is defined to be

n!
k! (n − k)!

as well.

Here are a few basic properties of multinomial coefficients:

Proposition 2.10.4. Let n ∈ N and n1, n2, . . . , nk ∈ N be such that n1 + n2 +
· · ·+ nk = n. Then:

(a) We have(
n

n1, n2, . . . , nk

)
=

k

∏
i=1

(
n − n1 − n2 − · · · − ni−1

ni

)
=

(
n
n1

)(
n − n1

n2

)(
n − n1 − n2

n3

)
· · ·

(
n − n1 − n2 − · · · − nk−1

nk

)
︸ ︷︷ ︸

=1

=
k−1

∏
i=1

(
n − n1 − n2 − · · · − ni−1

ni

)
.

(b) We have
(

n
n1, n2, . . . , nk

)
∈ N.

(c) The multinomial coefficient
(

n
n1, n2, . . . , nk

)
does not change when we

permute n1, n2, . . . , nk.
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(d) If n > 0, then(
n

n1, n2, . . . , nk

)
=

k

∑
i=1

(
n

n1, n2, . . . , ni−1, ni − 1, ni+1, . . . , nk

)
︸ ︷︷ ︸

This is understood to be 0 if ni=0

.

(We call this the Multi-Pascal’s recurrence, since it generalizes Pascal’s re-
currence at least in the case of nonnegative integers.)

Proof. Easy exercises. (All the proofs appear in the 2019 notes: The proofs of
(a) and (b) are Exercise 2.12.1 in the 2019 notes, whereas part (c) is Proposition
2.12.14 in the 2019 notes, and part (d) is Exercise 2.12.5 in the 2019 notes.)

Next time, we will learn how the multinomial coefficients got their name,
and what they count.
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